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ALAN DOW

Abstract. M. Scheepers introduced the notion of selectively separable as one

of many interesting selection principles. Fréchet spaces are known to be se-

lectively separable but neither of these properties is well-behaved in products,
even for countable spaces. We prove that the open coloring axiom, OCA, im-

plies that the product of two countable Fréchet spaces is selectively separable.

We prove that Martin’s Axiom implies there are three countable Fréchet spaces
whose product is not selectively separable.

1. Introduction

A space is Fréchet (often called Fréchet-Urysohn) if a point x of X is an accumu-
lation point of a subset A of X if and only if there is a sequence from A converging
to x. While the property of being Fréchet is a local property, it has been discovered
to have an effect on some selection principles connected to density. The first of
these was introduced by M. Scheepers [10] and called selectively separable. It is
often now referred to as M-separable so as to fit a pattern.

Definition 1. Let {Dn : n ∈ ω} be dense subsets of a space X. Then, X is said
to be

(1) M-separable if there is a selection Hn ⊂ Dn of finite sets such that
⋃
{Hn :

n ∈ ω} is dense,
(2) R-separable if there is a selection of points dn ∈ Dn such that {dn : n ∈ ω}

is dense,
(3) H-separable if there is sequence of finite sets Hn ⊂ Dn so that

⋃
{Hn : n ∈

H} is dense for every infinite set H ⊂ ω,
(4) mH-separable if there is a sequence of finite sets Hn ⊂

⋃
{Dm : m ≥ n} so

that
⋃
{Hn : n ∈ H} is dense for every infinite H ⊂ ω (equivalently, the

H-separable property holds for descending sequences of dense sets).

The above notions were introduced and studied in [6]. It is evident that an
M-separable space is separable, that every R-separable space is M-separable, and
every mH-separable space is M-separable.

In this paper our interest will be on countable zero-dimensional Hausdorff Fréchet
spaces. It was shown in [4] that such spaces are M-separable. It is also known that
such spaces are R-separable and mH-separable [7]. In the remainder of the paper,
when we say that a space is a countable Fréchet space it will also mean that the
space is Hausdorff and has a basis consisting of clopen sets. It was proven in [5]
that PFA implies that the product of two countable Fréchet spaces is M-separable.
It was noted in [3] that the proof yields that such products are R-separable. It was
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shown in [3, Theorem 1.2] that it is consistent with Martin’s Axiom (and follows
from CH) that there is a product of two countable zero-dimensional Fréchet spaces
that is not M-separable.

Two questions, among many, remain (as noted in [3]): does the PFA result
extend to products of three or more spaces as (inadvertently) claimed in [5] and
can the conclusion for the product of two be strengthened to mH-separable. We
answer with the following three theorems.

Theorem 1. Martin’s Axiom implies the existence of 3 Fréchet countable regular
spaces with non-M-separable product.

Theorem 2. Martin’s Axiom implies the existence of 2 Fréchet countable regular
spaces with non-mH-separable product.

Theorem 3. The Open Graph Axiom implies that the product of 2 Fréchet count-
able regular spaces is M-separable.

Theorem 1 is proven via the constructions in sections 2 through section 6. Sec-
tion 7 completes the discussion of the constructed examples to prove Theorem 2.
Theorem 3 is restated (and the Open Graph Axiom is recalled) and proven in the
final section.

2. Ground 0 inductive assumptions

Choose a dense subset D of Q{1,2,3} = Q×Q×Q such that, for each i = 1, 2, 3,
the projection map πi ↾ D is 1-to-1 and let Qi = πi[D]. For convenience also
assume (arrange) that {Q1, Q2, Q3} is a partition of Q. It will also be convenient
to assume that Q denotes the rational points in [0, 1], and when we speak of the
product space [0, 1]{1,2,3} we mean with respect to the usual topology. We also let
π1,2 denote the projection map from D to Q1 ×Q2.

For the remainder of the paper, until stated otherwise at the beginning of section
8, we assume that Martin’s Axiom holds. In fact we only need Martin’s Axiom for
posets that are σ-2-linked. The main idea of the proof relies on [1]

Fix a countable base τ i0 for each Qi consisting of non-empty clopen sets and
closed under complements.

For each q ∈ Q1 ∪Q2 ∪Q3, let iq ∈ {1, 2, 3} indicate that q ∈ Qiq .

For each i ∈ {1, 2, 3} and subset A ̸= ∅ of Qi, let Ã = π−1
i [A] ∩D.

Fix a partition, {Dn : n ∈ ω}, of D into dense subsets. These will provide the
family of dense sets that will witness the failure of the product being M-separable.
We will simultaneously ensure that the sequence {π1,2[Dn] : n ∈ ω} will witness
that the product Q1 ×Q2 is not mH-separable.

Proposition 4. For each q ∈ Q1, n ∈ ω, U2 ∈ τ20 and U3 ∈ τ30 , there is a sequence

I ⊂ π1[Dn ∩ Ũ2 ∩ Ũ3] such that

(1) I converges to q,

(2) for j ∈ {2, 3}, πj [Ĩ] is closed and discrete in Qj (wrt τ j0 ).
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Proof. By the assumption thatDn is dense, it follows that π1[Dn∩π−1
2 [U2]∩π−1

3 [U3]]

is dense in Q1. Since Dn ∩ π−1
2 [U2] ∩ π−1

3 [U3] = Dn ∩ Ũ2 ∩ Ũ3, π1[Dn ∩ Ũ2 ∩ Ũ3]
is dense in Q1. Choose a pair of {U2,ℓ : ℓ ∈ ω} ⊂ τ20 and {U3,ℓ : ℓ ∈ ω} ⊂ τ30
that are partitions of Q2 and Q3 respectively. Since Q1 is Fréchet (in fact first-
countable) there is a sequence I = {iℓ : ℓ ∈ ω} ⊂ Q1 converging to q such that

iℓ ∈ π[Dn ∩ Ũ2,ℓ ∩ Ũ3,ℓ] for each ℓ. It follows that πj [Ĩ]∩Uj,ℓ is a singleton for each

ℓ ∈ ω. This certainly ensures that πj [Ĩ] is closed and discrete. □

For each q ∈ Q, choose a countable family Iq
0 of subsets of Qiq satisfying that:

(1) each I ∈ Iq
0 converges to q,

(2) for each n ∈ ω, and each (U2, U3) ∈ τ j20 × τ j30 (where {j2, j3} = {1, 2, 3} \
{iq}), there is an I ∈ Iq

0 such that I ⊂ πiq [Dn ∩ Ũj2 ∩ Ũj3 ],

(3) for each iq ̸= j ∈ {1, 2, 3}, πj [Ĩ] is closed discrete in Qj in the topology τ j0 ,

(4) for each I ∈ Iq
0 , Ĩ converges in [0, 1]{1,2,3}.

3. Inductive assumptions

For each β ≤ γ < α < c, each q ∈ Q, and each i ∈ {1, 2, 3}:

(1) τ iβ ⊂ τ iγ are bases of clopen (closed under complements) non-empty subsets
of Qi

(2) τ iγ has cardinality equal to ℵ0 + |γ|,
(3) Iq

β is a set of at most ℵ0 + |β| many subsets of Qiq that τ iβ-converge to q,

(4) Iq
β ⊂ Iq

γ ,

(5) for iq ̸= j ∈ {1, 2, 3} and I ∈ Iq
β , Ĩ converges in [0, 1]{1,2,3}, and πj [Ĩ] is

closed and discrete in τ jβ ,

(6) for n ∈ ω, U2 ∈ τ j2β , U3 ∈ τ j3β (where {iq, j2, j3} = {1, 2, 3}), there is an

I ∈ Iq
β that meets πiq [Dn ∩ Ũ2 ∩ Ũ3] in an infinite set.

Assume also that {Aβ : β < c} enumerates the family [Q1]
ω ∪ [Q2]

ω ∪ [Q3]
ω and

that {Hβ : β < c} enumerates the family of subsets H of D that satisfy that H∩Dn

is finite for each n ∈ ω.

For convenience, IQ
α =

⋃
{Iq

α : q ∈ Q} and, for each i ∈ {1, 2, 3}, let IQi
α =⋃

{Iq
α : q ∈ Qi}. Since the partition Q1, Q2, Q3 of Q is fixed, we can let τQα denote

the union τ1α ∪ τ2α ∪ τ3α and understand that each τ iα is reconstructible from τQα .

With this convention, it is easy to describe that (τQγ , IQ
γ ) is an extension of (τQβ , I

Q
β )

simply to mean that τQβ ⊂ τQγ , I
Q
β ⊂ IQ

γ and that induction hypotheses (1)-(6) are
satisfied for each.

Now add the next three inductive assumptions for β + ω < α < c:

(7) if Aβ ⊂ Qi and q ∈ Qi is a limit point of Aβ with respect to the topology
τ iβ+ω , then there is an I ∈ Iq

β+ω such that I ∩Aβ is infinite,

(8) The set Hβ has no limit points in Q1×Q2×Q3 with respect to the product
topology τ1β+ω × τ2β+ω × τ3β+ω.

(9) If {k : Hβ ∩Dk = ∅} is infinite, there is an infinite sequence {kℓ : ℓ ∈ ω} ⊂
{k : Hβ ∩Dk = ∅} such that the set

π1,2

[⋃
{Hβ ∩Dn : (∃ℓ ∈ ω) (k2ℓ ≤ n < k2ℓ+1)}

]
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has no limit points in Q1 ×Q2 with respect to the topology τ1β+ω × τ2β+ω.

Let IH(α, 1−6) denote the statement that the induction hypotheses 1-6 are
satisfied for all β < α. Similarly define IH(α, 1−e) (e ∈ {8, 9}).

If we succeed in extending the induction out to c, then let τ ic =
⋃
{τ iα : α < c}

and we have

(1) Induction hypotheses (3), (7) ensure that each (Qi, τ
i
c) is Fréchet.

(2) Induction hypothesis (6) ensures that {Dn : n ∈ ω} is a family of dense
subsets of Q1 ×Q2 ×Q3.

(3) Induction hypothesis (8), combined with the previous item, ensures that
this product is not M -separable.

We also have that the product Q1 × Q2 is not mH-separable as we now check.
Suppose that ⟨Fn : n ∈ ω⟩ is a sequence of finite sets satisfying that Fn ⊂

⋃
{Dm :

n ≤ m ∈ ω} for all n. Assume also that Fn∩Dn is non-empty for all n. Recursively
choose an increasing sequence {mℓ : ℓ ∈ ω} so that, for each n < mℓ, Fn ⊂

⋃
{Dm :

m < mℓ+1}. Choose β < c so that Hβ =
⋃

n Fn \
⋃

ℓDm2ℓ+1
. Clearly the set of

k such that Hβ ∩ Dk = ∅ is equal to {m2ℓ+1 : ℓ ∈ ω}. By Induction hypothesis
(9) we have the infinite sequence {kℓ : ℓ ∈ ω} contained in {m2ℓ+1 : ℓ ∈ ω}.
For each k2ℓ = m2ℓ′+1, the interval [m2ℓ′+2,m2ℓ′+3) is contained in [k2ℓ, k2ℓ+1).
Therefore

⋃
{Hβ∩Dn : (∃ℓ ∈ ω) (k2ℓ ≤ n < k2ℓ+1)} contains Fn for infinitely many

n. Similarly π1,2
[⋃

{Hβ ∩Dn : (∃ℓ ∈ ω) (k2ℓ ≤ n < k2ℓ+1)}
]
contains π1,2[Fn] for

infinitely many n. In other words the selection {π1,2[Fn] ⊂ π1,2[
⋃
{Dm : n ≤ n ∈

ω}] fails to satisfy the requirement for the mH-separable property.

Now we make two trivial assumptions for convenience that in no way affect the
outcome. For each successor β < c, Aβ = Q1 and Hβ is empty. For each limit β,
one of Aβ and Hβ is empty. With these innocuous assumptions, we have, for each
limit β, one task that must be completed by stage β + ω.

We handle each of the three types, (7), (8), and (9), of inductive steps in their
own section.

We note that for limit α ≤ c, the induction hypotheses are preserved if we simply
set Iq

α =
⋃
{Iq

ξ : ξ < α} for all q ∈ Q, and τ iα =
⋃
τ iξ : ξ < α} for i ∈ {1, 2, 3}.

4. Safely adding converging sequences and clopen sets

In this section we introduce our method for adding new members to any τ iβ . The
procedure will be used again with milder assumptions on the set B.

The following observation, a strengthening of Arhangelskii’s α1-property for first
countable spaces, has proven useful.

Proposition 5. Let I be a family of sequences in a countable space X all converging
to a single point x that has countable character. If I has cardinality less than b,
then there is a single sequence S converging to x that mod finite contains every
member of I.

Proof. Fix a descending neighborhood basis, {Un : n ∈ ω}, for x with U0 = X. For
each n ∈ ω, let Xn = Un \Un+1. There is nothing to prove if x has a neighborhood
that is simply a converging sequence, so we may assume that eachXn is infinite. For
each n ∈ ω, choose an enumeration, {x(n,m) : m ∈ ω} of Xn. For each I ∈ I, there
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is a function fI ∈ ωω satisfying that I ⊂
⋃

n{x(n,m) : m < fI(n)}. Therefore,
if |I| < b, we may choose a function f ∈ ωω so that f is eventually larger than
each fI . It is easy to check that S =

⋃
n{x(n,m) : m < f(n)} is a sequence that

converges to x and which satisfies that I \ S is finite for all I ∈ I. □

For an ideal I of subsets of a set X (the value of X should be clear from the
context), we let I⊥ denote the ideal of all subsets of X that are almost disjoint
from every member of I.

Lemma 6. Assume IH(β + 1, 1−6). Suppose that B ⊂ Qi (i ∈ {1, 2, 3}) satisfies

that B ∈
(
IQi

β

)⊥
and B̃ ∩ J̃ ∩Dn is finite for all n ∈ ω and J ∈ IQ

β .

Then there is a function φβ : Qi → ω such that

(1) φβ ↾ B is 1-to-1,
(2) for all q ∈ Qi and I ∈ Iq

β, φβ [I] “converges to” φβ(q) (with respect to the

discrete topology on ω).
(3) IH(β + 2, 1−6) holds after we set

(a) Iq
β+1 = Iq

β for all q ∈ Q,

(b) τ jβ+1 = τ jβ for i ̸= j ∈ {1, 2, 3},
(c) τ iβ+1 is the topology generated by τ iβ ∪ {φ−1

β (m) : m ∈ ω}.

Proof. It will be more convenient notationally to assume that i = 1. Begin by
applying Proposition 5 to choose, for each r ∈ Q1 a sequence Irβ ⊂ Q1 converging

to r with respect to τ10 satisfying that I ⊂∗ Irβ for all I ∈ Ir
β . Remove a finite

set from each such Irβ so as to ensure that the family {Irβ : r ∈ Q1} is a pairwise
disjoint family. Also ensure that Irβ is disjoint from B, which we may do because

of the assumption that B ∈
(
Ir
β

)⊥
.

Next we will choose Lr
β ⊂ Irβ so that

(1) Lr
β ∩ I is finite for all I ∈ Ir

β ,

(2) for all J ∈ IQ2

β ∪IQ3

β , if π1[J̃ ]∩Irβ is infinite, then Lr
β ∩π1[J̃ ] is also infinite.

This is a simple application of the fact that IQ
β has cardinality less than p together

with the fact, by induction hypothesis (5), that π1[J̃ ]∩I is finite for all J ∈ IQ2

β ∪IQ3

β

and I ∈ Ir
β . There is no loss to assuming that each Lr

β is infinite.

Fix an enumeration {rℓ : ℓ ∈ ω} of Q1. Let φ0
β be any 1-to-1 function from

B∪{r0} into ω. We “Cohen generically” perform a recursion to define an increasing
sequence of functions φk

β (k < ω) from subsets of Q1 to ω. To make the Cohen
genericity precise, choose any elementary submodel Mβ of cardinality less than c

that contains {Q1, Q2, Q3, } ∪ {Dn : n ∈ ω} and every element of IQ
β and τQβ . Also

ensure that {Irβ : r ∈ Q1} ∪ {Lr
β : r ∈ Q1} is an element of Mβ . Let gβ be any

function from ω to ω that is generic over Mβ with respect to the poset ω<ω.
The domain of φk

β will equal B ∪ {rℓ : ℓ ≤ k} ∪
⋃
{Irℓβ \ Lrℓ

β : ℓ < k} union some

finite subset of Q1. The inductive hypothesis is that, similar to condition (2) of the
statement of the Lemma, φk

β [I
∗] = φk

β(r) for some cofinite I∗ ⊂ Irβ \ Lr
β , holds for

each r ∈ {rℓ : ℓ < k}. We may note here that Lr
β ∩ dom(φk

β) will be finite for all
r ∈ Q1 and k ∈ ω.

Now we describe how to define φk+1
β . If rk+1 /∈ dom(φk

β), then set φk+1
β (rk+1) =

gβ(k + 1). Next, let {rℓi : i < gβ(k)} denote the first gβ(k) many elements of of
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Q1 \ ({rk+1∪dom(φk
β)). Define φk+1

β (rℓi) = gβ(ℓi) for each i < gβ(k). Finally, have

φk+1
β send the remainder of Irkβ \ Lrk

β to the value φk+1
β (rk).

The purpose of the Cohen generic choices (the details of which we skip) together

with the choices of Lr
β (r ∈ Q1) is simply this: Suppose that J ∈ IQ2

β ∪IQ3

β satisfies

that J̃ ∩ Dn is infinite for some n ∈ ω. Then π1[J̃ ∩ Dn] ∩ B is finite and so, for

any m ∈ ω, some infinite subset of π1[J̃ ∩ Dn] will be sent to m by φβ =
⋃

k φ
k
β .

The reason this is true is that π1[J̃ ∩Dn] \ dom(φk
β) is infinite for every k because

either π1[J̃ ∩Dn] meets Irkβ in a finite set, or π1[J̃ ] meets Lrk
β in an infinite set. It

is easily seen that this same genericity will ensure that φ−1(m) is a τ1β -dense subset
of Q1.

The only induction hypothesis that needs checking for IH(β+2, 1−6) is number
(6). However this is routine. Let U1 ∈ τ1β , U2 ∈ τ2β and U3 ∈ τ3β . We must check

the property in (6) with respect to U = U1 ∩ φ−1
β (m) for any m. Referring to the

statement in (6), there are two cases iq = 1 and iq = 2 (because iq = 3 follows
the same proof as for iq = 2). In the case that iq = 1 there is nothing new that
needs proving (because Iq

β ⊂ Iq
β+1). Now let iq = 2 and choose a J ∈ Iq

β such that

J meets π2[Dn ∩ Ũ1 ∩ Ũ3] in an infinite set. Equivalently π1[J̃ ∩Dn ∩ Ũ1 ∩ Ũ3] is

an infinite subset of π1[J̃ ∩Dn]. Again, by Cohen genericity, we have that φ−1(m)

will contain an infinite subset of π1[J̃ ∩ Dn ∩ Ũ1 ∩ Ũ3]. This is equivalent to the

statement that J meets the set π2[Dn ∩ Ũ ∩ Ũ3] as required. □

Corollary 7. Assume IH(β + 1, 1−6). Suppose that B ⊂ Qi satisfies that

(1) B̃ converges in the product space [0, 1]{1,2,3},
(2) B converges to q ∈ Qi with respect to τ iβ,

(3) πj [B̃] is in
(
IQj

)⊥
for each j = 1, 2, 3.

Then there are φβ : Qj2 → ω and ψβ : Qj3 → ω so that, with {i, j2, j3} = {1, 2, 3},
IH(β + 2, 1−6) holds after we set

(1) Ir
β+1 = Ir

β for all q ̸= r ∈ Q,

(2) Iq
β+1 = {B} ∪ Iq

β,

(3) τ iβ+1 = τ iβ
(4) τ j2β+1 is the topology generated by τ j2β ∪ {φ−1

β (m) : m ∈ ω},
(5) τ j3β+1 is the topology generated by τ j2β ∪ {φ−1

β (m) : m ∈ ω}

Proof. First apply Lemma 6 in two consecutive steps to obtain φβ and then ψβ .

This gives the new topologies τ j2β+1 and τ j3β+1 so that πj [B̃] is closed and discrete
for j = j2, j3. Finally, the assumptions on B now ensure that B can be added to
Iq
β+1. □

5. ensure Fréchet in each coordinate

In this section we assume that the induction hypotheses hold at stage α and that
Aα is a subset of Q1. The case when Aα is a subset of any other Qi is completely
symmetric and it is notationally clearer to be specific about the value of i.

Fix an enumeration {rℓ : ℓ ∈ ω} of Q1. We will take ω many steps (from α up
to α + ω) so as to ensure that either rℓ is not in the closure of Aα (with respect
to τ1α in fact) or there is an I ⊂ Aα which is an element of Irℓ

β+ℓ+1. This will
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require that we enlarge each of τ2β+ℓ and τ
3
β+ℓ so as to ensure induction hypothesis

(5) remains valid. If we complete this process, we obtain that induction hypothesis
(7) is extended. No changes are needed for induction hypotheses (8,9). Induction
hypothesis (6) will be retained in the process because we will be applying Corollary
7 at each step.

Lemma 8. Let ℓ < ω and assume IH(α+ ℓ+1, 1−6). Assume that Aα ∈
(
Irℓ
α+ℓ

)⊥
and rℓ is a τ1α+ℓ-limit point of Aα. Then there is an extension (τQα+ℓ+1, I

Q
α+ℓ+1) of

(τQα+ℓ, I
Q
α+ℓ) so that IH(α+ ℓ+ 2, 1−6) holds and there is an I ∈ Irℓ

α+ℓ+1 that is a
subset of Aα.

Proof. First choose any infinite B ⊂ Q1 that is a pseudointersection of the filter
base {U ∩ Aα : rℓ ∈ U ∈ τ1α+ℓ}. By passing to a subsequence we can assume that

B̃ converges in [0, 1]{1,2,3}. Since B is a pseudointersection of the neighborhood
base for rℓ, it is clear that B converges to rℓ ∈ Q1 with respect to τ1α+ℓ. We check

that πj [B̃] is in
(
IQj

α+ℓ

)⊥
for each j = 1, 2, 3. The first case is that π1[B̃] = B is in(

Irℓ
α+ℓ

)⊥
because we assume that Aα ∈

(
Irℓ
α+ℓ

)⊥
. For any j ∈ {1, 2, 3} and J ∈ Ir

α+ℓ

with r ̸= rℓ, we have that rℓ is not a τ1α+ℓ-limit of π1[J̃ ]. Therefore there is some

rℓ ∈ U ∈ τ1α+ℓ that is almost disjoint from π1[J̃ ]. This implies that B is almost

disjoint from π1[J̃ ], which, by symmetry, implies that πj [B̃] is almost disjoint from
J .

We finish the proof of the Lemma by applying Corollary 7. □

6. Ensure M-separable fails for the product

In this section we assume that, for a limit ordinal α < c, ⟨(τQβ , I
Q
β ) : β ≤ α⟩ is

a system that satisfies IH(α, 1−6) and that Hα is an infinite subset of D and we
recall that Hα ∩Dn is finite for each n ∈ ω.

Two ideals I1, I2 on P(ω) are orthogonal if I1 ∩ I2 is finite for all I1 ∈ I1 and
I2 ∈ I2. We will use the following notion from [1].

Definition 2. A finite family {Ii : i ∈ n} of mutually orthogonal ideals of P(ω) is
an n-gap if for every collection {Ci : i ∈ n} ⊂ P(ω) satisfying that I ⊂∗ Ci for all
i ∈ n and I ∈ Ii, we have that C0 ∩ C2 ∩ · · · ∩ Cn−1 is infinite.

Proposition 9 ([1, Corollary 21]). The hypothesis MAθ(σ-k-linked) implies that
for n > k there exist no n-gaps of θ-generated ideals in P(ω)/fin.

Of course Martin’s Axiom implies MAθ(σ-k-linked) for all k ∈ ω and θ < c.

Lemma 10. The set of ideals {Ii : i ∈ {1, 2, 3}} is mutually orthogonal, where,
for each i ∈ {1, 2, 3}, Ii is the ideal of subsets of Hα generated by the family

{Ĩ : I ∈ IQi
α }.

Proof. Let 1 ≤ j1 < j2 ≤ 3 and suppose that r1 ∈ Qj1 and r2 ∈ Qj2 . Furthermore

assume that I ∈ Ir1
α and J ∈ Ir2

α . By induction hypothesis (4), πj1 [J̃ ] is closed and
discrete with respect to τ j1α , while, by (3), I is a converging sequence. Therefore

I ∩ πj1 [J̃ ] is finite. Since πj1 is 1-to-1 and πj1 [Ĩ] = I, it follows that Ĩ ∩ J̃ is
finite. Since these are arbitrary generators of the ideals Ij1 and Ij2 , this proves the
Lemma. □
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Of course it follows from Proposition 9 that {I1, I2, I3} of Lemma 10 is not a
3-gap. So therefore, we may choose sets C1, C2, C3 satisfying that C1∩C2∩C3 = ∅,
and, for each I ∈ IQi

α and i ∈ {1, 2, 3}, Hα∩Ĩ ⊂∗ Ci, and (with no loss of generality)
C1 ∪ C2 ∪ C3 = Hα.

Proposition 11. For i ∈ {1, 2, 3} and Bi = πi[Hα \Ci], we have that Bi ∈
(
IQi
α

)⊥
and B̃i ∩ J̃ ∩Dn is finite for all n ∈ ω and J ∈ IQ

α .

Proof. First observe that Ĩ ∩Hα ⊂∗ Ci for all I ∈ IQi
α . This is equivalent to the

desired conclusion that Bi ∈
(
IQi
α

)⊥
. In fact, let us highlight the fact that B̃i is

equal to Hα \Ci and recall that Hα ∩Dn is finite for all n ∈ ω. Now suppose that

J ∈ IQ
α . It then follows trivially that B̃i ∩ (J̃ ∩Dn) is finite for all n ∈ ω. □

Lemma 12. There is a sequence of extension ⟨(τQα+i, I
Q
α+i) : i = 1, 2, 3⟩ of (τQα , IQ

α )

such that there are functions φi
α : Qi → ω, for i = 1, 2, 3 satisfying

(1) for all q ∈ Q, Iq
α+3 = Iq

α,

(2) φi
α ↾ Bi is 1-to-1 where Bi = πi[Hα \ Ci],

(3) Hα ∩ Ĩ ⊂∗ Ci for all I ∈ IQ
α ,

(4) C1 ∩ C2 ∩ C3 is empty and Hα ⊂ C1 ∪ C2 ∪ C3,
(5) φi

α is continuous with respect to τ iα+3,
(6) IH(α+ 4, 1−6) holds.

Proof. By induction on i = {1, 2, 3}, apply Lemma 6 with B = Bi and β = α +

(i−1), to obtain φi
α to be φβ in the statement of the Lemma. Define (τQα+i, I

Q
α+i)

as described in Lemma 6. □

Corollary 13. For limit α < c for which Hα is an infinite subset of D and the
system ⟨(τQβ , I

Q
β ) : β ≤ α⟩ satisfies IH(α+1, 1−9), there is an extension ⟨(τQβ , I

Q
β ) :

β ≤ α+ 3⟩ satisfying IH(α+ 4, 1−8).

Proof. First choose (τQα+3, I
Q
α+3) together with the functions φi

α (i = 1, 2, 3) as in
Lemma 12. We have to show that induction hypothesis (8) holds, namely that,
that Hα is closed and discrete in Q1 × Q2 × Q3 with respect to the topology
τ1α+3 × τ2α+3 × τ1α+3. For each i = 1, 2, 3, the function φi

α ◦ πi is a continuous

function from Q1 × Q2 × Q3 into ω. For each i = 1, 2, 3, φi
α ◦ πi ↾ (Hα \ Ci) is

1-to-1. Therefore, for i = 1, 2, 3, Hα \Ci is closed and discrete in Q1×Q2×Q3. Of
course this implies that Hα is closed and discrete since Hα = Hα \ (C1 ∩ C2 ∩ C3)
and Hα \ (C1 ∩ C2 ∩ C3) = (Hα \ C1) ∪ (Hα \ C2) ∪ (Hα \ C3). □

7. Ensure the failure of mH-separable for the product of two

In this section, we continue from Section 6, and we assume that Hα is not empty
and that ⟨(τQα+i, I

Q
α+i) : i = 1, 2, 3⟩ have been defined as in Lemma 12 so that

IH(α, 1−9) and IH(α+4, 1−8) hold. Suppose further that {k ∈ ω : Hα∩Dk = ∅}
is infinite and let {mℓ : ℓ ∈ ω} enumerate this set. For each ℓ, let hℓ be the finite
set Hα ∩

⋃
{Dn : mℓ ≤ n < mℓ+1}.

Lemma 14. There is an infinite set L ⊂ ω and a partition C1, C2 of HL =
⋃
{hℓ :

ℓ ∈ L} satisfying that HL ∩ Ĩ ⊂∗ C1 for all I ∈ IQ1

α+3, and HL ∩ Ĩ ⊂∗ C2 for all

I ∈ IQ2

α+3.



MA AND THREE FRÉCHET SPACES 9

Proof. Given an infinite set L, letQL denote the poset consisting of the set of triples
(j, c, I) where j ∈ ω, c ⊂

⋃
{hℓ : ℓ ∈ L ∩ j}, and I is a finite subset of IQ1

α ∪ IQ2
α

satisfying that Ĩ1∩ Ĩ2∩hℓ is empty for all ℓ ∈ ω \ j. A condition (j2, c2, I2) extends
(j, c, I) providing

(1) j ≤ j2, c2 ∩
⋃
{Hℓ : ℓ ∈ L ∩ j} = c,

(2) I2 ⊃ I,
(3) Ĩ1 ∩ hℓ ⊂ c2 for all I1 ∈ IQ1

α ∩ I and ℓ ∈ L ∩ j2 \ j,
(4) Ĩ2 ∩ hℓ is disjoint from c2 for all I2 ∈ IQ2

α ∩ I and ℓ ∈ L ∩ j2 \ j.
The poset QL is a standard poset for adding a separation of two orthogonal

ideals. However it is not always ccc.
If we let L̇ denote the set ġ−1(1) where ġ is a generic for the standard poset 2<ω,

then we check that 2<ω ∗QL̇ is ccc. It should be clear that this will then prove the
Lemma. The elements of QL̇ are simply elements of Qω but the ordering on QL̇

depends on the generic. To prove that 2<ω ∗ QL̇ is ccc, we may pass to the dense

set of conditions that have the form (σ, (j, c, I)) where σ ∈ 2k for some k ≥ j. Let
{(σξ, (jξ, cξ, Iξ)) : 2 < ξ < ω1} be any family of such conditions. For each ξ ∈ ω1

and i = 1, 2, let Iξ,i =
⋃(

Iξ ∩ IQi
α

)
. By passing to an uncountable subset we may

assume that there are σ, j, c so that, for all 2 < ξ < ω1, σξ = σ, jξ = j, and cξ = c.
Let k be the domain of σ. Pass to a further uncountable subset so that for any ξ, η
and any ℓ < k, Ĩξ,1 ∩ hℓ = Ĩη,1 ∩ hℓ and Ĩξ,2 ∩ hℓ = Ĩη,2 ∩ hℓ. Set

c2 = c ∪
(
Ĩξ,1 ∩

⋃
{hℓ : j ≤ ℓ and σ(ℓ) = 1}

)
.

Now fix such a distinct pair ξ, η. Choose j2 > k large enough so that for each
I1 ∈ IQ1

α ∩ (Iξ ∪ Iη) and I2 ∈ IQ2
α ∩ (Iξ ∪ Iη), Ĩ1 ∩ Ĩ2 ∩ hℓ is empty for all

ℓ ≥ j2. Define σ ⊂ τ ∈ 2j2 so that τ(ℓ) = 0 for all k ≤ ℓ < j2. Routine checking
shows that (τ, (j2, c2, Iξ ∪ Iη)) is a common extension of each of (σξ, (jξ, cξ, Iξ))
and (ση, (jη, cη, Iη)) in 2<ω ∗ QL̇.

□

Now we have, completely analogous to Proposition 11, the following result.

Proposition 15. For i ∈ {1, 2} and Bi = πi[HL \Ci], we have that Bi ∈
(
IQi

α+3

)⊥

and B̃i ∩ J̃ ∩Dn is finite for all n ∈ ω and J ∈ IQ
α+3.

Lemma 16. There are extensions (τQα+4, I
Q
α+4) and (τQα+5, I

Q
α+5) of (τQα+3, I

Q
α+3)

such that there are functions φi
α+3 : Qi → ω, for i = 1, 2 satisfying

(1) for all q ∈ Q, Iq
α+5 = Iq

α+3,

(2) φi
α+3 ↾ Bi is 1-to-1 where Bi = πi[HL \ Ci],

(3) HL ∩ Ĩ ⊂∗ Ci for all I ∈ IQi
α ,

(4) C1 ∩ C2 is empty and HL ⊂ C1 ∪ C2,
(5) φi

α+3 is continuous with respect to τ iα+5,

(6) IH(α+ 6, 1−6) holds for the system ⟨(τQβ , I
Q
β ) : β < α+ 5⟩.

Proof. By induction on i = {1, 2}, apply Lemma 6 with B = Bi and β = α+(i−1),

to obtain φi
α to be φβ in the statement of the Lemma. Define (τQα+i, I

Q
α+i) as

described in Lemma 6. □
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Corollary 17. For limit α < c for which Hα is an infinite subset of D and
⟨(τQβ , I

Q
β ) : β ≤ α⟩ satisfies IH(α, 1−9), there is an extension ⟨(τQβ , I

Q
β ) : β ≤ α+ω⟩

satisfying IH(α+ ω, 1−9).

Proof. First choose (τQα+i, I
Q
α+i) together with the functions φi

α (i = 1, 2, 3) follow-
ing the proof of Lemma 12. Following that, we have chosenHL as in Lemma 14, and
apply Lemma 16 to choose (τQα+i, I

Q
α+i) (i = 4, 5). Finally, for all α+5 ≤ β ≤ α+ω,

we set (τQβ , I
Q
β ) equal to (τQα+5, I

Q
α+5).

We have to show that induction hypothesis (9) holds. It will be sufficient to
show that π1,2[HL] is closed and discrete in Q1 ×Q2 with respect to the topology
τ1α+ω × τ2α+ω. For each i = 1, 2, the function φi

α+3 is a continuous function from

Qi into ω. The sequence {
(
φ1
α+3

)−1
(m) × Q2 : m ∈ ω} is a clopen partition of

Q1 × Q2. Since φ1
α+3 ◦ π1 is 1-to-1 on HL \ C1 (as in Lemma 16), it follows that

the set π1,2(HL \ C1) has at most one point in common with each element of this
partition. Similarly, π1,2(HL \ C2) has at most one point in common with each

member of the clopen partition {Q1 ×
(
φ1
α+3

)−1
(m) : m ∈ ω}. Since C1, C2 is a

partition of HL, it follows that π1,2(HL) is the union of two closed discrete subsets
of Q1 ×Q2. □

8. OGA and the product of two Fréchet spaces

In this section we are no longer assuming any form of Martin’s Axiom and we
prove that OGA implies that the product of two countable Fréchet spaces is M-
separable. This improves the result in [5] where it was proven under the assumption
of PFA. Our current proof is similar to the proof in [5] but is easier to read. See also
[11] for a similar application to products of Fréchet spaces. It is noted in [3] that
PFA yields the stronger result that the product of two countable Fréchet spaces is
R-separable. We do not know if OCA implies the same.

The version of the open graph axiom, referred to as OCA in the initial reference
[12], is due to Todorčević. The original OCA, referred to as OCAARS in [8], was
introduced in [2].

OGA is the assertion that every open graph on a separable metric space is either
countably chromatic or else has an uncountable complete subgraph. Here a graph is
open if the adjacency relation on the vertex set is topologically open in the product
topology.

Theorem 3 (OGA). The product of two countable Fréchet spaces is M-separable.

Proof. Let τ1, τ2 be two Fréchet topologies on the underlying space ω. Let {En :
n ∈ ω} be dense subsets of the product space (ω, τ1) × (ω, τ2). It is well-known
(and easily checked) that if we let (x, y) ∈ ω2 be an arbitrary point and we are able
to find a sequence Hn ⊂ En (n ∈ ω) of finite sets satisfying that (x, y) is a limit
point of the union

⋃
{Hn : n ∈ ω}, then the product is M-separable. So we fix such

a pair (x, y).
Next we choose a pair of converging 1-to-1 sequences ⟨xn : n ∈ ω⟩ and ⟨yn : n ∈

ω⟩ such that the first sequence τ1-converges to x and the second τ2-converges to y.
Now let {U0

n : n ∈ ω} ⊂ τ1 be pairwise disjoint with xn ∈ U0
n for each n. Similarly

choose pairwise disjoint {W 0
n : n ∈ ω} ⊂ τ2 such that yn ∈ W 0

n for each n. Let D
be the union of the family {En ∩ (U0

n ×W 0
n) : n ∈ ω}.
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The fact that the sequence ⟨(xn, yn) : n ∈ ω⟩ converges to (x, y) will play a key
role in the proof. Observe the trivial fact that, for each n ∈ ω, (xn, yn) is a limit
point of the interior of the closure of the set D ∩ (U0

n ×W 0
n).

Let Ix be the set of all infinite sequences that τ1-converge to x. Similarly let
Jy be the set of all infinite sequences that τ2-converge to y. For each I ∈ Ix, let
Ĩ = D ∩ (I × ω). For each J ∈ Jy, let J̃ = D ∩ (ω × J).

Suppose there is some I ∈ Ix and J ∈ Jy such that (x, y) is a limit point of Ĩ∩ J̃ .
Since {(x, y)} ∪

(
Ĩ ∩ J̃

)
is metrizable, this would imply there is a sequence S from

D converging to (x, y). Since Sn = S ∩ (U0
n ×W 0

n) is finite for each n, it follows
that {Sn : n ∈ ω} is the sequence needed for the verification of M-separability.

Therefore we now assume there is no such I ∈ Ix and J ∈ Jy. Since, for such a

pair (I, J), the family {{(x, y)}∪
(
(̃I \ k) ∩ (̃J \ k)

)
: k ∈ ω} is a neighborhood base

for (x, y) in the above mentioned subspace, it follows that for each such (I, J) ∈
Ix × Jy, there is an integer k satisfying that (̃I \ k) ∩ (̃J \ k) is empty.

Let X be the family of pairs (I, J) ∈ Ix×Jy such that Ĩ and J̃ are disjoint. The
separable metric topology that we place on X is the standard one where for each
integer n ∈ ω and subsets s, t of n, [s, t;n] = {(I, J) ∈ X : I ∩n = s and J ∩n = t}.

We define the graph G to consist of all pairs ⟨(I, J), (I ′, J ′)⟩ from X 2 that satisfy

that at least one of Ĩ ∩ J̃ ′ and J̃ ∩ Ĩ ′ is non-empty. This graph is open since being
an edge depends only on a single element of D.

We first show that G is not countably chromatic. Suppose that {Xk : k ∈ ω} is a
family of induced subgraphs, each containing no edges. Set Sk =

⋃
{I : (∃J) (I, J) ∈

Xk} and Tk =
⋃
{J : (∃I) (I, J) ∈ Xk}. Note that D∩ (Sk×ω)∩ (ω×Tk) is empty

for all k. Let L0 = ω and {U0
n,W

0
n : n ∈ L0} be as above. We perform a recursion

in which we choose Lk+1, an infinite subset of Lk, and sets Uk+1
n ,W k+1

n (n ∈ Lk+1)
where, for all n ∈ Lk+1, either

(Case 1) Uk+1
n = Uk

n and W k+1
n =W k

n \ Tk, or
(Case 2) Uk+1

n = Uk
n \ Sk and W k+1

n =W k
n .

The inductive assumption is that, for all n ∈ Lk, (xn, yn) is a limit point of the
interior of the closure of D ∩

(
Uk
n ×W k

n

)
.

Suppose we have so chosen Lk, {Uk
n ,W

k
n : n ∈ Lk}. Since D∩(Uk

n ×W k
n ) is equal

to the union of D ∩ (Uk
n × (W k

n \ Tk)) and D ∩ ((Uk
n \ Sk)×W k

n ), (xn, yn) is a limit
point of the interior of the closure of one of these sets. If the set of n ∈ Lk such
that (xn, yn) is a limit point of the interior of the closure of the first of these sets
is infinite, then we are in (Case 1) and this is the choice for Lk+1 and the sequence
{(Uk+1

n ,W k+1
n ) : n ∈ Lk+1}. Otherwise Lk+1 is the subset of Lk in which (Case 1)

condition fails, and we have (Case 2) holding for all n ∈ Lk+1.
Having completed the induction, choose a strictly increasing sequence {nk : k ∈

ω} so that nk ∈ Lk+1. For each k choose a pair of sequence Ik, Jk so that Ik ⊂ Uk+1
nk

converges to xnk
and Jk ⊂W k+1

nk
converges to ynk

.
Since x is a limit point of the set

⋃
{Ik : k ∈ ω}, there is a sequence I ∈ Ix

that is contained in this union. Let L′ = {k : I ∩ Ik ̸= ∅} and, by the same
argument, there is a sequence J ⊂

⋃
{Jk : k ∈ L′} that converges to y. By possibly

removing a finite set from each of I and J , we have that (I, J) ∈ X . The proof
that X is not countably chromatic is finished if we prove that (I, J) /∈ Xk for any
k ∈ ω. The reason this is true is that, for each k, either (Case 1) held at step k
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and J ⊂∗ ⋃
{W k+1

n : n ∈ Lk+1} is almost disjoint from Tk or (Case 2) held at step
k and I ⊂∗ ⋃

{Uk+1
n : n ∈ Lk+1} is almost disjoint from Sk.

Therefore, from OGA, we can conclude there is an uncountable family {(Iα, Jα) :
α < ω1} ⊂ X such that ⟨(Iα, Jα), (Iβ , Jβ)⟩ ∈ G for all α < β ∈ ω1. Now we check

that the family {(Ĩα, J̃α) : α ∈ ω1} forms a Luzin-type gap in the following sense.

For all α < ω1, Ĩα and J̃α are disjoint (as per the definition of X ), while for α < β,

one of Ĩα∩J̃β or Ĩβ∩J̃α is not empty (as per the definition of G). Every uncountable
subset of pairs from a Luzin-type gap is also a Luzin-type gap.

Say that a set S separates a family A from a family B if every member of A is
mod finite contained in S and every member of B is almost disjoint from S. It is
well-known that the pairs from a Luzin-type gap can not be separated.

We are just a couple of steps away from choosing our sequence of finite sets
{Hn ⊂ En : n ∈ ω}. First partition D into D0 =

⋃
{D ∩ ({n} × n) : n ∈ ω} and

D1 = D \ D0 =
⋃
{D ∩ (n+1 × {n}) : n ∈ ω}. So D0 is finite in every column

(vertical fiber) and D1 is finite in every row (horizontal fiber).

Assume there are Si ⊂ Di (i = 0, 1) that separates the family {Ĩα∩Di : α ∈ ω1}
and the family {J̃α ∩Di : α ∈ ω1}. Then clearly S0 ∪ S1 would separate the family

{Ĩα : α < ω1} and the family {J̃α : α < ω1}. Therefore, by symmetry, we may as

well assume that the families {Ĩα∩D0 : α ∈ ω1} and {J̃α∩D0 : α ∈ ω1} can not be

separated. Notice now that Ĩα∩D0 is finite in every column. Also, Iα∩U0
n is finite

for every n. Therefore, using that OGA implies that b > ω1, there is a sequence
of finite sets Hn ⊂ (U0

n ×W 0
n) ∩ D, such that Ĩα ∩ D0 is mod finite contained in⋃

{Hn : n ∈ ω} for all α < ω1. Supplying more details, we can let {h(n,m) : m ∈ ω}
be any enumeration of En ⊃ En,0 = D0 ∩ (U0

n ×W 0
n) for all n. For each α < ω1,

there is a function fα ∈ ωω so that Ĩα ∩ En,0 ⊂ {h(n,m) : m < fα(n)}. We simply
choose f ∈ ωω so that fα <

∗ f for all α and set Hn = {h(n,m) : m < f(n)} for all

n ∈ ω. Again we note that
⋃

nHn contains, mod finite, every Ĩα ∩D0.

Now let x ∈ U ∈ τ1 and y ∈ W ∈ τ2. Clearly U × ω contains, mod finite, Ĩα
for every α ∈ ω1. Choose any β < ω such that (U × ω) ∩

⋃
nHn meets J̃β ∩ D0

in an infinite set. By removing a finite set from Jβ we can assume that Jβ ⊂ W .

Pick any h = (u,w) ∈
⋃

nHn such that (u,w) ∈ (U × ω) ∩ J̃β . It follows that
(u,w) ∈ U ×W . □
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