
Building A Security-Aware Query Answering System Based On Hierarchical
Data Masking

Seunghyun Im
1 University of North Carolina at Charlotte

Department of Computer Science,
Charlotte, N.C. 28223, USA

sim@uncc.edu

Zbigniew W. Ras1,2

2 Polish Academy of Sciences
Institute of Computer Science,

Ordona 21, 01-237 Warsaw, Poland
ras@uncc.edu

Agnieszka Dardzińska3,1

3 Bialystok Technical University
Mathematics Dept.,

15-351 Bialystok, Poland
adardzin@uncc.edu

Abstract

Knowledge based query answering system takes advan-
tage of data mining techniques to provide answers to user
queries that involve incomplete or foreign attribute values.
However, such process may cause a security issue when the
system contains confidential data required to be protected.
The confidential data as well as other values can be treated
as missing or incomplete, and vulnerable to improper dis-
closure of their true values. To minimize such vulnerability,
data transformation techniques are often utilized. In this
paper, we present a method that exploits hierarchical struc-
ture of attributes to minimize the changes from the original
information system while accommodating a given security
requirement. In particular, our method replaces the exist-
ing data with more generalized ones in such a way that the
value replacement cannot be used to predict the confidential
data.

1 Introduction

Knowledge based Query Answering Systems (QAS) is
to discover rules either locally or at remote sites (if sys-
tem is distributed) and use these rules in a query answer-
ing process. There are two different situations within this
objective. The first is when attributes are incomplete and
we may need rules to approximate the incomplete values to
answer to a query. The second is when users want to ask
queries based on some attributes which are not listed in a
local domain. Since these attributes are locally not avail-

able, we can only search for their definitions at remote sites
and use them to approximate given queries [6] [8]. One
way to design query answering systems more flexible is to
apply a hierarchical structure to their attributes [12]. Unlike
single-level attribute system, data collected with different
granularity levels can be assigned into an information sys-
tem with their semantic relations. For example, when the
age of a person is recorded, the value can be 17 or young .

We can expect higher probability of answering user
queries successfully by using a QAS. However, it may cre-
ate a security problem when a set of data is confidential (e.g.
age or salary) and protection is required. The exact value of
confidential data can be concealed from an information sys-
tem, for example, by replacing them with null values. How-
ever, users can send a query to QAS asking the confidential
data as incomplete or foreign, and QAS returns the hidden
data.

When we design a protection method against such im-
proper disclosure, one approach is to transform a set of data
to null values [5]. In other word, we completely hide a set
of existing values that are used to predict the confidential
data. Another approach, which we will discuss in this pa-
per, is to mask the exact value by substituting it with more
generalized values at higher level of a hierarchical attribute
structure. For example, instead of showing a person is 17
years old we may show that she is young if disclosure of the
value young does not compromise the privacy of the per-
son. The advantage of the second approach that users will
be able to acquire more explicit answers to their queries.

Clearly, we need to assume that a hierarchical attribute

structure is given to each attribute and they are part of the
common ontology which is large and approximately the
same among sites. They should come from the same world
(e.g. medical information) and, consequently, rules gener-
ated from different sites are close in terms of their mean-
ings. In addition, each site is forced to accept a new version
of ontology if any change has been made. Also the hierar-
chical structure must be seen by users. Users have freedom
of querying any level of values in the hierarchy.

The tradeoff between security risk and information avail-
ability is relatively clear. As the amount of hidden or rough
data continues to grow the disclosure of confidential data
drops. However, it is important to retain the original sources
of information to the maximum extent possible to maintain
the QAS to return more precise answers. In that respect,
the method presented in this paper aims to minimize the
amount of data replacement in terms of value granularity
while making sure that QAS will not reveal the data below
the safe levels of granularity.

2 Null Value Imputation in Distributed
Query Answering System

2.1 Distributed Query Answering System
and Chase

In real life, data are often collected and stored in infor-
mation systems residing at many different locations, built
independently, instead of collecting them and storing at
only one single location. In such cases we talk about dis-
tributed (autonomous) information systems. It is very pos-
sible that an attribute is missing or hidden in one of them
while it occurs in many others. Also, in one information
system, an attribute might be partially hidden, while in other
systems the same attribute is either complete or close to
being complete. Assume that user submits a query to one
of the information systems (called a client) which involves
some hidden or non-local attributes. In such a case, net-
work communication technology is used to get definitions
of these unknown or hidden attributes from other informa-
tion systems (called servers). All these new definitions form
a knowledge base which can be used to chase both missing
and hidden attributes at the client site.

In Figure 1, we present two consecutive states of a dis-
tributed information system consisting of S1, S2, S3. In the
first state, all values of all hidden attributes in all three infor-
mation systems have to be identified. System S1 sends re-
quest qS1 to the other two information systems asking them
for definitions of its hidden attributes. Similarly, system
S2 sends request qS2 to the other two information systems
asking them for definitions of its hidden attributes. Now,
system S3 sends request qS3 to the other two information

systems also asking them for definitions of its hidden at-
tributes. Next, rules describing the requested definitions are
extracted from each of these three information systems and
sent to the systems which requested them. It means, the set
L(D1) is sent to S2 and S3, the set L(D2) is sent to S1 and
S3, and the set L(D3) is sent to S1 and S2.

The second state of a distributed information system,
presented in Figure 1, shows all three information systems
with the corresponding L(Di) sets, i ∈ {1, 2, 3}, all ab-
breviated as KB. Now, the Chase algorithm [9] is run
independently at each of our three sites. Resulting informa-
tion systems are: Chase(S1), Chase(S2), and Chase(S3).
Now, the whole process is recursively repeated. It means,
both hidden and incomplete attributes in all three new in-
formation systems are identified again. Next, each of these
three systems is sending requests to the other two systems
asking for definitions of its either hidden or incomplete at-
tributes and when these definitions are received, they are
stored in the corresponding KB sets. Now, Chase algo-
rithm is run again at each of these three sites. The whole
process is repeated till some fixed point is reached (no
changes in attribute values assigned to objects are observed
in all 3 systems). When this step is accomplished, a query
containing some hidden attribute values can be submitted to
any Si, i ∈ {1, 2, 3} and processed in a standard way.

2.2 Null Value Imputation Algorithm
Chase

Let us examine in more detail the Chase algorithm. As-
sume that information is stored in an information system
S = (X, A, V), where X is a set of objects, A is a finite set
of attributes, and V is a finite set of their values. In particu-
lar, we say that S = (X,A, V) is an incomplete information
system of type λ if the following three conditions hold:

• aS(x) is defined for any x ∈ X , a ∈ A,

• (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤
m}) → ∑m

i=1 pi = 1],

• (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤
m}) → (∀i)(pi ≥ λ)].

Incompleteness is understood by having a set of weighted
attribute values as a value of an attribute. Now, suppose
that L(D) = {(t → vc) ∈ D : c ∈ In(A)} (called a
knowledge-base) is a set of all rules extracted from S =
(X, A, V) by ERID(S, λ1, λ2), where In(A) is the set of
incomplete attributes in S and λ1, λ2 are thresholds for min-
imum support and minimum confidence, correspondingly.
ERID [11][2] is the algorithm for discovering rules from in-
complete information systems, and used as a part of null
value imputation algorithm Chase [8]. Assume now that a

2

c b a g

e d a b S3 S2

KB

KB

qS2

qS3

d c b a S1

KB

qS2

qS1

qS1

qS3

qS1= [a, c, d : b]

qS2= [b, a, e : d]

qS3= [a, b, c : g]

STATE 1

c b a g

e d a b S3 S2

r1, r2

r5, r6

KB

r5, r6

r3, r4

KB

r1, r2

r3, r4

r3, r4 – extracted from S3 r1, r2 – extracted from S2

d c b a S1

r1, r2

r3, r4

KB

r5, r6 – extracted from S1

r1, r2

r5, r6

r5, r6

r3, r4

STATE 2

Figure 1. Global extraction and exchange of
knowledge

query q(B) is submitted to system S = (X, A, V), where B
is the set of all attributes used in q(B) and that A ∩B 6= ∅.
Attributes in B− [A∩B] are called either foreign or hidden
in S. If S is a part of a distributed information system, defi-
nitions of such attributes can be extracted at remote sites for
S [7].
The new definition replaced by the imputation algorithm is
computed as following. Let Rs(xi) ⊆ L(D) be the set of
rules that the conditional part of the rules is equal to the at-
tribute values in xi ∈ S, and d be a null value. Then there
are three cases:

• Rs(xi) = φ In this case, d cannot be predicted.

• Rs(x) = {r1 = [t1 → d1], r2 = [t2 → d1], ..., rk =
[tk → d1]} In this case, every rule implies a single
decision attribute value, and d = d1.

• Rs(xi) = {r1 = [t1 → d1], r2 = [t2 → d2], ..., rk =
[tk → dk]} In this case, rules imply multiple decision
values.

The confidence for the attribute value d for xi driven by
KB is defined as following [5]. Assuming that support and
confidence of a rule ri is [si, ci], and the product of the
weight of each attribute value that matches to a(x) ∈ ti
is

∏
pa(ti), for i ≤ k.

conf(d′) =
∑{[∏ pa(ti)] · si · ci : [d′ = di]}∑{[∏ pa(ti)] · si · ci} , 1 ≤ i ≤ k

We replace the null value with d′ when each conf(d′) > λ.

2.3 Inconsistency

As we already pointed out, the knowledge base L(D),
contains rules extracted locally at the client site (informa-
tion system queried by user) as well as rules extracted from
information systems at its remote sites. Since rules are ex-
tracted from different information systems, inconsistencies
in semantics, if any, have to be resolved before any query
can be processed. There are two options:

• a knowledge base L(D) at the client site is kept con-
sistent (in this scenario all inconsistencies have to be
resolved before rules are stored in the knowledge base)

• a knowledge base at the client site is inconsistent (val-
ues of the same attribute used in two rules extracted
at different sites may be of different granularity lev-
els and may have different semantics associated with
them).

In general, we assume that the information stored in on-
tologies [4], [14] and, if needed, in inter-ontologies (if they
are provided) is sufficient to resolve inconsistencies in se-
mantics of all sites involved in Chase. Inconsistencies re-
lated to the confidence of conflicting rules stored in L(D)
do not have to be resolved at all (algorithm Chase does
not have such a requirement). The fact, that rules stored in
L(D) can be extracted at different sites and under different
interpretations of incomplete values, is not pleasant assum-
ing that we need to use them in Chase. In all such cases,
following the same approach as in [7], rough semantics can
be used for interpreting rules in L(D).

One of the problems related to an incomplete informa-
tion system S = (X,A, V) is the freedom how new val-
ues are constructed to replace incomplete values in S, be-
fore any rule extraction process begins. This replacement
of incomplete attribute values can be done either by Chase
or/and by a number of available statistical methods [3]. This
implies that semantics of queries submitted to S and queries
processed by the query answering system QAS based on
Chase, may often differ. In such cases, following again
the approach in [7], rough semantics can be used by QAS

3

to handle this problem. In this paper we assume that the
semantic of attribute hierarchy is consistent among all the
sites. For example, if a ∈ Ai ∩ Aj , then only the granular-
ity levels of a in Si and Sj may differ but conceptually its
meaning, both in Si and Sj is the same.

2.4 Rule Extraction and Hierarchical At-
tribute

Before we discuss Chase and data security, we need to
examine how rules are generated from S that is represented
in hierarchical attribute structures. Assume that an infor-
mation system S = (X, A, V) is a partially incomplete in-
formation system of type λ, and a set of tree-like attribute
hierarchy HS is assigned to S where ha ∈ HS represents
all possible values of an attribute a ∈ A. If we denote a
node in ta as ai, the set {aik : 1 ≤ k ≤ m} contains all the
children of ai as shown in Figure 2.

Attribute values in the same level

a

a2 a3a1

a21 a22 a2m2 a31 a32 a3m3

a311 a312 a313

Figure 2. Hierarchical Attribute Structure

Many different combinations of attribute levels can be
chosen for rule extraction. To extract rules at particular lev-
els of interest in S, we need to transform attribute values
before the rule extraction algorithm ERID is executed. In
the following, we will use the term ’generalization’ of a(x)
to refer to the transformation of a(x) to a node value on the
path from a(x) to the root node in the hierarchy, and ’spec-
ification’ to mean a transformation of a(x) to a node value
on the path to the leaf node. As defined, each attribute value
in an incomplete information system is a value/weight pair
(a(x), p). When attribute values are transformed, the new
value and weight are interpreted as the following,

• if a(x) is specialized, it is replaced by a null value.
This means that a parent node is considered as a null
value for any child node.

• if a(x) is generalized, it is replaced by ai ∈ ta at
the given level on the path. The weight of the new
value is the sum of the children nodes. Intermediate

nodes placed along the path, if exist, are computed in
the same way. That is p′a(x) =

∑
pa(x)ik, (1 ≤ k ≤

m, pa(x)ik ≥ λ).

Clearly, the root node in each tree is an attribute name,
and it is equivalent to a null value. Null value assigned to
an object is interpreted as all possible values of an attribute
with equal confidence assigned to all of them. Now, let LH

be the set of level of attributes to be used, λ1 be the sup-
port, and λ2 be the confidence value. ERID for hierarchical
attributes is represented as ERID-H(S, HS , LH , λ1, λ2).

3 Data Security and Chase Applicability

3.1 Problem of Data Confidentiality

To illustrate the data confidentiality problem, let’s con-
sider the following example. Suppose a local information
system S ∈ Si for i ∈ I operates in a distributed QAS as
shown in Table 1. We assume that values in S are stored un-
der hierarchical attribute structures HS that is part of global
ontology [7] for QAS. Now, an attribute d in S contains a
set of confidential data, and Sd (see Table 2) has been built
by replacing the exact values of d with values at a higher
level in the hierarchical attributes structure that is consid-
ered as a secure level. User queries are now responded by
Sd in replace of S. However, disclosure risk still remains
because users may treat the confidential data as incomplete
or foreign and contact remote sites in QAS. Clearly, dSd

(x)
predicted by Chase can be equal to dS(x) for a number of
objects [10]. Another vulnerability may be present in a sim-
ilar way that users employ locally generated rules to pre-
dict attribute values contained in the rules that are extracted
from remote sites [5]. For example, suppose we have gen-
eralized a set of additional attribute values to block the rules
extracted from remote sites. However, there may be some
local rules that reconstruct those additionally replaced val-
ues, and d can be predicted again.

3.2 Chase Applicability

Suppose that a knowledge base KB for S contains a set
of rules. In order for the Chase algorithm to be applicable
to S, it has to satisfy the following conditions [7]:

• attribute value used in the decision part of a rule form
KB has the granularity level either equal to or finer than
the granularity level of the corresponding attribute in
S.

• the granularity level of any attribute used in the classi-
fication part of a rule from KB should be either equal
or softer than the granularity level of the corresponding
attribute in S.

4

X A B C D E F

x1 (a[1,1,1], 23)(a[2,1,1], 13) b[1,1,1] c[1,1,1] d[1,1,2] e[1,1,1] f[1,1,1]

x2 a[2,2,1] b[2,1,1] c[1,1,1] d[2,3,2] e[2,1,1] f[1,3,2]

x3 a[1,1,2] (b[1,1,1], 12)(b[2,1,2], 12) c[1,1,1] d[1,3,2] e[1,1,1] f[1,3,1]

x4 a[2,2,1] b[2,1,2] c[2,1] (d[1,1,1], 23)(d[2,1,1], 13) e[2,1,1] f[1,1,1]

x5 a[1,1,2] b[2,3,2] c[1,2,1] d[1,2] e[2,3,2] f[1,2,2]

x6 (a[1,1,1], 23)(a[2,1,1], 13) b[2,2,1] c[1,3,1] d[1,1,2] e[2,3,2] f[1,1,2]

.

.
xi a[1,2,1] b[2,1,1] c[1,1] d[1,2,2] e[1,1,1] f[1,1,1]

Table 1. Information System S

The set of values predicted by Chase may consist of hor-
izontally and vertically different values. That means when
two or more rules are supported by an object xi, the pre-
dicted set can contain multiple values which granularity lev-
els in HS are the same (e.g. {d[1], d[2]}), or different (e.g.
{d[1], d[1,2]}). We use the same confidence calculation func-
tion discussed in section 2.2 and allow all such cases to be
valid predictions.

4 Method Description

We present an algorithm that protects values of a con-
fidential attribute from Chase algorithm. We continue to
assume that attribute d ∈ S contains confidential values,
and all d(xi) are generalized to the values at the 2nd level
of HS . The new information system Sd is shown in Ta-
ble 2. The structure of each attribute hierarchy is same as
that of a ∈ A as illustrated in Figure 1 that has four lev-
els and one to three nodes in each level. The rules in the
knowledge base KB are summarized in table 3. For instance
r1 = [c[1,1,1] → d[1,1,2]] is an example of a rule belong-
ing to KB. We use λ = 0.3 and τ = 0.8. Based on above
assumptions, we define the following sets:

• α(x), the set of attribute values used to describe x in
Sd

• α(t), the set of attribute values used in t, where t is
their conjunction

• R(x) = {(t → d) : α(t) ⊆ α(x)} ⊆ KB, the set
of rules in KB where the attribute values used in t are
contained in α(x)

• β(x) = ∪{α(t) ∪ {d} : [t → d] ∈ R(x)}.

Our protection strategy consists of two phases: First, we
identify the set of attribute values that are used for predic-
tion for the confidential values. In the second phase, the

values identified in the first phase are generalized. Before
we discuss the phases in detail, we introduce the notion of
chase closure and validity of prediction.

4.1 Chase Closure and Validity of Predic-
tion

To find the minimum amount of values that are used for
prediction for the confidential values, a bottom up approach
has been adapted. We check the values that will remain un-
changed starting from a singleton set containing attribute
value a by using chase closure and increase the initial set
size as much as possible. Chase closure is similar to transi-
tive closure [1] except that if the weight of a predicted value
is less than λ, the value is not added to the closure. For ex-
ample, an object x5 supports three rules, {r6, r7, r8} ∈ KB
that predict {b[2,3,1], b[2,3,2]}. In this case, b[2,3,1] is not in-
cluded in the closure because p′d[2,3,1]

= 45
235 < 0.3.

Identification method based on chase closure automati-
cally rules out any superset of must-be-hidden values, and
minimizes the computational cost. The justification of this
is quite simple. Chase closure has the property that the su-
perset of a set s also contains s. Clearly, if a set of attribute
values predicts d1, then the set must be hidden regardless of
the presence/abscence of other attribute values.

When a confidential value has been predicted by Chase,
the weight of the predicted value may be substantially dif-
ferent from that of the actual value. If this is the case, pro-
tection is not required because an adversary cannot have
enough confidence in the confidential value. In order to
determine whether a prediction is valid we define a mea-
surement function and compare it to the threshold value τ .
Suppose that the weight of an actual confidential value di

is denoted as pd[i] and weight of the predicted value is de-
noted as p′d[i]

. The degree of validity associated with the
prediction is defined as,

5

X A B C D E F

x1 (a[1,1,1], 23)(a[2,1,1], 13) b[1,1,1] c[1,1,1] d[1,1] e[1,1,1] f[1,1,1]

x2 a[2,2,1] b[2,1,1] c[1,1,1] d[2,3] e[2,1,1] f[1,3,2]

x3 a[1,1,2] (b[1,1,1], 12)(b[2,1,2], 12) c[1,1,1] d[1,3] e[1,1,1] f[1,3,1]

x4 a[2,2,1] b[2,1,2] c[2,1] (d[1,1], 23)(d[2,1], 13) e[2,1,1] f[1,1,1]

x5 a[1,1,2] b[2,3,2] c[1,2,1] d[1,2] e[2,3,2] f[1,2,2]

x6 (a[1,1,1], 23)(a[2,1,1], 13) b[2,2,1] c[1,3,1] d[1,1] e[2,3,2] f[1,1,2]

.

.
xi a[1,2,1] b[2,1,1] c[1,1] d[1,2] e[1,1,1] f[1,1,1]

Table 2. Information System Sd

Rule A B C D E F Sup Conf

r1 c[1,1,1] (d[1,1,2]) 100 0.9
r2 a[1,1,1] (d[1,1,2]) f[1,1,1] 110 1
r3 b[1,1,1] (e[1,1,1]) 120 1
r4 (a[1,1,1]) e[1,1,1] 100 1
r5 (a[1,1,1]) b[1,1,1] f[1,1,1] 90 1
r6 a[1,1,2] (b[2,3,1]) 50 0.9
r7 (b[2,3,2]) c[2,3,2] 100 1
r8 (b[2,3,2]) e[2,3,2] f[1,2,2] 100 0.9
r9 a[1,1,1] c[1,1] (d[1,1,2]) 100 0.9
r10 a[1,1,1] (d[1,1,2]) f[1,1] 100 0.9

Table 3. Rules in KB

v = 1−
pd[i] − p′d[i]

pd[i]

and, we say di is secure against Chase if v < τ . For exam-
ple, assume that τ = 0.8 for a confidential attribute d. A
confidential attribute value is {(d[1],

3
4)), (d[2],

1
4)} and it is

predicted as {(d[1],
1
4)), (d[3],

4
4)}. In this case, d[1] is not

considered as a valid prediction because 1 − (0.5/0.75) <
0.8 .

4.2 Phase One : Identification

We start phase one with a set β(x) for the ob-
ject x1 which construction is supported by 5 rules
{r1, r2, r3, r4, r5} from KB, and check the chase closure of
each singleton subset δ(x) of that set. If the chase closure
of δ(x) contains classified attribute value d1, then δ(x) does
not sustain, it is marked, and it is not considered in later
steps. Otherwise, the set remains unmarked. In the second
iteration of the algorithm, all two-element subsets of β(x)
built only from unmarked sets are considered. If the chase
closure of any of these sets does not contain d1, then such
a set remains unmarked and it is used in the later steps of

the algorithm. Otherwise, the set is getting marked. If ei-
ther all sets in a currently executed iteration step are marked
or we have reached the set β(x), then the algorithm stops.
Since only subsets of β(x) are considered, the number of
iterations will be usually not large.

So, in our example the following singleton sets are
considered:

{a[1,1,1]}+ = {a[1,1,1]}, unmarked
{b[1,1,1]}+ = {b[1,1,1], e[1,1,1], a[1,1,1]}, unmarked
{c[1,1,1]}+ = {c[1,1,1], d[1,1,2]} ⊇ {d[1,1,2]}, v[1,1,2] = 1

> 0.8 marked *
{e[1,1,1]}+ = {e[1,1,1], a[1,1,1]}, unmarked
{f[1,1,1]}+ = {f[1,1,1]}, unmarked.

Clearly, {c[1,1,1]} has to be concealed. The next step is
to build terms of length 2 and determine which of the set
can remain.

{a[1,1,1], b[1,1,1]}+ = {a[1,1,1], b[1,1,1]} unmarked
{a[1,1,1], e[1,1,1]}+ = {a[1,1,1], e[1,1,1]} unmarked
{a[1,1,1], f[1,1,1]}+ = {a[1,1,1], f[1,1,1], d[1,1,2]} ⊇ {d[1,1,2]},

v[1,1,2] = 1 > 0.8 marked *
{b[1,1,1], e[1,1,1]}+ = {b[1,1,1], e[1,1,1]} unmarked

6

a

a1 a2

a11 a12 a13 a21 a22 a23

a111 a112 a121 a122 a131 a132 a211 a212 a221 a222 a231 a232

Figure 3. Attribute Hierarchy for a ∈ S

{b[1,1,1], f[1,1,1]}+ = {b[1,1,1], f[1,1,1], a[1,1,1], d[1,1,2]} ⊇
{d[1,1,2]}, v[1,1,2] = 1 > 0.8 marked *

{e[1,1,1], f[1,1,1]}+ = {e[1,1,1], f[1,1,1]} unmarked

Now we build 3-element sets from previous sets that
have not been marked.

{a[1,1,1], b[1,1,1], e[1,1,1]}+ = {a[1,1,1], b[1,1,1], e[1,1,1]} un-
marked

We have γ(x1) = {a[1,1,1], b[1,1,1], e[1,1,1]} as unmarked
set that contains the maximum number of elements and does
not have the chase closure containing d.

4.3 Phase Two : Generalization

Now, we need to generalize attribute values in ε(x1) =
{α(x1)−γ(x1)}. There are two issues. One is that we may
have more than one γ(x1). If that is the case, we have to
choose one of them. The other issue is that each of γ(x1)
contains multiple attribute values that can be generalized.
Several strategies can be considered to reduce the amount of
generalization. One approach is to compute the minimum
amount of generalization for each γ(x1)i in terms of the
number of layer transformations, and compare the result.
However, it is difficult to say that the approach will produce
the best result because (1) the granularity distance between
a parent and a child can be different among ha ∈ HS , and
(2) some attribute values are semantically more significant
than others in QAS. In this case, a priority can be given
by the system. In this paper, we assume that the amount of
abstraction between a parent and a child is identical across
all the attributes, and generalization is applied equally to
each attribute value.

From phase one, we acquired the set ε(x1) =
{c[1,1,1], f[1,1,1]}. Our strategy in the second phase is
that attribute values in ε(x1) ⊆ (ε(x1) ∪ γ(x1)) are
generalized against the rules in KB, without modifying
γ(x1), until the chase closure of the newly created set does
not contain d[1,1,2]. This strategy works because, as was
exhibited in the first phase, if we replace all attribute values

in ε(x1) with null values, d[1,1,1] cannot be predicted. So,
between a node connected to the root node (null value)
and the current node, d[1,1,1] will not be predicted by Chase.

{{c[1,1,1], f[1,1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}+
= {a[1,1,1], b[1,1,1], e[1,1,1], c[1,1,1], f[1,1,1], d[1,1,1]}
⊇ {d[1,1,2]}, v[1,1,2] = 1 marked*

We start from c by generalizing c[1,1,1] to c[1,1].

{{c[1,1], f[1,1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}+
= {a[1,1,1], b[1,1,1], e[1,1,1], c[1,1], f[1,1,1], d[1,1,1], d[1,1,2]}
⊇ {d[1,1,2]}, v[1,1,2] = 1 marked*

{{c[1,1], f[1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}+
= {a[1,1,1], b[1,1,1], e[1,1,1], c[1,1], f[1,1], d[1,1]}
⊇ {d[1,1,2]}, v[1,1,2] = 1 marked*

{{c[1], f[1,1]}, {a[1,1,1], b[1,1,1], e[1,1,1]}}+
= {a[1,1,1], b[1,1,1], e[1,1,1], c[1], f[1,1], d[1,1]} unmarked

We have {c[1], f[1,1], a[1,1,1], b[1,1,1], e[1,1,1]} as a set that
cannot be used to predict d[1,1,2]. In a similar way, we com-
pute the maximal sets for any object xi.

5 Implementation and Conclusion

The algorithm was written in PL/SQL language, and ex-
ecuted in the Oracle 10g database running on Windows XP.
A web based user interface was implemented using HTML
DB as shown in Figure 4. The sample table that contains
3,000 objects with 7 attributes was randomly extracted from
the census bureau database of the UCI Knowledge Discov-
ery in Databases Archive [13]. A set of simple hierarchical
attribute structure with a maximal depth of 3 was built on
the basis of the interpretation of data. Each level of the hi-
erarchical tree contains one to three nodes. The table was
randomly partitioned into 3 tables that each have 1,000 tu-
ples. One of these tables is called a client and the remaining
2 are called servers. We extracted 26 rules that describe the
values of a confidential attribute from the servers, and 33

7

Figure 4. User Interface

local rules that are used to describe the values of remaining
attributes.

To evaluate whether the use of hierarchical attributes is
effective, we compared the total number of slots replaced by
null values with that obtained by the same method without
using hierarchical attribute structures. This was achieved
by running the program without the execution of the gen-
eralization step. Without generalization step, 570 slots are
replaced with null values. When the attribute hierarchy was
applied, 187 slots are replaced by null values with 952 level
transformations that include the number of transformations
to null values. The result shows that 383 more attribute val-
ues can be shown to users. These values consist of values
at the same level or values at higher levels. Clearly, the
amount of improvements may not be the same when differ-
ent set of rules and information systems are used. However,
the use of hierarchical attributes will reduce the number of
null values.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.

[2] A. Dardzińska and Z. Raś. On rules discovery from incom-
plete information systems. In Proceedings of the ICDM’03
Workshop on Foundations and New Directions of Data Min-
ing, Melbourne, Florida, November 2003.

[3] P. Giudici. Applied Data Mining, Statistical Methods for
Business and Industry. Wiley, 2003.

[4] N. Guarino and P. Giaretta. Ontologies and knowledge
bases, towards a terminological clarification, pages 25–32.
IOS Press, 1995.

[5] S. Im and Z. Ras. Ensuring data security against knowledge
discovery in distributed information system. In Proceed-
ings of the 10th International Conference on Rough Sets,

Fuzzy Sets, Data Mining, and Granular Computing, Regina,
Canada, September 2005.

[6] Z. Raś and A. Dardzińska. Collaborative query processing in
dks controlled by reducts. In Proceedings of Rough Sets and
Current Trends in Computing 2002 Symposium, Malvern,
PA, October 2002.

[7] Z. Raś and A. Dardzińska. Ontology based distributed au-
tonomous knowledge systems. Information Systems Inter-
national Journal, 29(1):47–58, 2004.

[8] Z. Raś and A. Dardzińska. Query answering based on col-
laboration and chase. In Proceedings of the 6th International
Conference On Flexible Query Answering Systems, Lyon,
France, June 2004.

[9] Z. Raś and A. Dardzińska. Chase-2: Rule based chase algo-
rithm for information systems of type lambda. In Proceed-
ings of the Second International Workshop on Active Min-
ing, Maebashi City, Japan, October 2005.

[10] Z. Raś and A. Dardzińska. Data security and null value
imputation in distributed information systems, pages 133–
146. Springer-Verlag, 2005.

[11] Z. Raś and A. Dardzińska. Extracting Rules from Incomplete
Decision Systems: System ERID, pages 143–154. Springer,
2005.

[12] Z. Raś, A. Dardzińska, and O. Gurdal. Knowledge discov-
ery based query answering in hierarchical information sys-
tems. In Proceedings of the 10th International Conference
on Rough Sets, Fuzzy Sets, Data Mining and Granular Com-
puting, Regina, Canada, September 2005.

[13] C. B. S. Hettich and C. Merz. UCI repository of machine
learning databases. 1998.

[14] G. Van Heijst, A. Schreiber, and B. Wielinga. Using ex-
plicit ontologies in kbs development. International Journal
of Human and Computer Studies, 46(2/3), 1997.

8

