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Abstract— In this paper, we present a method that allows us
to reduce disclosure risk of confidential data from knowledge
discovery. In particular, the proposed method protects confi-
dential data against the null value imputation algorithm Chase
with minimum amount of additional data hiding. The method is
designed to identify the set of values that can remain unchanged
without examining all possible combinations of the values. The
concept introduced in this paper can be used to protect multiple
confidential attributes in information systems.

I. I NTRODUCTION

The knowledge discovered by data mining has provided
powerful solutions to non-trivial problems in a wide variety
of domains. The distinctive capability of extracting hidden
knowledge from large volumes of data, however, brought
up security issues as the concern about privacy and data
security grows. In particular, disclosure of confidential data
via hidden value reconstruction by knowledge discovery has
received increasing attention in recent years. The notion of
the hidden attribute reconstruction by knowledge discovery
was introduced in [3] where the rules in Knowledge Base
(KB) can be used to reconstruct sensitive data hidden from
an information system as shown in Figure 1.

When trade-offs are not considered, protection of confiden-
tial data against knowledge discovery is relatively simple. In
general, some degree of data loss is almost inevitable to block
reconstruction of confidential data by knowledge inferences,
and the chances of reconstruction drops as the amount of data
loss continues to grow. In reality, however, additional require-
ments are typically imposed on data protection schemes, such
as maximum preservation of original data and valid rules, to
enhance information availability.

In this paper, we assume that one or more attributes in
an information system contain confidential data that have
to be protected, and the system is part of a Knowledge
Discovery System (KDS) which provides a set of rules
as a KB. Clearly, we have to be certain that the values
of confidential attribute can not be predicted from the
available data andKB by Chase, distributed Chase [4] or
any other null value imputation method while minimizing
the changes in the original information system. In pursue of
such requirements, we propose a protection method named as

SCIKD. The method identifies transitive closure of attribute
values involved in confidential data reconstruction, and uses
the result to identify the maximum number of attribute values
that can remain unchanged.

II. H IDDEN VALUE RECONSTRUCTION BYNULL VALUE

IMPUTATION

We briefly provide some additional background on a null
value imputation algorithmChase [4]. Assume thatS =
(X, A, V ) is an information system [4], whereX is a set of
objects,A is a finite set of attributes, andV is a finite set
of their values. In particular, we say thatS = (X, A, V ) is
an incomplete information system of typeλ if the following
three conditions hold:

• aS(x) is defined as{(ai, pi) : ai ∈ Va ∧ 1 ≤ i ≤ m} for
any x ∈ X, a ∈ A,

• (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤ m}) →∑m
i=1 pi = 1],

• (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤ m}) →
(∀i)(pi ≥ λ)].

Data incompleteness is understood by allowing a set of
weighted attribute values to be a value of an attribute. Suppose
an attributed in S contains confidential data, and it is to be
hidden. For this purpose, we constructSd = (X, A, V ) to
replace S, where:

• aS(x) = aSd
(x), for anya ∈ A− {d}, x ∈ X,

• dSd
(x) is undefined, for anyx ∈ X,

• dS(x) ∈ Vd,

and user queries are responded bySd (see table 2). The
question is whether hiding the attributed is enough. The
definition of d may already be available in localKB, or a
request can be sent to some of its remote sites if theKDS is
a Distributed Information System containingS. Now, assume
that such definitions (or rules) are defined asRd = {r = [t →
dc] : c ∈ d} ⊆ KB. (In this paper we assume that rules are
generated byERID(S, λ1, λ2), whereλ1, λ2 are thresholds for
minimum support and minimum confidence, correspondingly.
ERID is the algorithm for discovering rules from incomplete
information systems, presented by Dardzińska and Rás in [5]
and used as a part ofChasealgorithm in [7]. The definitions
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Fig. 1. An example of confidential data reconstruction

stored in the knowledge baseKB can be used byChase
algorithm to replace missing values for objects atSd using
the following method.

Suppose thatd(x) = d1 for x in S. If x does not support
any rule predictingd1, it is ruled out becaused1 cannot be
reconstructed precisely. If the object supports a set of rules,
it can be eitherRs(x) = {r1 = [t1 → d1], r2 = [t2 →
d1], ..., rk = [tk → d1]} where the rules imply a single
decision attribute value, or{r1 = [t1 → d1], r2 = [t2 →
d2], ..., rk = [tk → dk]} where the rules imply multiple
decision values. If we denote support and confidence of rule
ri as [si, ci], and the weight of each attribute value in a slot
aspi, the confidence for attribute valued′ ∈ Vd for x driven
by KB is defined as [2]

ConfSd(d′, x, KB) =

∑{[pi] · si · ci : [1 ≤ i ≤ k] ∧ [d′ = di]}∑{[pi] · si · ci : 1 ≤ i ≤ k}

When d(x) = dj and λ is the threshold for minimal
confidence in attribute values describing objects inSd, there
are three cases in hiding attribute values.

1) if ConfSd
(dj , x, KB) ≥ λ and (∃d 6=

dj)[ConfSd
(d, x,KB) ≥ λ], we do not have to

hide any additional slots forx.
2) if ConfSd

(dj , x, KB) ≥ λ and (∀d 6=
dj)[ConfSd

(d, x,KB) < λ], we have to hide
additional slots forx.

3) if ConfSd
(dj , x, KB) < λ and (∃d 6=

dj)[ConfSd
(d, x,KB) ≥ λ], we do not have to

hide additional slots forx.

Clearly,dS(x) can be equal todChase(Sd)(x) for a number
of objects in X. If this is the case, additional values of
attributes for all these objects should be hidden.

III. F INDING M INIMUM NUMBER OF ATTRIBUTE VALUES

TO BE HIDDEN

We present an algorithm which protects values of a hidden
attribute over null value imputationChase. Suppose we have
an information systemS as shown in Table I.S is transformed
to Sd by hiding the confidential attributed as shown in Table
II. The rules in the knowledge baseKB are summarized in
Table III. For instancer1 = [b1 · c1 → a1] is an example of a
rule belonging toKB.

To describe the algorithm, first we define the following sets,

• α(x), the set of attribute values used to describex in Sd

• α(t), the set of attribute values used int, wheret is their
conjunction

• R(x) = {(t → d) : α(t) ⊆ α(x)} ⊆ KB, the set of rules
in KB where the attribute values used int are contained
in α(x)

• β(x) = ∪{α(t) ∪ {d} : [t → d] ∈ R(x)}.
In our exampleR(x1) = {r1,r2,r3,r4,r5,r6,r7,r8,r9,r10}, and
β(x1) = {a1, b1, c1, d1, e1, f1, g1}. Clearly, by using the
procedure described in section 2,d1 replaces the hidden slots
by rules from {r8, r9, r10}. In addition, other rules from
R(x1) also predict attribute values listed in{t8, t9, t10}. These
interconnections often build up a complex chain of inferences.
The task of blocking such inference chains and identifying
the minimal set of concealing values is not straightforward.
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Information SystemSd

Rule A B C D E F G

r1 (a1) b1 c1

r2 (a1) c1 f1

r3 (b1) c1

r4 (b1) e1

r5 a1 (c1) f1

r6 a1 c1 (e1)
r7 (c1) e1 g1

r8 a1 c1 (d1)
r9 b1 c1 (d1)
r10 (d1) f1

TABLE III

Rules contained inKB. Values in parenthesis are decision values

Let us consider the following example. Suppose we have
{r1 = [a1 · b1 → d1], r2 = [b1 · c1 → d1], r3 = [b1 · e1 → d1]},
all inferencingd1. In this case,b1 is covered by 3 rules, and
elimination of it will ensure the protection. However, if there
were 3 other rules{h1 → b1, i1 → h1, k1 → j1}, additional
values {h1, i1, k1} have to be hidden, andb1 was not the
best choice. In general, if a large number of attributes and
rules exist, overlap based approach often produces a large and
complex graph as we try to trace connections from the top
to the bottom. Another issue is that the order we eliminate

values of attributes may have high impact on the final result.
For example, hiding values in the order ofc1 ⇒ f1 ⇒ a1 and
c1 ⇒ a1 ⇒ f1 may produce different results because attribute
value set{c1, f1} removes the inference tod1, while {c1, a1}
cannot remove it and we have to hideb1 again.

To reduce the complexity and minimize the set of hidden
values, a bottom up approach has been adapted. We check the
values that will remain unchanged starting from a singleton set
containing attribute valuea by using transitive closure [11] (if
a → b∧b → c thena → c, which gives us the set{a, b, c}), and



increase the initial set size as much as possible. This approach
automatically rules out any superset of must-be-hidden values,
and minimizes the computational cost. The justification of this
is quite simple. Transitive closure has the property that the
superset of a sets also containss. Clearly, if a set of attribute
values predictsd1, then the set must be hidden regardless of
the presence/abscence of other attribute values.

To outline the procedure, we start with a setβ(x) for the
objectx1 which construction is supported by 10 rules fromKB,
and check the transitive closure of each singleton subsetδ(x)
of that set. If the transitive closure ofδ(x) contains classified
attribute valued1, thenδ(x) does not sustain, it is marked, and
it is not considered in later steps. Otherwise, the set remains
unmarked. In the second iteration of the algorithm, all two-
element subsets ofβ(x) built only from unmarked sets are
considered. If the transitive closure of any of these sets does
not containd1, then such a set remains unmarked and it is used
in the later steps of the algorithm. Otherwise, the set is getting
marked. If either all sets in a currently executed iteration step
are marked or we have reached the setβ(x), then the algorithm
stops. Since only subsets ofβ(x) are considered, the number
of iterations will be usually not large.

So, in our example the following singleton sets are consid-
ered:

{a1}+ = {a1} unmarked
{b1}+ = {b1, } unmarked
{c1}+ = {a1, b1, c1, e1, d1} ⊇ {d1} marked *
{e1}+ = {b1, e1} unmarked
{f1}+ = {d1, f1} ⊇ {d1} marked *
{g1}+ = {g1} unmarked

Clearly, c1 and f1 have to be concealed. The next step is
to build sets of length 2 and determine which of them can
sustain. We take the union of two sets only if they are both
unmarked and one of them is a singleton set.

{a1, b1}+ = {a1, b1} unmarked
{a1, e1}+ = {a1, b1, e1} unmarked
{a1, g1}+ = {a1, g1} unmarked
{b1, e1}+ = {b1, e1} unmarked
{b1, g1}+ = {b1, g1, e1} unmarked
{e1, g1}+ = {a1, b1, d1, d1, e1, g1} ⊇ {d1} marked*

Now we build 3-element sets from previous sets that have
not been marked.

{a1, b1, e1}+ = {a1, b1, e1} unmarked
{a1, b1, g1}+ = {a1, b1, g1} unmarked
{b1, e1, g1}+ is not considered as a superset of{e1, g1} which

was marked.

We have{a1, b1, e1} and{a1, b1, g1} as unmarked sets that
contain the maximum number of elements and do not have the
transitive closure containingd. In a similar way, we compute
the maximal sets for any objectxi.

IV. A LGORITHM SCIKD: SAFEGUARDING CLASSIFIED

INFORMATION FROM KNOWLEDGE DISCOVERY

We are ready to present more precise description of the
algorithm for identifying the minimal number of attribute
values inSD which have to be additionally hidden from users
in order to guarantee that attributeD cannot be reconstructed
through knowledge discovery. So, let us assume thatKB is a
knowledge base forSD and that an attributeD ∈ A needs to
be hidden.

SCIKD(SD,KB)

begin
i := 1;
while i ≤ l do
begin

for all v ∈ α(xi) do Mark(v) := F ;
for all v ∈ α(xi) do
begin

R(xi) = {r ∈ KB : (∃d)[r = v → d]};
γ(xi) := D(xi);
α1(xi, v) := {v};
β(xi, v) = α1(xi, v) ∪ {d : [v → d] ∈ R(xi)};
while γ(xi) 6∈ β(xi, v) andα1(xi, v) 6= β(xi, v) do
begin

α1(xi, v) := β(xi, v);
R(xi) = {r ∈ KB : (∃t ⊂ α1(xi, v))[r = t → d]};
β(xi, v) = α1(xi, v) ∪ {d : (∃t)([t → d] ∈ R(xi))};

end
if γ(xi) ∈ β(xi, v) thenMark(v) := T ;

end
j:= 2;
while j ≤ ki − 1 do
begin

for eachw ⊂ α(xi) such that [card(w) = j
and all subsets ofw are unmarked] do
begin

α1(xi, w) := w;
β(xi, w) = α1(xi, w) ∪ {d : (∃t ⊂ w)[t → d] ∈ R(xi)};
while γ(xi) 6∈ β(xi, w) andα1(xi, w) 6= β(xi, w) do
begin

α1(xi, w) := β(xi, w);
R(xi) = {r ∈ KB : (∃t ⊂ α1(xi, w))[r = t → d]};
β(xi, w) = α1(xi, w) ∪ {d : (∃t)([t → d] ∈ R(xi))};

end
if γ(xi) ∈ β(xi, w) thenMark(w) := T ;

end
end
i := i + 1

end
end

The algorithm presented here is a simplified version of the
systemSCIKD which is implemented and tested. Namely, its



Fig. 2. Sample Interface forSCIKD

implemented version allows possible rules to be used inKB.
Also, if one of the possible attribute values to be placed in a
hidden slot has a confidence below a threshold value set up
by a user, then this attribute value is not considered in further
steps of the algorithm. This approach is similar to the one
followed in the paper [4].

V. EXPERIMENT AND CONCLUSION

We implemented the method on a PC running Windows XP
and Oracle database version 10g. The code was written in
PL/SQL language with PL/SQL Developer version 6. HTML
DB and some additional Javascript have been used to create a
graphical user interface.

In order to evaluate the efficiency of the proposed method,
we compared the total number of additionally hidden attribute
values with that obtained by the method described in [2]. The
compared method uses a top-down approach that the order
of elimination of attribute values inxi is determined by the
degree of overlap of supported rules. The sampling data table
containing 4,000 objects with 10 attributes was extracted ran-
domly from a complete database describing personal income
reported in the Census data [1]. The data table was randomly
partitioned into 4 tables that each have 1,000 tuples. One
of these tables is called a client and the remaining 3 are
called servers. Now, we hide all the values of one attribute
that includes income data in the client. From the servers,

13 rules are extracted which are used to describe values of
hidden attribute byDistributed Chasealgorithm, and 75 rules
are extracted from the client which are used to describe the
values of remaining attributes byLocal Chasealgorithm. All
these rules are generated usingERID and stored inKB of the
client.

1014 attribute values (10.14% of the total number of at-
tribute values in client table) are additionally hidden when
overlap based method is applied, and 739 (7.39%) attribute
values are additionally hidden by the method presented in
this paper. Clearly, the level of improvement in the number
of additional hidden value over previous method, as well as
the percentage point of hidden values, will not be the same
when different set of rules and information system are used.
However, the proposed method reduces the number of hidden
attribute values by identifying all combinations of values
that predict the hidden data without examining all possible
supersets. In addition, the method can easily be used to protect
two or more confidential attributes in an information system.
In this case, a set of attribute values inxi should be hidden if
the closure of the set contains any of the classified data.
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