
Action Rule Extraction From A Decision Table : ARED

Seunghyun Im1 and Zbigniew Ras2,3

1 University of Pittsburgh at Johnstown, Department of Computer Science
Johnstown, PA. 15904, USA

2 University of North Carolina, Department of Computer Science
Charlotte, NC, 28223, USA

3 Polish Academy of Sciences, Institute of Computer Science, 01-237 Warsaw, Poland
e-mail: sim@pitt.edu, ras@uncc.edu

Abstract. In this paper, we present an algorithm that discovers action rules from
a decision table. Action rules describe possible transitions of objects from one
state to another with respect to a distinguished attribute. The previous research
on action rule discovery required the extraction of classification rules before
constructing any action rule. The new proposed algorithm does not require pre-
existing classification rules, and it uses a bottom up approach to generate action
rules having minimal attribute involvement.

1 Introduction

In this paper, we present an algorithm that discovers action rules. An action rule is a
rule extracted from a database that describes a possible transition of objects from one
state to another with respect to a distinguished attribute called a decision attribute [14].
Values of some attributes, used to describe objects stored in a database, can be changed.
This change can be influenced and controlled by users. For example, let us assume that
a number of customers have closed their bank accounts. We construct a description
of this group of customers. Then, we search for another description of a new group of
customers who keep the bank accounts active. If these descriptions have a form of rules,
they can be seen as actionable rules. For instance, by comparing those two descriptions,
we may identify the reason for closing their accounts, and formulate an action, which
if undertaken by the bank, may prevent other customers from closing their accounts. In
this case, an action rule may say that, if the bank lowers the interest rate by 2 percent
on credit cards for certain group of customers, it is almost guaranteed that they do
not close their accounts. A similar definition, but with different notation, of an action
rule was given earlier in [4]. Also, interventions introduced in [5] are conceptually
similar to action rules. Action rules introduced in [14] has been further investigated in
[17][13][12][18][15].

Paper [7] was probably the first attempt towards formally introducing the problem
of mining action rules without pre-existing classification rules. Authors explicitly for-
mulated it as a search problem in a support-confidence-cost framework. The proposed
algorithm is similar to Apriori [1]. Their definition of an action rule allows changes on
stable attributes. Changing the value of an attribute, either stable or flexible, is linked

with a cost [18]. In order to rule out action rules with undesired changes on stable at-
tributes, authors have assigned very high cost to such changes. However, that way, the
cost of action rules discovery is getting unnecessarily increased. Also, they did not take
into account the dependencies between attribute values which are naturally linked with
the cost of rules used either to accept or reject a rule.

Algorithm ARED, presented in this paper, is based on Pawlak′s model of an infor-
mation systemS [10] and its goal is to identify certain relationships between granules
defined by the indiscernibility relation on objects inS. Some of these relationships
uniquely define action rules forS.

The rest of this paper is organized as follows. Section 2 describes the background
and objectives of our work. The details of the algorithmAREDare presented in Section
3. Experimental results are shown in Section 4. Section 5 discusses possible future work
and concludes the paper.

2 Backgrounds and Objectives

Action rules are extracted from an information system. By an information systemS, we
meanS = (X,A, V) whereX is a nonempty finite set of objects,A is a nonempty finite
set of attributes, andV =

⋃{Va : a ∈ A} is set of their values. For example, Table
1 presents an information systemS with X = {x1, x2, x3, x4, x5, x6, x7, x8}, A =
{a, b, c, d}, andV = {a1, a2, b1, b2, b3, c1, c2, d1, d2, d3}.

An information systemS = (X, A, V) is called a decision system (or decision
table), if A = ASt ∪ AFl ∪ {d}, whered is a distinguished attribute set called the
decision. Attributes inASt are calledstableand attributes inAFl are calledflexible.
They jointly form the set of conditional attributes. “Date of birth” is an example of a
stable attribute. “Interest rate” for each customer account is an example of a flexible
attribute.

In earlier works in [14][17][13][12][15], action rules are constructed from classifi-
cation rules. This means that we use pre-existing classification rules or generate them
using a rule discovery algorithm, such as LERS [6] or ERID [2], then, construct action
rules either from certain pairs of the rules or from a single classification rule. For in-
stance, algorithmARAS [15] generates sets of terms (built from values of attributes)
around classification rules and constructs action rules directly from them. In this study,
we propose a different approach to achieve the following objectives:

1. Extract action rules directly from an information system without using pre-existing
conditional rules.

2. Extract all distinct action rules that have minimal attribute involvement.

To meet these two goals, we first generate action rules using two attributes, and
iteratively apply the technique to generate more specific action rules.

3 Algorithm ARED

We describe the algorithm,ARED (Action Rule Extraction from Decision table), by
working through an example using the decision TableS shown in Table 1. We assume

that the decision attribute isd, stable attributesASt = {a}, and the flexible attributes
AFl = {b, c}. The minimum support (λ1) and confidence (λ2) are given as 1 and 0.85.
For simplicity reason, we will consider decision tables with only one decision in this
paper.

a b c d
x1 a1 b1 c1 d1

x2 a2 b1 c2 d1

x3 a2 c2 d1

x4 a2 b1 c1 d1

x5 a2 b3 c2 d1

x6 a1 b1 d2

x7 a1 b2 c2 d1

x8 a1 b2 c1 d3

Table 1 : Decision Table S

The first step is to find the pessimistic interpretation inS of all attribute values inV ,
as shown in Table 2 (for conditional attributes) and Table 3 (for decision attribute). The
resulting sets are called granules. InS, Dom(a) = {a1, a2}, Dom(b) = {b1, b2, b3},
Dom(c) = {c1, c2}, andDom(d) = {d1, d2, d3}. The granulea∗1 associated with at-
tribute valuea1 in S (see Table 1) is the set of objects having propertya1 (e.g. objects
{x1, x6, x7, x8}). The set of granules associated with an attributea in S is defined as
{v∗ : v ∈ Va}.

a1
∗ = {x1, x6, x7, x8}

a2
∗ = {x2, x3, x4, x5}

b1
∗ = {x1, x2, x4, x6}

b2
∗ = {x7, x8}

b3
∗ = {x5}

c1
∗ = {x1, x4, x8}

c2
∗ = {x2, x3, x5, x7}

Table 2. Granules associated with attributes ina, b, c

d1
∗ = {x1, x2, x3, x4, x5, x7}

d2
∗ = {x6}

d3
∗ = {x8}

Table 3. Granules associated with attributed

Next, we define two sets,τ andδ, to examine possibleproperty transitionsbetween
objects inS. Let T be a set of proper conjuncts built from elements in∪{Vi, i 6= d, i ∈
A}. By proper conjunct, we mean a conjunct which contains maximum one element
from eachVi.

– τ = T · d1, whered1 ∈ Vd, and(∀ρ1 ∈ T · d1)(sup(ρ1) ≥ λ1).
– δ = T · d2, whered2 ∈ Vd, and(∀ρ2 ∈ T · d2)(sup(ρ2) ≥ λ1).

By T ·di, we mean{t ·di : t ∈ T}, i=1,2. The support ofρi, sup(ρi), is the number
of objects inS supporting all attribute values listed inρi, i = 1, 2. They can be easily
calculated by intersecting two granules listed in Table 2 and Table 3. For example,
(a1 · d2)

∗ = {x1, x6, x7, x8} ∩ {x6} = {x6}. So,sup((a1 · d2)
∗) = 1.

Each set contains only terms built from one decision value and at least one value of con-
ditional attribute. Therefore, these sets represent (1) a relationship between conditional
attributes and the decision attribute, and (2) property of a set of objects. If the property
transition fromτ to δ is valid,τ andδ are interpreted as theconditionand thedecision
of anaction rule.

As mentioned,AREDattempts to discover the shortest action rules in terms of the
number of attributes, then iteratively generates longer action rules. Therefore, we first
constructτ containing two elements (which is the shortest form ofτ) by combining one
attribute from Table 2 and the other from Table 3. This process aims to find the meaning
in S of all terms in a conjunctive form built from values inV [16]. The concatenation
functor used to build these terms is interpreted as the set-theoretical intersection.

τ δ

(a1 · d1) (a1 · d1)
(a1 · d2) (a1 · d2)
(a1 · d3) (a1 · d3)
(a2 · d1) (a2 · d1)
(b1 · d1) (b1 · d1)
(b1 · d2) (b1 · d2)
(b2 · d1) (b2 · d1)
(b2 · d3) (b2 · d3)
(b3 · d1) (b3 · d1)
(c1 · d1) (c1 · d1)
(c1 · d3) (c1 · d3)
(c2 · d1) (c2 · d1)

Table 4. 2-elementτ andδ

τ δ sup conf rule

(b1 · d2) 7→ (b2 · d1) 1 1 y
(b1 · d2) 7→ (b2 · d3) 1 1 y
(b1 · d2) 7→ (b3 · d1) 1 1 y
(b2 · d1) 7→ (b1 · d2) 1 1 y
(b2 · d3) 7→ (b1 · d1) 1 1 y
(b2 · d3) 7→ (b1 · d2) 1 1 y
(b2 · d3) 7→ (b3 · d1) 1 1 y
(b3 · d1) 7→ (b1 · d2) 1 1 y
(b3 · d1) 7→ (b2 · d3) 1 1 y
(c1 · d3) 7→ (c2 · d1) 1 1 y

Table 5. Action Rules

τ δ sup conf rule

(b1 · d1) 7→ (b2 · d3) 1 0.33 n
(c2 · d1) 7→ (c1 · d3) 1 0.25 n
(a1 · d1) (a1 · d1)
(a1 · d2) (a1 · d2)
(a1 · d3) (a1 · d3)
(a2 · d1) (a2 · d1)

Table 6. Invalid Transitions

Clearly, it is required thatsup(ρ1) ≥ λ1 ∧ sup(ρ2) ≥ λ1 because we need to
find property transitions that involve at leastλ1 objects. Terms satisfying these criteria,
related to the example in Table 1, are shown in Table 4.

Now, we construct action rules usingτ to δ in Table 4 by evaluating the validity of
their transitions. We use the following code to explain the evaluation method.

input :{τ}, {δ}
output : actionrule [],genτ [], gen δ[]

1: for eachτi = [t1 · d1] ∈ τ, δj = [t2 · d2] ∈ δ
2: if d1 6= d2 then
3: if ∃(a(xi) ∈ t1, a(xj) ∈ t2), wherea ∈ AFl anda(xi) 6= a(xj) then
4: if conf(τi 7→ δj) ≥ λ2

5: actionrule [end+1] =τi 7→ δj

6: elseif
7: genτ [end+1] =τi, genδ [end+1] =δj

8: end if
9: else
10: genτ [end+1] =τi, genδ [end+1] =δj

11: end if
12: end if

In line 1, we read eachτi andδi listed in Table 4. Note that an information system may
or may not produce two-way action rules (e.g. ifb changes fromb1 to b2 thend changes
from d1 to d2, and vice versa). Therefore, we generate all pairs of elements fromτ and
δ. The condition in line 2 is clear. No action can be performed if the decision values
are equal. The condition in line 3 checks if there exist different flexible attribute values
betweent1 and t2, and they are from the same domain. For example,d1 6= d2 and
a1 6= a2 for (a1 · d2) and(a2 · d1). However,a is a stable attribute, so no action rule is
constructed. If two sets do not meet this condition, we put them in two separate arrays
(line 10) and use them to generateτ andδ for the next iteration. Last 4 rows in Table 6
are the sets in this category. The reasoning behind this strategy is simple. Clearly, there
are at leastλ1 objects supporting(a1 ·d2) and(a2 ·d1). These sets may be concatenated
with one or more flexible attribute values in later iterations, and produce action rules.
An example of this case is(a1 · b1 ·d1) 7→ (a1 · b2 ·d3) in Table 8. The condition in line
4 checks the confidence ofτi 7→ δj . If it is greater than or equalλ2, τi 7→ δj becomes
an action rule. To compute the confidence, we first find the support ofar = τ 7→ δ
which is defined as the minimum support of two sets.

sup(ar) = min(sup(τ), sup(δ))

min(sup, sup) finds the exact number of object transitions because at least one
element is different betweenτ andδ, and by definition ofS, an object cannot support
two different values of the same attribute. Note that we do not need to check the support
of ar in line 4 because the support ofτ andδ were checked when they were generated,
and the support of the action rule is the smaller value between them. The confidence of
anar is defined as,

conf(ar) =
sup(ar)
sup(τ)

Two-element action rules extracted from S are shown in Table 5. For example,(b1 ·
d2) 7→ (b2 · d1) is an action rule, and it is interpreted as, “ifb changes fromb1 to b2,

thend changes fromd1 to d2”. Finally, if the confidence is less thanλ2 (line 7) τi and
δj are considered in the next iteration to generate 3-element candidate sets. In Table 6,
we have two transitions having confidence of 0.33 and 0.25 that are less than 1 (λ2).

Assume that| ti |, for any conjunct termti, denotes the set of all values of attributes
listed in ti. To find the action rules of length 3, we generateτ of length 3 fromτs in
Table 6. Two termsτ1 = t1 · d1 andτ2 = t2 · d2 are concatenated if (1)d1 = d2 (2)
| t1∪t2 | − | t2∩t1 |= {v1 ∈ Va, v2 ∈ Vb}, wherea 6= b. The set{δ} is generated from
δs in Table 6 using the same method. That means they are generated independently. The
reason that we build 3-element candidate sets separately in this way is that all pairs are
considered in the initial step. Therefore, any super set of the candidate set identified
as an action rule will not be considered. Table 7 shows those 3-element candidate sets.
Corresponding action rule and invalid transitions are show in Table 8 and 9 respectively.

τ δ

(a2 · b1 · d1) (a1 · c2 · d3)
(a2 · c3 · d1) (a1 · b2 · d3)
(a1 · b1 · d1) (b2 · c2 · d3)
(a1 · c3 · d1)
(b1 · c3 · d1)

Table 7. 3-elementτ andδ

τ δ sup conf rule

(a1 · b1 · d1) 7→ (a1 · b2 · d3) 1 1 y
(a1 · c3 · d1) 7→ (a1 · c2 · d3) 1 1 y
(b1 · c3 · d1) 7→ (b2 · c2 · d3) 1 1 y

Table 8. Action Rule

τ δ sup conf rule

(a2 · b1 · d1) 7→ (a1 · b2 · d3) 1 0.50 n
(a2 · c3 · d1) 7→ (a1 · c2 · d3) 1 0.33 n

Table 9. Invalid Transition

In the next iteration, we constructτ andδ listed in Table 10 and build an action rule
containing 4 elements as shown in Table 11. However, it is not included in the list of
action rules because it’sτ andδ are supersets of(b1 · c3 · d1) 7→ (b2 · c2 · d3) in Table
8, which is a more general action rule.

τ δ

(a2 · b1 · c3 · d1) (a1 · b2 · c2 · d3)

Table 10. 4-elementτ andδ

τ δ

(a2 · b1 · c3 · d1) 7→ (a1 · b2 · c2 · d3)

Table 11. Action Rule

The process stops because there are no sets to be combined.

4 Experiment

We implemented the algorithm in Matlab on a Pentium M 1.6 GHz computer running
Windows XP, and tested it using a sample data set (nursery database) obtained from
[8]. The data set contains information about applications for nursery schools, and used
to rank them. The decision attribute has five classes (not recommend, recommend, very

recommend, priority, special priority).We partitioned the attributes into stable and flexi-
ble based on the description given by the provider. For example, the number of children
in a family (1, 2, 3, more) is considered as a stable attribute, while financial standing of
the family (convenient, inconvenient) or parents’ occupation (usual, pretentious, great
pretentious) are considered as flexible attributes.

Type Attribute Name Description
flexible parents (p) Parents’ occupation
stable hasnurs (n) Child’s nursery
stable form (o) Form of the family
stable children (c) Number of children
flexible housing (h) Housing conditions
flexible finance (f) Financial standing of the family
stable social (s) Social conditions
flexible health (t) Health conditions
flexible decision (d) Rank

Table 12. Experiment Result

Table 12 shows the attributes names, descriptions, and the partitions. All attributes
are categorical in the data set. If a data set contains continuous data, one can use a dis-
cretization method (such as Rosetta [9]) to convert them to categorical data. Table 13
shows the parameters used in our experiment, the number of action rules generated, and
the time required to complete the task.

ExperimentNum. of Stab. Flex. Sup Conf Num. of Computation time
No. objects attributeattribute action rules(in seconds)
1 12960 4 5 5% 85% 86 2.36
2 12960 4 5 10%85% 53 1.07
3 12960 4 5 15%85% 12 0.88

Table 13. Experiment Result

Table 14 shows the action rules generated during experiment No. 3. The first action
rule can be read as, if the housing standing of the family changes fromconvenientto
inconvenient, then the decision changes fromnot recommendto priority with support
value of 2022 and confidence of 0.9. The overall result shows that the change of rank
(decision attribute) is strongly related to the changes in financial standing of the family
and health conditions in experiment 3.

condition decision sup conf
(f)convenient → (d)notrecom 7→ (f)inconvenient → (d)priority 2022 0.9
(f)convenient → (d)notrecom 7→ (f)inconvenient → (d)spec prior 2160 1
(f)convenient → (d)priority 7→ (f)inconvenient → (d)notrecom 2160 1
(f)convenient → (d)priority 7→ (f)inconvenient → (d)spec prior 2188 1
(f)inconvenient → (d)notrecom 7→ (f)convenient → (d)priority 2160 1
(f)inconvenient → (d)priority 7→ (f)convenient → (d)notrecom 2022 1
(f)inconvenient → (d)spec prior 7→ (f)convenient → (d)notrecom 2160 1
(f)inconvenient → (d)spec prior 7→ (f)convenient → (d)priority 2188 1
(t)priority → (d)spec prior 7→ (t)notrecom → (d)notrecom 2466 1
(t)priority → (d)spec prior 7→ (t)recommended → (d)priority 2412 1
(t)recommended → (d)priority 7→ (t)notrecom → (d)notrecom 2412 1
(t)recommended → (d)priority 7→ (t)priority → (d)spec prior 2412 1

Table 14. Action Rules

5 Conclusion and Future Work

We presented an algorithm that discovers action rules from a decision table. The pro-
posed algorithm generates a complete set of shortest action rules without using pre-
existing classification rules. During the experiment with several data sets, we noticed
that the flexibility of attributes are not equal. For example, the social condition is most
likely less flexible than the health condition in the data set used in our experiment, and
this may have to considered. Future work shall address this issue as well as further
analysis of the algorithm with real world data sets.

6 Acknowledgment

This work was partially supported by the National Science Foundation under grant IIS-
0414815.

References

1. R. Agrawal, R. Srikant (1994), Fast algorithm for mining association rules, Proceeding of the
Twentieth International Conference on VLDB, 487-499

2. A. Dardzínska, Z. Rás (2006), Extracting rules from incomplete decision systems, in Founda-
tions and Novel Approaches in Data Mining, Studies in Computational Intelligence, Vol. 9,
Springer, 143-154

3. D. Fensel (1998), Ontologies: a silver bullet for knowledge management and electronic com-
merce, Springer-Verlag

4. H. Geffner, J. Wainer (1998), Modeling action, knowledge and control, ECAI, 532-536
5. S. Greco, B. Matarazzo, N. Pappalardo, R. Slowiński, Measuring expected effects of interven-

tions based on decision rules, J. Exp. Theor. Artif. Intell., Vol. 17, No. 1-2, 103-118
6. J. Grzymala-Busse (1997), A new version of the rule induction system LERS, Fundamenta

Informaticae, Vol. 31, No. 1, 27-39
7. Z. He, X. Xu, S. Deng, R. Ma, (2005) Mining action rules from scratch, Expert Systems with

Applications, Vol. 29, No. 3, 691-699

8. S. Hettich, C.L. Blake, C.J. Merz (1998), UCI Repository of machine learning databases,
http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of California, Irvine, Dept.
of Information and Computer Sciences

9. A. Øhrn, J. Komorowski (1997), ROSETTA: A Rough Set Toolkit for Analysis of Data
10. Z. Pawlak (1981) Information systems - theoretical foundations, Information Systems Jour-

nal, Vol. 6, 205-218
11. Y. Qiao, K. Zhong, H.-A. Wang and X. Li (2007), Developing event-condition-action rules in

real-time active database, Proceedings of the 2007 ACM symposium on Applied computing,
ACM, New York, 511-516

12. Z.W. Rás, A. Dardzínska (2006), Action rules discovery, a new simplified strategy, Founda-
tions of Intelligent Systems, LNAI, No. 4203, Springer, 445-453

13. Z.W. Rás, A. Tzacheva, L.-S. Tsay, O. Gürdal (2005), Mining for interesting action rules,
Proceedings of IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT 2005), Compiegne University of Technology, France, 2005, 187-193

14. Z.W. Rás, A. Wieczorkowska (2000), Action-Rules: How to increase profit of a company,
in Principles of Data Mining and Knowledge Discovery, Proceedings of PKDD 2000, Lyon,
France, LNAI, No. 1910, Springer, 587-592

15. Z. Rás, E. Wyrzykowska, H. Wasyluk (2007), ARAS: Action rules discovery based on ag-
glomerative strategy, in Mining Complex Data, Post-Proceedings of 2007 ECML/PKDD Third
International Workshop (MCD 2007), LNAI, Vol. 4944, Springer, 2008, 196-208

16. A. Skowron (2001), Rough sets and boolean reasoning, in Granular Computing: an Emerging
Paradigm, Physica-Verlag, 95-124

17. L.-S. Tsay, Z.W. Rás (2006), Action rules discovery system DEAR3, in Foundations of Intel-
ligent Systems, Proceedings of ISMIS 2006, Bari, Italy, LNAI, No. 4203, Springer, 483-492

18. A. Tzacheva, Z.W. Ras (2007), Constraint based action rule discovery with single classifi-
cation rules, in Proceedings of the Joint Rough Sets Symposium (JRS07), LNAI, Vol. 4482,
Springer, 322-329

