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Abstract

Action rules describe possible transitions of objects from
one state to another with respect to a distinguished at-
tribute. Previous research on action rule discovery usually
required the extraction of classification rules before con-
structing any action rule. In [19], a new algorithm that
discovers action rules directly from a decision system was
presented. This paper gives a new approach for generating
association-type action rules. The notion of frequent action
sets and Apriori-like strategy generating them is proposed.
We introduce the notion of a representative action rules and
give an algorithm to construct them directly from frequent
action sets. Finally, we introduce the notion of a simple
association action rule, the cost of association action rule,
and give a strategy to construct simple association action
rules of a lowest cost.

1. Introduction

An action rule is a rule extracted from a decision sys-
tem that describes a possible transition of objects from one
state to another with respect to a distinguished attribute
called a decision attribute [21]. We assume that attributes
used to describe objects in a decision system are partitioned
into stable and flexible. Values of flexible attributes can be
changed. This change can be influenced and controlled by
users. Action rules mining initially was based on compar-
ing profiles of two groups of targeted objects - those that
are desirable and those that are undesirable [21]. An action
rule was defined as a term [(ω) ∧ (α → β)] ⇒ (φ → ψ),

where ω is a conjunction of fixed condition features shared
by both groups, (α → β) represents proposed changes in
values of flexible features, and (φ → ψ) is a desired effect
of the action. The discovered knowledge provides an insight
of how values of some attributes need to be changed so the
undesirable objects can be shifted to a desirable group. For
example, one would like to find a way to improve his or her
salary from a low-income to a high-income. Another exam-
ple in business area is when an owner would like to improve
his or her company’s profits by going from a high-cost, low-
income business to a low-cost, high-income business.

Action rules introduced in [21] has been further inves-
tigated in [18][19][20][22][26][27]. Paper [8] was proba-
bly the first attempt towards formally introducing the prob-
lem of mining action rules without pre-existing classifica-
tion rules. Authors explicitly formulated it as a search prob-
lem in a support-confidence-cost framework. The algorithm
proposed by them has some similarity with Apriori [1]. The
definition of an action rule in [8] allows changes on stable
attributes. Changing the value of an attribute, either stable
or flexible, is linked with a cost [27]. In order to rule out
action rules with undesired changes on stable attributes, au-
thors assigned very high cost to such changes. However,
that way, the cost of action rules discovery is getting unnec-
essarily increased. Also, they did not take into account the
dependencies between attribute values which are naturally
linked with the cost of rules used either to accept or reject a
rule.

Algorithm ARED, presented in [11], is based on
Pawlak′s model of an information system S [16]. Its goal
was to identify certain relationships between granules de-
fined by the indiscernibility relation on its objects. Some of



these relationships uniquely define action rules for S. Pa-
pers [19], [11] present a new strategy for discovering action
rules directly from the decision system. In [19], action rules
are built from atomic expressions following a strategy sim-
ilar to ERID [3].

This paper gives a new approach for generating
association-type action rules. The notion of frequent action
sets and Apriori-like strategy generating them is proposed.
Finally, we introduce the notion of a representative action
rules and give an algorithm to construct them directly from
frequent action sets.

2. Background and Objectives

In this section we introduce the notion of an information
system and give its example.

By an information system [16] we mean a triple S =
(X,A, V ), where:

1. X is a nonempty, finite set of objects

2. A is a nonempty, finite set of attributes, i.e.
a : X −→ Va is a function for any a ∈ A, where Va is
called the domain of a

3. V =
⋃{Va : a ∈ A}.

For example, Table 1 shows an information system S
with a set of objects X = {x1, x2, x3, x4, x5, x6, x7, x8},
set of attributes A = {a, b, c, d}, and a set of their values
V = {a1, a2, b1, b2, c1, c2, d1, d2}.

a b c d
x1 a1 b1 c1 d1

x2 a2 b1 c1 d1

x3 a2 b2 c1 d2

x4 a2 b2 c2 d2

x5 a2 b1 c1 d1

x6 a2 b2 c1 d2

x7 a2 b1 c2 d2

x8 a1 b2 c2 d1

Table 1 : Information System S

Additionally, we assume that A = ASt ∪ AFl, where
attributes in ASt are called stable and attributes in AFl are
called flexible. “Date of birth” is an example of a stable
attribute. “Interest rate” for each customer account is an
example of a flexible attribute.

In earlier works in [20][21][22][26], action rules are con-
structed from classification rules. This means that we use
pre-existing classification rules or generate them using a
rule discovery algorithm, such as LERS [7] or ERID [3],

then, construct action rules either from certain pairs of these
rules or from a single classification rule. For instance, algo-
rithmARAS [22] generates sets of terms (built from values
of attributes) around classification rules and constructs ac-
tion rules directly from them. In this study, we propose a
different approach to achieve the following objectives:

1. Extract action rules directly from a decision system
without using pre-existing classification rules.

2. Extract action rules that have minimal attribute in-
volvement.

To meet these two goals, we introduce the notion of ac-
tion sets, frequent action sets, and show how to build action
rules from them.

3. Action Rules

Let S = (X,A, V ) is an information system, where V =⋃{Va : a ∈ A}. First, we introduce the notion of an atomic
action set.

By an atomic action set we mean an expression (a, a1 →
a2), where a is an attribute and a1, a2 ∈ Va. If a1 = a2,
then a is called stable on a1. Instead of (a, a1 → a1), we
often write (a, a1) for any a1 ∈ Va.

By Action Sets we mean a smallest collection of sets such
that:

1. If t is an atomic action set, then t is an action set.

2. If t1, t2 are action sets and ”·” is a 2-argument functor
called composition, then t1 ·t2 is a candidate action set.

3. If t is a candidate action set and for any two atomic
action sets (a, a1 → a2), (b, b1 → b2) contained in t
we have a �= b, then t is an action set.

By the domain of an action set t, denoted by Dom(t),
we mean the set of all attribute names listed in t.

By an action rule we mean any expression r = [t1 ⇒
t2], where t1 and t2 are action sets. Additionally, we assume
thatDom(t2)∪Dom(t1) ⊆ A andDom(t2)∩Dom(t1) =
∅. The domain of action rule r is defined as Dom(t1) ∪
Dom(t2).

Now, we give an example of action rules assuming that
the information system S is represented by Table 1, a, c are
stable and b, d are flexible attributes. Expressions (a, a2),
(b, b1 → b2), (c, c2), (d, d1 → d2) are examples of atomic
action sets. Expression (b, b1 → b2) means that the value
of attribute b is changed from b1 to b2. Expression (c, c2)
means that the value c2 of attribute c remains unchanged.
Expression r = [[(a, a2) · (b, b1 → b2)] ⇒ (d, d1 → d2)] is



an example of an action rule. The rule says that if value a2

remains unchanged and value b will change from b1 to b2,
then it is expected that the value dwill change from d1 to d2.
The domain Dom(r) of action rule r is equal to {a, b, d}.

Standard interpretation NS of action sets in S =
(X,A, V ) is defined as follow:

1. If (a, a1 → a2) is an atomic action set, then
NS((a, a1 → a2)) = [{x ∈ X : a(x) = a1}, {x ∈
X : a(x) = a2}].

2. If t1 = (a, a1 → a2) · t and NS(t) = [Y1, Y2], then
NS(t1) = [Y1 ∩ {x ∈ X : a(x) = a1}, Y2 ∩ {x ∈ X :
a(x) = a2}].

Let us define [Y1, Y2] ∩ [Z1, Z2] as [Y1 ∩ Z1, Y2 ∩ Z2]
and assume that NS(t1) = [Y1, Y2] and NS(t2) = [Z1, Z2].
Then, NS(t1 · t2) = NS(t1) ∩NS(t2).

If t is an action set and NS(t) = {Y1, Y2},
then the support of t in S is defined as sup(t) =
min{card(Y1), card(Y2)}.

Now, let r = [t1 ⇒ t2] is an action rule, where
NS(t1) = [Y1, Y2], NS(t2) = [Z1, Z2]. Support and confi-
dence of r are defined as follow:

1. sup(r) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)}.

2. conf(r) = [ card(Y1∩Z1)
card(Y1)

] · [ card(Y2∩Z2)
card(Y2)

].

The definition of a confidence should be interpreted as
an optimistic confidence. It requires that card(Y1) �= 0 and
card(Y2) �= 0. Otherwise, the confidence of action rule is
undefined.

Coming back to the example of S given in Table 1, we
can find many action rules associated with S. Let us take r
= [[(a, a2) · (b, b1 → b2)] ⇒ (d, d1 → d2)] as an example
of action rule. Then,

NS((a, a2))=
[{x2, x3, x4, x5, x6, x7}, {x2, x3, x4, x5, x6, x7}],
NS((b, b1 → b2)) =
[{x1, x2, x5, x7}, {x3, x4, x6, x8}],
NS((d, d1 → d2))=
[{x1, x2, x5, x8}, {x3, x4, x6, x7}],
NS((a, a2) · (b, b1 → b2))=
[{x2, x5, x7}, {x3, x4, x6}].

Clearly, sup(r) = 2 and conf(r) = 2/3 · 1 = 2/3.

Now, let us assume that S = (X,A, V ) is an information
system and λ1, λ2 denote minimum support and minimum

confidence assigned to action rules, respectively. The al-
gorithm for constructing frequent action sets is similar to
Agrawal′s algorithm in [1].

Generating frequent action sets

Let ta is an atomic action set, where NS(ta) = [Y1, Y2]
and a ∈ A. We say that ta is called frequent if card(Y1) ≥
λ1 and card(Y2) ≥ λ1.

The operation of generating (k + 1)- element candidate
action sets from frequent k-element action sets is performed
in two steps:

Merging Step: Merge pairs (t1, t2) of frequent k-
element action sets into (k + 1)-element candidate action
set if all elements in t1 and t2 are the same except the last
elements.

Pruning Step: Delete each (k + 1)-element candidate
action set t if either it is not an action set or some k-element
subset of f is not a frequent k-element action set.

Now, if t is a (k + 1)-element candidate action set,
NS(t) = [Y1, Y2], card(Y1) ≥ λ1, and card(Y2) ≥ λ1,
then t is a frequent (k + 1)-element action set.

We say that t is a frequent action set in S if t is a frequent
k-element action set in S, for some k. Assume now that
the expression [t− t1] denotes the action set containing all
atomic action sets listed in t but not listed in t1.

The set AARS(λ1, λ2) of association action rules in S
is constructed in the following way:

Let t be a frequent action set in S and t1 is its subset.
Any action rule r = [(t− t1) ⇒ t1] is an association action
rule in AARS(λ1, λ2) if conf(r) ≥ λ2.

4. Association Action Rules, an Example

Let us assume that an information system S is repre-
sented by Table 1 with {a, c} as stable attributes. We take
λ1 = 2 and λ2 = 4/9. The following frequent action sets
can be constructed:

(a, a1) - support 2
(a, a2) - support 6
(b, b1) - support 4
(b, b2) - support 4
(b, b1 → b2) - support 4
(b, b2 → b1) - support 4
(c, c1) - support 5
(c, c2) - support 3
(d, d1) - support 4
(d, d2) - support 4
(d, d1 → d2) - support 4
(d, d2 → d1) - support 4



(a, a1) · (b, b1) - support 1 (not frequent)
(a, a1) · (b, b2) - support 1 (not frequent)
(a, a1) · (b, b1 → b2) - support 1 (not frequent)
(a, a1) · (b, b2 → b1) - support 1 (not frequent)
(a, a1) · (c, c1) - support 1 (not frequent)
(a, a1) · (c, c2) - support 1 (not frequent)
(a, a1) · (d, d1) - support 2
(a, a1) · (d, d2) - support 0 (not frequent)
(a, a1) · (d, d1 → d2) - support 0 (not frequent)
(a, a1) · (d, d2 → d1) - support 0 (not frequent)

(a, a2) · (b, b1) - support 3
(a, a2) · (b, b2) - support 3
(a, a2) · (b, b1 → b2) - support 3
(a, a2) · (b, b2 → b1) - support 3
(a, a2) · (c, c1) - support 4
(a, a2) · (c, c2) - support 2
(a, a2) · (d, d1) - support 2
(a, a2) · (d, d2) - support 4
(a, a2) · (d, d2 → d1) - support 2
(a, a2) · (d, d1 → d2) - support 2

(b, b1) · (c, c1) - support 3
(b, b1) · (c, c2) - support 1 (not frequent)
(b, b1) · (d, d1) - support 3
(b, b1) · (d, d2) - support 1 (not frequent)

(b, b2) · (c, c1) - support 2
(b, b2) · (c, c2) - support 2
(b, b2) · (d, d1) - support 1 (not frequent)
(b, b2) · (d, d2) - support 3

(b, b1 → b2) · (c, c1) - support 2
(b, b1 → b2) · (c, c2) - support 1 (not frequent)
(b, b1 → b2) · (d, d1) - support 1 (not frequent)
(b, b1 → b2) · (d, d2) - support 1 (not frequent)
(b, b1 → b2) · (d, d2 → d1) - support 1 (not frequent)
(b, b1 → b2) · (d, d1 → d2) - support 3

(b, b2 → b1) · (c, c1) - support 2
(b, b2 → b1) · (c, c2) - support 1 (not frequent)
(b, b2 → b1) · (d, d1) - support 1 (not frequent)
(b, b2 → b1) · (d, d1 → d2) - support 1 (not frequent)
(b, b2 → b1) · (d, d2 → d1) - support 3

(c, c1) · (d, d1) - support 3
(c, c1) · (d, d2) - support 2
(c, c1) · (d, d2 → d1) - support 2
(c, c1) · (d, d1 → d2) - support 2
(c, c2) · (d, d1) - support 1 (not frequent)
(c, c2) · (d, d2) - support 2
(c, c2) · (d, d2 → d1) - support 1 (not frequent)

(c, c2) · (d, d1 → d2) - support 1 (not frequent)

(a, a2) · (b, b1) · (c, c1) - support 2
(a, a2) · (b, b1) · (c, c2) - support 1 (not frequent)
(a, a2) · (b, b1) · (d, d1) - support 2
(a, a2) · (b, b1) · (d, d2) - support 1 (not frequent)
(a, a2) · (b, b1) · (d, d1 → d2) - support 1 (not frequent)
(a, a2) · (b, b2) · (c, c1) - support 2
(a, a2) · (b, b2) · (c, c2) - support 1 (not frequent)
(a, a2) · (b, b2) · (d, d1) - support 0 (not frequent)
(a, a2) · (b, b2) · (d, d2) - support 3
(a, a2) · (b, b2) · (d, d1 → d2) - support 0 (not frequent)
(a, a2) · (b, b1 → b2) · (c, c1) - support 2
(a, a2) · (b, b1 → b2) · (c, c2) - support 1 (not frequent)
(a, a2) · (b, b1 → b2) · (d, d1) - support 0 (not frequent)
(a, a2) · (b, b1 → b2) · (d, d2) - support 1 (not frequent)
(a, a2) · (b, b1 → b2) · (d, d1 → d2) - support 2
(a, a2) · (b, b2 → b1) · (c, c1) - support 2
(a, a2) · (b, b2 → b1) · (c, c2) - support 1 (not frequent)
(a, a2) · (b, b2 → b1) · (d, d1) - support 0 (not frequent)
(a, a2) · (b, b2 → b1) · (d, d2) - support 1 (not frequent)
(a, a2) · (b, b2 → b1) · (d, d1 → d2) - support 0 (not
frequent)
...............................
...............................
...............................

(a, a2) · (b, b1 → b2) · (c, c1) · (d, d1 → d2) - support 2

Association action rules can be constructed from fre-
quent action sets. For instance, we can generate association
action rule

[(a, a2) · (b, b1 → b2)] → [(c, c1) · (d, d1 → d2)]

from the last frequent action set. Its confidence is 4/9.

5 Representative Association Action Rules

The concept of representative association rules was in-
troduced by Kryszkiewicz [10]. They form a small subset
of association rules from which the remaining association
rules can be generated. Similar approach is proposed for
association action rules in this paper.

By a cover C of association action rule r = [t1 ⇒ t] we
meanC(t1 ⇒ t) = {t1 ·t2 → t3 : t2, t3 are not overlapping
subterms of t}.

For example, let us assume that r = [(e, e1 → e2) ⇒
(b, b1 → b2) · (c, c1 → c2) · (d, d1 → d2)] is an association
action rule. Then, [(e, e1 → e2) · (b, b1 → b2) ⇒ (c, c1 →
c2)] ∈ C(r).



Property 1. If r ∈ AARS(λ1, λ2), then each rule r1 ∈
C(r) also belongs to AARS(λ1, λ2).

Proof: From the definition of AARS(λ1, λ2) we have,
sup(r) ≥ λ1, and conf(r) ≥ λ2. Let r1 = [t1 · t2 →
t4], r = [t1 → t2 · t3 · t4], and NS(ti) = [Yi, Zi], for
i = 1, 2, 3, 4. Now, since card[Y1∩Y2∩Y3∩Y4]

card[Y1]
≥ λ1, then

card[Y1∩Y2∩Y4]
card[Y1∩Y2]

≥ λ1 because card(Y1) ≥ card(Y1 ∩ Y2)
and card(Y1 ∩ Y2 ∩ Y4) ≥ card(Y1 ∩ Y2 ∩ Y3 ∩ Y4).

In a similar way we show that card[Z1∩Z2∩Z4]
card[Z1∩Z2]

≥ λ1. The
same, sup(r1) ≥ λ1.

Now, assume that conf(r) = card(Y1∩Y2∩Y3∩Y4)
card(Y1)

·
card(Z1∩Z2∩Z3∩Z4)

card(Z1)
≥ λ2. Clearly, card(Y1∩Y2∩Y4)

card(Y1∩Y2)
·

card(Z1∩Z2∩Z4)
card(Z1∩Z2)

≥ λ2. The same conf(r1) ≥ λ2.

By a set of representative association action rules, with
minimum support λ1 and minimum confidence λ2 we mean

RAARS(λ1, λ2) = {r ∈ AARS(λ1, λ2) :∼ (∃r1) ∈
AARS(λ1, λ2)[[r1 �= r] ∧ [r ∈ C(r1)]}.

Property 2. Representative association action rules
RAARS(λ1, λ2) form a least set of association action rules
that covers all association action rules AARS(λ1, λ2).

Proof: Let us assume that r ∈ RAARS(λ1, λ2) and
there exists r1 = [t1 ⇒ t] ∈ AARS(λ1, λ2) such that
r1 �= r and r ∈ C(r1). Now, since r ∈ C(r1), then r is not
in RAARS(λ1, λ2).

Property 3. All association action rules AARS(λ1, λ2)
can be derived from representative association action rules
RAARS(λ1, λ2) by means of cover operator.

Proof: Assume that r = [t ⇒ s] ∈ AARS(λ1, λ2) and
t = t1 · t2· ... ·tk, where ti is an atomic action set for
1 ≤ i ≤ k. It means that conf(r) ≥ λ2 and sup(r) ≥ λ1.
Let ri(t) = [[t−ti] ⇒ s·ti] for any atomic action set ti in t.
Clearly, sup(ri(t)) = sup(r) and conf(ri(t)) ≤ conf(r).

Now, we show how to construct representative associa-
tion action rule from which r can be generated. First, we
follow Procedure I:

(1) Find ti in t such that conf(ri(t)) ≥ λ2,
(2) If succeeded, then t := [t− ti], s := s · ti,
go back to (1). Otherwise procedure stops.

Procedure II will extend the decision part of the rule gen-
erated by Procedure I. Assume that [t ⇒ s] is that rule and
T = {t1, t2, ..., tm} is a set of all atomic action terms not
listed in s. Procedure II:

(1) Find ti in T such that sup(t⇒ s · ti) ≥ λ1,
(2) If succeeded, then s := s · ti, T := T − {ti},
go back to (1). Otherwise procedure stops.

Now, the resulting association action rule is a represen-
tative rule from which the initial rule r can be generated.

6 Simple Association Action Rules

In this section we introduce the notion of a simple asso-
ciation action rule, the cost of association action rule, and
give a strategy to construct simple association action rules
of lowest cost.

Let (a, a1 → a2) is an atomic action set. We assume
that the cost of changing attribute a from a1 to a2 is de-
noted by costS((a, a1 → a2)) [27]. For simplicity reason,
the subscript S will be omitted if this does not lead to a
confusion. Let t1 = (a, a1 → a2), t2 = (b, b1 → b2)
be two atomic action sets. We say that t1, t2 are positively
correlated if change t1 supports change t2. Saying another
words, change t1 implies change t2.

Now, assume that action set t is constructed from atomic
action sets T = {t1, t2, ..., tm}. We introduce a binary re-
lation � on T defined as: ti � tj iff ti and tj are positively
correlated.

Relation � is an equivalence relation and it partitions T
intom equivalence classes (T = T1∪T2∪...∪Tm), for some
m. Now, in each equivalence class Ti, an atomic action set
a(Ti) of the lowest cost is identified. The cost of t is defined
as: cost(t) =

∑{cost(a(Ti)) : 1 ≤ i ≤ m}.

Now, assume that r = [t1 ⇒ t] is an association action
rule. We say that r is simple if cost(t1 · t) = cost(t1). The
cost of r is defined as cost(t1).

We assume that user gives three threshold values, λ1 -
minimum support, λ2 - minimum confidence, λ3 - maxi-
mum cost. Let t be a frequent action set in S and t1 is its
subset. Any association action rule r ∈ AARS(λ1, λ2) is
called association action rule of acceptable cost if cost(r) ≤
λ3. Similarly, frequent action set t is called a frequent ac-
tion set of acceptable cost if cost(t) ≤ λ3.

Now, in order to construct simple association action rules
of a lowest cost, we built frequent action sets of accept-
able cost following the strategy presented in Section 4 en-
hanced by additional constraint which requires to verify
the cost of frequent action sets being produced. Any fre-
quent action set which cost is higher than λ3, is removed.
Now, if t is a frequent action set of acceptable cost and
{a(Ti) : i ≤ m} is a collection of atomic action sets con-
structed by following the strategy presented in this section,
then Π{a(Ti) : i ≤ m} ⇒ [t−{a(Ti) : i ≤ m}] is a simple
association action rule of acceptable cost assuming that its
confidence is not greater than λ2.

7. Application Domain - HEPAR Database

As the application domain for action rules mining, we
have chosen the HEPAR system built in collaboration be-



tween the Institute of Biocybernetics and Biomedical Engi-
neering of the Polish Academy of Sciences and physicians
at the Medical Center of Postgraduate Education in Warsaw,
Poland [2], [25], [15]. HEPAR was designed for gathering
and processing clinical data about patients with liver disor-
ders. It contains information on 758 patients described by
106 attributes (including 31 laboratory tests with values dis-
cretized to: below normal, normal, above normal). It has 14
stable attributes. Two laboratory tests are invasive: HBsAg
[in tissue] and HBcAg [in tissue]. The decision attribute has
7 values: I (acute hepatitis), IIa (subacute hepatitis [types
B and C]), IIb (subacute hepatitis [alcohol-abuse]), IIIa
(chronic hepatitis [curable]), IIIb (chronic hepatitis [non-
curable]), IV (cirrhosis-hepatitis), V (liver-cancer).

The diagnosis of liver disease depends on a combination
of patient’s history, physical examinations, laboratory tests,
radiological tests, and frequently a liver biopsy. Blood tests
play an important role in the diagnosis of liver diseases.
However, their results should be analyzed along with the
patient’s history and physical examination. The most com-
mon radiological examinations used in the assessment of
liver diseases are ultrasound and sonography. Ultrasound is
a good test for the detection of liver masses, assessment of
bile ducts, and detection of gallstones presence. However, it
does not detect the degree of inflammation or fibrosis of the
liver. Ultrasound is a noninvasive procedure and there are
no risks associated with it. Liver biopsy enables the doctor
to examine how much inflammation and how much scarring
has occurred. Liver biopsy is an example of invasive proce-
dure that carries certain risks to the patient. Therefore, de-
spite of the importance of its results to the diagnosis, clini-
cians try to avoid biopsy as often as possible. However, liver
biopsy is often the only way to establish correct diagnosis
in patients with chronic liver disorders.

A medical treatment is naturally associated with re-
classification of patients from one decision class into an-
other one. In this research we were mainly interested in the
re-classification of patients from the class IIb into class I
and from the class IIIa into class I but without referring to
any invasive tests results in action rules.

Database HEPAR has many missing values. Follow-
ing the approach proposed in [22], we removed all its at-
tributes with more than 90% of null values assuming that
these attributes are not related to invasive tests. Also, sub-
jective attributes (like history of alcohol abuse) have been
removed. Next, we used one of the classical null value
imputation techniques (provided in Rough Sets Exploration
System (RSES)) to make the resulting database complete.

For the testing purpose, we have chosen the same d-
reduct R = {m, n, q, u, y, aa, ah, ai, am, an, aw, bb, bg,
bm, by, cj, cm} as in [22] because it does not contain any
invasive tests. By d-reduct we mean a minimal subset of

attributes which by itself can fully characterize the knowl-
edge about attribute d in the database. The description of
attributes (tests) listed in R is given below:

• m - Bleeding

• n - Subjaundice symptoms

• q - Eructation

• u - Obstruction

• y - Weight loss

• aa - Smoking

• ah - History of viral hepatitis (stable)

• ai - Surgeries in the past (stable)

• am - History of hospitalization (stable)

• an - Jaundice in pregnancy

• aw - Erythematous dermatitis

• bb - Cysts

• bg - Sharp liver edge (stable)

• bm - Blood cell plaque

• by - Alkaline phosphatase

• cj - Prothrombin index

• cm - Total cholesterol

• dd - Decision attribute

Many action rules have been discovered. Three of them
had a very high confidence (close to 100) and they are given
below:

[(am, 2) · (ah, 2) · (bg, 2)] · (q, 2 → 1) · (cm, 2 → 1) ⇒
(dd, IIIA→ I)

The first rule is applicable to patients with a history of
hospitalization, history of viral hepatitis, and with a sharp
liver edge which is not normal. It says that if we get rid
of eructation and decrease the cholesterol level to normal,
then we should be able to reclassify such patients from the
category IIIA to I.

[(am, 2) · (bg, 2) · (ai, 1)] · (u, 2 → 1) · (y, 2 → 1) ⇒
(dd, IIIA→ I)

The second rule is applicable to patients with a history of
hospitalization, with a sharp liver edge which is not normal,
and with no surgeries in the past. It says that if we get rid
of obstruction and change the weight loss level to normal,



then we should be able to reclassify such patients from the
category IIIA to I.

[(am, 2) · (bg, 2) · (ai, 1)] · (q, 2 → 1) · (u, 2 → 1) · (n, 2 →
1) ⇒ (dd, IIIA→ I)

The third rule is applicable to patients with a history of
hospitalization, with a sharp liver edge which is not nor-
mal, and with no surgeries in the past. It says that if we
get rid of eructation, get rid of obstruction, and change the
subjaundice symptoms to normal, then we should be able to
reclassify such patients from the category IIIA to I.

8. Conclusion and Future Work

Action rules mining can be successfully applied in many
other areas including Business and Music Information Re-
trieval (MIR). In [23], authors present the system MIRAI
for automatic indexing of music by instruments and emo-
tions. When MIRAI receives a musical waveform, it di-
vides that waveform into segments of equal size and then its
classifiers identify the most dominating musical instruments
and emotions associated with each segment and also with
the musical waveform. In [12], [13] authors follow another
approach and present a Basic Score Classification Data-
base (BSCD) which describes associations between differ-
ent scales, regions, genres, and jumps. This database is used
to automatically index a piece of music by emotions. In
[19], it was shown how to use action rules extracted from
BSCD to modify the retrieved piece of music when we need
to change the emotions it invokes in people. Action rules
show how it can be achieved with a minimal change in the
associated music score. By a score, in MIR area, we mean
a written form of a musical composition. Representative
association action rules form the smallest subset of associ-
ation action rules which can be extracted from BSCD data-
base from which the remaining association action rules can
be generated by cover operator. The same, they can be inter-
preted as compact representations of classes of action rules.
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[21] Z.W. Raś, A. Wieczorkowska. Action-Rules: How to in-
crease profit of a company. Proceedings of PKDD 2000,
Springer, LNAI, Vol. 1910, 2000, 587-592.
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