
Action rules discovery: system DEAR2, method and experiments

LI-SHIANG TSAY* and ZBIGNIEW W. RAŚ

Department of Computer Science, University of North Carolina,
9201 University City Blvd, Charlotte, NC 28223, USA

(Received 1 March 2004; in final form 1 August 2004)

Subjective measures, used to model interestingness of rules, are user-
driven, domain-dependent, and include unexpectedness, novelty and
actionability (Adomavicius and Tuzhilin 1997, Liu et al. 1997,
Silberschatz and Tuzhilin 1995). Liu et al. (1997) define a rule as action-
able, if a user can do an action to his/her advantage based on that rule.
Their notion of actionability is too vague and leaves the door open to a
number of different interpretations. Raś and Wieczorkowska (2000)
assume that actionability has to be expressed in terms of attributes that
are present in the database. They have introduced a new class of rules
(called action rules) that are constructed from certain pairs of association
rules extracted from that database. A conceptually similar definition of an
action rule was proposed independently by Geffner and Wainer (1998).
Action rules have been investigated further in Raś and Gupta (2002), Raś
and Tsay (2003), Raś et al. (2005) and Tzacheva and Raś (2004).

In order to construct action rules, it is required that attributes in a
database are divided into two groups: stable and flexible. Flexible attri-
butes are used in a decision rule as a tool for making hints to a user what
changes within some of their values are needed to reclassify a group of
objects from one decision class into another one. Two strategies for gen-
erating action rules are presented. The first one, implemented as system
DEAR, generates action rules from certain pairs of association rules. The
second one, implemented as system DEAR2, is based on a tree structure
that partitions the set of rules, having the same decision value, into equiva-
lence classes each labelled by values of stable attributes (two rules belong
to the same equivalence class, if values of their stable attributes are not
conflicting each other). Now, instead of comparing all pairs of rules, only
pairs of rules belonging to some of these equivalence classes are compared
to construct action rules. This strategy significantly reduces the number of
steps needed to generate action rules in comparison to DEAR system.

Keywords: Decision system; Knowledge discovery; Actionability;
Interestingness

*Corresponding author. Email: ltsay@uncc.edu

Journal of Experimental & Theoretical Artificial Intelligence
ISSN 0952–813X print/ISSN 1362–3079 online # 2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 09528130512331315855

Journal of Experimental & Theoretical Artificial Intelligence,

Vol. 17, No. 1–2, January–June 2005, 119–128

1. Introduction

There are two aspects of interestingness of rules that have been studied in data

mining literature: objective and subjective measures (see Liu et al. 1997,

Adomavicius and Tuzhilin 1997 and Silberschatz and Tuzhilin 1995, 1996). Objective

measures are data-driven and domain-independent. Generally, they evaluate

the rules based on the quality and similarity between them. Subjective

measures—including unexpectedness, novelty and actionability—are user-driven

and domain-dependent.

A rule is actionable if a user can do an action to his/her advantage based on that

rule (Liu et al. 1997). This definition, in spite of its importance, is quite vague and

it leaves an open door to a number of different interpretations of actionability.

For instance, we may formulate actions that involve attributes outside the database

schema. In order to narrow it down, a new class of rules (called action rules)

constructed from certain pairs of association rules, extracted from a given database,

has been proposed in Raś and Wieczorkowska (2002). Independently, another

formal definition of an action rule was proposed in Geffner and Wainer (1998).

These rules have been investigated further in Raś and Tsay (2003) Raś et al. (2005),

and Tzacheva and Raś (2003, 2004).

To give an example justifying the need of action rules, let us assume that a

number of customers have stopped buying products at one of the grocery stores.

To find the cause of their decision, possibly the smallest and the simplest set of

rules describing all these customers is extracted from the customer database.

For instance, let us assume that [Nationality, European] ^ [Milk Products, Kefir]

�! [Profit, Excellent] is such a rule. Assume also that from the same database, a rule

[Nationality, European] �! [Profit, Average] representing the remaining customers

has been extracted. At the same time, we know that the grocery store stopped

ordering kefir about a month ago. Now, by comparing these two rules, we can easily

find out that the grocery store manager should start ordering kefir again if he does

not want to loose more European customers. Action rule, constructed from these

two rules, is represented by the expression: [Nationality, European] ^ [Milk Products,

�! Kefir] �! [Profit, Average �! Excellent]. It should be read as: If Europeans

will buy Kefir, then they should shift from the average group of customers to the

excellent one. Ordering kefir by the grocery store manager is an example of its

implementation.

Formal definition of an action rule and the algorithm to construct them from

association rules was proposed in Raś and Wieczorkowska (2000). This algorithm

was implemented as one of the modules in DEAR (Raś and Tsay 2003) system.

System DEAR2 presented in this paper significantly improves its previous version.

Now, we outline this new strategy. Its first step is to partition the rules, defining

values of the decision attribute, into a number of equivalence classes (two rules

belong to the same equivalence class if they define the same decision value). In its

second step, for each decision value, the algorithm builds dynamically a tree

structure partitioning all rules having that decision value into a number of new

equivalence subclasses defined by values of stable attributes (two rules belong to the

same equivalence subclass, if values of their stable attributes do not contradict each

other). In its final step, instead of comparing all pairs of rules, only pairs of rules

belonging to some of these equivalence subclasses have to be compared in order to

L.-S. Tsay and Z.W. Raś120

construct action rules. This strategy significantly reduces the number of steps needed
to generate action rules in comparison to the strategy DEAR (Raś and Tsay 2003).

2. Information system and action rules

An information system is used for representing knowledge. Its definition, presented
here, is due to Pawlak (1991).

By an information system we mean a pair S ¼ ðU,AÞ, where:

. U is a non-empty, finite set of objects, and

. A is a non-empty, finite set of attributes, i.e. a : U�!Va is a function for any
a 2 A, where Va is called the domain of a.

Objects, for instance, can be interpreted as customers. Attributes can be interpreted
as features, offers made by a grocery store, characteristic conditions, etc.

In this paper, we only consider the special case of information systems called
decision tables (Pawlak 1991). In any decision table, together with the set of
attributes, a partition of that set into conditions and decisions is given. Additionally,
we assume that the set of conditions is partitioned into stable conditions and flexible
conditions. For simplicity, we assume that there is only one decision attribute. Date
of birth is an example of a stable attribute. Interest rate on any customer account is
an example of a flexible attribute (dependable on a bank). We adopt the following
definition of a decision table. By a decision table we mean an information system
S ¼ ðU,A1 [A2 [fdgÞ, where d 62 A1 [A2 is a distinguished attribute called deci-
sion. The elements of A1 are called stable conditions, whereas the elements of A2 are
called flexible conditions.

As an example of a decision table we take S ¼ ðfx1, x2, x3, x4, x5, x6, x7, x8g,
fa, cg [fbg [fdgÞ represented by table 1. The set fa, cg lists stable attributes, b is a
flexible attribute and d is a decision attribute. Also, we assume that H denotes a high
profit and L denotes a low one.

In order to induce rules in which the THEN part consists of the decision attribute
d and the IF part consists of attributes belonging to A1[A2, subtables ðU,B [fdgÞ
of S where B is a d-reduct (Pawlak 1991) in S are used for rules extraction. By L(r),
we mean all attributes listed in the IF part of a rule r. For example,
if r ¼ ½ða, 2Þ � ðb,SÞ�!ðd,HÞ� is a rule then LðrÞ ¼ fa, bg. By d(r) we denote the
decision value of that rule. In our example, dðrÞ ¼ H. If r1, r2 are rules and
B � A1 [A2 is a set of attributes, then the equation r1=B ¼ r2=B means that the

Table 1. Decision system S.

a b c d

x1 0 S 0 L
x2 0 R 1 L
x3 0 S 0 L
x4 0 R 1 L
x5 2 P 2 L
x6 2 P 2 L
x7 2 S 2 H
x8 2 S 2 H

Action rules discovery 121

conditional parts of rules r1, r2 restricted to attributes B are the same. Now,
if r1 ¼ ½ðb,SÞ � ðc, 2Þ�!ðd,HÞ�, then r1=fbg ¼ r=fbg.

The list of certain optimal rules extracted from S, represented by table 1, is given
below:

ða, 0Þ�!ðd,LÞ, ðc, 0Þ�!ðd,LÞ
ðb,RÞ�!ðd,LÞ, ðc, 1Þ�!ðd,LÞ
ðb,PÞ�!ðd,LÞ, ða, 2Þ � ðb,SÞ�!ðd,HÞ, ðb,SÞ � ðc, 2Þ�!ðd,HÞ

Any certain rule is optimal in S, if by dropping an attribute value listed in its
conditional part we get a rule that is no longer certain one. Similar definition of
optimality can be used for association rules if we assume that the assumption about
their certainty is replaced by a threshold value for their minimal confidence.

Now, let us assume that ða, v�!wÞ denotes the fact that the value of attribute a
has been changed from v to w for a number of objects in S. Similarly, the term
ða, v�!wÞðxÞ means that the attribute value aðxÞ ¼ v has been changed to aðxÞ ¼ w
for the object x.

Let S ¼ ðU,A1 [A2 [fdgÞ be a decision table and certain rules r1, r2 are extracted
from S. Assume that B1 is a maximal subset of A1 such that r1=B1 ¼ r2=B1,
dðr1Þ ¼ k1, dðr2Þ ¼ k2 and k1� k2. Also, assume that ðb1, b2, . . . , bpÞ is a list of all
attributes in Lðr1Þ \ Lðr2Þ \ A2 on which r1, r2 differ in values and r1ðb1Þ ¼ v1,
r1ðb2Þ ¼ v2, . . . , r1ðbpÞ ¼ vp, r2ðb1Þ ¼ w1, r2ðb2Þ ¼ w2, . . . , r2ðbpÞ ¼ wp.

By (r1, r2)-action rule r on x 2 U we mean the expression:

r ¼ ½½ðb1, v1�!w1Þ ^ ðb2, v2�!w2Þ ^ � � � ^ ðbp, vp�!wpÞ�ðxÞ) ½ðd, k1�!k2Þ�ðxÞ�:

Similarly to the notation adopted for rules extracted from S, we assume that
LðrÞ ¼ fb1, b2, . . . , bpg. Several definitions related to the support of an action rule
can be proposed. We list them below.

We say that object x certainly supports the action rule r in S, if there is an object
y 2 U such that:

. ð8i � pÞ½½bi 2 LðrÞ��!½biðxÞ ¼ vi��,

. ð8i � pÞ½½bi 2 LðrÞ��!½biðyÞ ¼ wi��,

. ð8b 2 ½½A1 [A2� � LðrÞ�Þ½bðxÞ ¼ bðyÞ�,

. dðxÞ ¼ k1 and dðyÞ ¼ k2.

The object y is seen as the outcome of the rule r applied on object x.
We say that object x negatively supports the action rule r in S, if there is an object

y 2 U such that:

. ð8i � pÞ½½bi 2 LðrÞ��!½biðxÞ ¼ vi��,

. ð8i � pÞ½½bi 2 LðrÞ��!½biðyÞ ¼ wi��,

. ð8b 2 ½½A1 [A2� � LðrÞ�Þ½bðxÞ ¼ bðyÞ�,

. dðxÞ ¼ k1 and dðyÞ 6¼ k2.

In this case, we say that the object that is the outcome of the rule r applied on x
contradicts S.

We say that object x possibly supports the action rule r in S, if there is an object
y 2 U such that:

. ð8i � pÞ½½bi 2 LðrÞ��!½biðxÞ ¼ vi��,

. ð8i � pÞ½½bi 2 LðrÞ��!½biðyÞ ¼ wi��,

L.-S. Tsay and Z.W. Raś122

. ð8b 2 ½A1 � LðrÞ�Þ½bðxÞ ¼ bðyÞ�,

. dðxÞ ¼ k1 and dðyÞ ¼ k2.

The definition of certain support of an action rule is too strong because it does not
leave any door for generalizations. On the other hand, the definition of possible
support of an action rule is too weak because it is based on the assumption that
non-existing objects in S support the outcome of any action rule. To overcome this
problem, the last definition proposed by us requires the extraction of rules from S
before any action rule can be constructed.

We say that object x supports the action rule r in S, if there are two rules r1, r2
extracted from S such that:

. ð8i � pÞ½½bi 2 LðrÞ��!½biðxÞ ¼ vi�� and dðxÞ ¼ k1,

. object x supports rule r1,

. if object y is the outcome of the rule r applied on x, then y supports rule r2.

By the support of action rule r in S, denoted by SupS(r), we mean the set of all
objects in S supporting r.

Now, let us denote by NSupS(r) the set of all objects in S negatively supporting r.
By the confidence of r in S, denoted by ConfS(r), we mean SupSðrÞSupSðr1Þ.
The definition of support of an action rule is not very pleasant because it

involves other rules extracted from S. In order to construct all action rules
based on S, we need to consider all pairs of rules extracted from S and pick up
only those which satisfy the condition required for action rules construction.
Then, from each of these pairs we construct an action rule and calculate its support
and confidence. To speed up the process of action rules construction, we
only concentrate on action rules that are built from certain pairs of rules extracted
from S. Namely, we consider pairs of rules not only satisfying the required condition
for action rules construction but also which have a small number of overlapping
flexible attributes in their conditional part. This way we minimize the number of
attribute values required by an action rule to be changed for any object supporting
that rule.

3. Discovering extended action rules

In order to simplify the process required to compute the support of an action rule,
the notion of an extended action rule was proposed in Raś and Tsay (2003). Its
informal definition is given below.

Let us assume that two rules extracted from some decision system are represented
as rows in table 2. This table representation is useful to clarify the construction of an
extended action rule. Here, A(St) means that attribute A is stable and A(Fl) means
that A is flexible.

In a classical representation, these two rules have the following form:

r1 ¼ ½a1 � b1 � c1 � e1�!d1�, r2 ¼ ½a1 � b2 � g2 � h2�!d2�

Assume now that object x supports rule r1, which means that x is assigned to class
d1. In order to reclassify x to the class d2, we need to change its value of attribute
B from b1 to b2. Additionally, we require that GðxÞ ¼ g2 and that the value of

Action rules discovery 123

attribute H for object x has to be changed from its current value to h2. This is the
meaning of the extended (r1, r2)-action rule given below:

½ðB, b1�!b2Þ ^ ðG ¼ g2Þ ^ ðH,�!h2Þ�ðxÞ�!ðD, d1�!d2ÞðxÞ

To give example of an extended action rule, let us assume that S ¼

ðU,A1 [A2 [fdgÞ is a decision system represented as table 1, A2 ¼ fbg, A1 ¼

fa, cg. It can be checked that rules r1 ¼ ½ðb,PÞ�!ðd,LÞ�, r2 ¼ ½ða, 2Þ � ðb,SÞ�!
ðd,HÞ�, r3 ¼ ½ðb,SÞ � ðc, 2Þ�!ðd,HÞ� can be extracted from S. Clearly, both objects
x5, x6 support rule r1. The resulting (r1, r2)-action rule, which can be applied to
reclassify x, is given below:

½ðb,P�!SÞ�ðxÞ�!½ðd,L�!HÞ�ðxÞ

Now, the extended (r1, r2)-action rule that also can be applied to reclassify x is
given:

½ða ¼ 2Þ � ðb,P�!SÞ�ðxÞ�!½ðd,L�!HÞ�ðxÞ

Clearly objects x5, x6 support both action rules.
We are almost ready to present our new algorithm, implemented as the main part

of DEAR2 system, for discovering action rules and extended action rules. Initially,
we partition the set of rules discovered from an information system
S ¼ ðU,A1 [A2 [fdgÞ—where A1 is the set of stable attributes, A2 is the set of
flexible attributes and, Vd ¼ fd1, d2, . . . , dkg is the set of decision values—into a
minimal number of subsets, each of which contains rules defining the same decision
value. Saying another words, the set of rules R discovered from S is partitioned into
fRigi:1�i�k, where Ri ¼ fr 2 R: dðrÞ ¼ dig for any i ¼ 1, 2, . . . , k. Equivalently, objects
from U are partitioned into subsets d�1ðfdigÞ, 1 � i � k.

Let us take the system S represented by table 1 as an example of a decision system.
We assume that a, c are its stable attributes and b, d are flexible. The set R of certain
rules extracted from S is equal to:

fða, 0Þ�!ðd,LÞ, ðc, 0Þ�!ðd,LÞ, ðb,RÞ�!ðd,LÞ, ðc, 1Þ�!ðd,LÞ

ðb,PÞ�!ðd,LÞ, ða, 2Þ � ðb,SÞ�!ðd,HÞ, ðb,SÞ � ðc, 2Þ�!ðd,HÞg

We partition this set into two subsets R1 ¼ f½ða, 0Þ�!ðd,LÞ�, ½ðc, 0Þ�!ðd,LÞ�,
½ðb,RÞ�!ðd,LÞ� , ½ðc, 1Þ�!ðd,LÞ�, ½ðb,PÞ�!ðd,LÞ�g and R2¼f½ða,2Þ�ðb,SÞ�!ðd,HÞ�,
½ðb,SÞ � ðc, 2Þ�!ðd,HÞ�g.

Now, our goal is to reclassify some objects from the class d�1ðfLgÞ into the
class d�1ðfHgÞ.

The set of rules R1 is represented as table 3. Each row represents one rule. The first
column in each row shows objects in S supporting the corresponding rule. The set
of rules R2 is represented as table 4 in figure 2. In the general case, assumed earlier,

Table 2. Two rules extracted from decision system.

A (St) B (Fl) C (St) E (Fl) G (St) H (Fl) D (Decision)

a1 b1 c1 e1 d1
a1 b2 g2 h2 d2

L.-S. Tsay and Z.W. Raś124

the number of different decision classes and the same the number of tables

representing them is equal to k.

The first step of the algorithm is to build di-tree and dj-tree. From the set of rules

R extracted from S, all rules with the decision value di are selected and presented in

a table format similar to table 3 in figure 1. Similarly, we select all rules with decision

value dj and present them in a table format similar to table 4 in figure 2.

By di-tree we mean a tree TðdiÞ ¼ ðNi,EiÞ, such that:

. each interior node is labelled by a stable attribute from A1;

. each edge is labelled either by a question mark or by an attribute value of the

attribute that labels the initial node of that edge;

. along a path, all nodes (except a leaf) are labelled with different stable

attributes;

. all edges leaving a node are labelled with different attribute values (including

the question mark) of the stable attribute that labels that node; and

. each leaf represents a set of rules that do not contradict on stable attributes

and also define decision value di. The path from the root to that leaf gives the

description of objects supported by these rules.

Now, taking (d,L) from our example as the value di, we show how to construct

(d,L)-tree for the set of rules R1. The construction of (d,L)-tree starts with a table

associated with the root of that tree (table 3 in figure 1). It represents the set of rules

R1 defining L and listed with objects from S supporting them. We use stable attribute

c to split table 3 into three sub-tables associated with values f0, 1, ?g of attribute c.

The question mark denotes here an unknown value.

Following the path labelled by value c ¼ ?, we get table T1. Following the path

labelled by value c¼ 1, we get table T2. Following the path labelled by value c¼ 0,

we get table T3. Following the path labelled by value ½c ¼ ?�½a ¼ 0�, we get table T4.

Finally, by following the path having the label ½c ¼ ?�½a ¼ ?�, we get table T5.

Table 3. Set of rules R1 with objects supporting them.

a b c d

{x1,x2,x3,x4} 0 L
{x2,x4} R L
{x1,x3} 0 L
{x2,x4} 1 L
{x5,x6} P L

Table 4. Time needed to extract rules and action rules.

Data set Rules Action rules DEAR Action rules DEAR2

Breast cancer 20 sec 27min 51 sec 3 sec
Cleveland 1min 09 sec Over 8 hrs 54min 20 sec
Hepatitis 54 sec Over 8 hrs 51min 53 sec

Action rules discovery 125

Now, let us define (d,H)-tree using table 4 as its root (see figure 2). Following the
path labelled by value ½c ¼ ?�, we get the table T6. When we follow the path labelled
by value ½c ¼ 2�, we get table T 7. Both tables can be easily constructed. Now, it can
be checked that only pairs of rules belonging to tables f½T5,T 7�, ½T5,T6�,
½T2,T6�, ½T3,T6�, ½T4,T7�g can be used for action rules construction.

For each pair of tables, we use the same algorithm as in Raś and Tsay (2003)
to construct extended action rules. This new algorithm (called DEAR2) was
implemented and tested on many datasets using PC with 1.8 GHz CPU. The time
complexity of this algorithm was significantly lower than the time complexity of the
algorithm DEAR presented in Raś and Tsay (2003). Both algorithms extract
rules describing values of the decision attribute before any action rule is constructed.
Table 4 shows the time needed by systems DEAR and DEAR2 to extract rules and
next action rules from three datasets: breast cancer, Cleveland, hepatitis. These three
UCI datasets are available at http://www.sgi.com/tech/mlc/db/. The first one has 191
records described by 10 attributes. Only Age was taken by us as the stable attribute.
The second one has 303 records described by 15 attributes. Only two attributes
age and sex have been taken as stable. The last one has 155 records described by
19 attributes. Again, only two attributes age and sex have been taken by us as
stable.

a = 0 a = ?

a b
{x1,x2,x3,x4} 0
{x2,x4} R
{x5,x6} P

a b
{x1,x3}

c = ? c = 1 c = 0

a b c
{x1,x2,x3,x4} 0
{x2,x4} R
{x1,x3} 0
{x2,x4} 1
{x5,x6} P

a b
{x2,x4}

Table 3

Table T2 Table T3

Table T1

b
{x1,x2,x3,x4}

b
{x2,x4} R
{x5,x6} P

Table T5

Table T4

Figure 1. (d,L)-tree.

L.-S. Tsay and Z.W. Raś126

The interface for both systems, DEAR and DEAR2, is written in Visual Basic.
The second picture presented in figure 3 shows a part of the interface used in both
systems. The user has an option to generate the coverings (Pawlak 1981, 1991) for
the decision attribute and next use them in the process of action rules extraction or, if
he prefers, he can directly proceed to the rules extraction step. It is recommended, in
DEAR2, to generate the coverings for a decision attribute if the information system
has many attributes. By doing this we may significantly speed up the process of
action rules extraction. The first picture in figure 3 shows how the results are
displayed by DEAR2 system.

4. Conclusion

System DEAR2 initially generates a set of association rules from S (satisfying two
thresholds: the first one for a minimum support and second for a minimum
confidence) defining values of a decision attribute in S, in terms of the remaining
attributes. DEAR2 is giving preference to rules whose classification part contains
small number of stable attributes in S. These rules are partitioned by DEAR2 into

a b c
{x7,x8 } 2 S
{x7,x8} S 2

a b
{x7,x8 } 2 S

a b
{x7,x8} S

c = ? c = 2

Table 4

Table T6 Table T7

Figure 2. (d,H)-tree.

Figure 3. DEAR and DEAR2 interface.

Action rules discovery 127

a number of equivalence classes. Two rules belong to the same equivalence class
if their classification parts are the same on stable attributes. Each equivalence class
is used independently by DEAR2 as a base for constructing action rules. The current
strategy requires the generation of association rules from S to form a base, before the
process of action rules construction starts.

In a separate paper, we propose a strategy for generating action rules directly from
S that is similar to LERS (Chmielewski et al. 1993, Grzymala-Busse 1997) and ERID
(Dardzinska and Raś 2003). This new strategy is initially centred on all stable
attributes in S and does not require to generate the base formed from association
rules in order to construct action rules.

Acknowledgement

This paper is in memory of Jan M. _ZZytkow.

References

G. Adomavicius and A. Tuzhilin, ‘‘Discovery of actionable patterns in databases: the action hierarchy
approach’’, in Proceedings: KDD’97 Conference, 1997.

M.R. Chmielewski, J.W. Grzymala-Busse, N.W. Peterson and S. Than, ‘‘The rule induction system
LERS – a version for personal computers’’, International Journal of Approximate Reasoning,
1993, pp. 181–212.

A. Dardzińska and Z.W. Raś, ‘‘On rule discovery from incomplete information systems’’, in Proceedings:
ICDM’03 Workshop on Foundations and New Directions of Data Mining, T.Y. Lin, X. Hu,
S. Ohsuga and C. Liau (Eds.), 2003, pp. 31–35.

H. Geffner and J. Wainer, ‘‘Modeling action, knowledge and control’’, in Proceedings: ECAI’98, the 13th
European Conference on AI, H. Prade, (Ed.), 1998, pp. 532–536.

J. Grzymala-Busse, ‘‘A new version of the rule induction system LERS’’, Fundamenta Informaticae,
31, 1998, pp. 27–39.

B. Liu, W. Hsu and S. Chen, ‘‘Using general impressions to analyze discovered classification rules’’,
in Proceedings: KDD’97 Conference 1997.

Z. Pawlak, Rough Sets-theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer, 1991.
Z. Pawlak, ‘‘Information systems – theoretical foundations’’, Information Systems Journal, 6, 1981,

pp. 205–218.
L. Polkowski and A. Skowron, ‘‘Rough sets in knowledge discovery’’, in Studies in Fuzziness and Soft

Computing, Springer: Physica-Verlag, 1998.
Z. Raś and S. Gupta, ‘‘Global action rules in distributed knowledge systems’’, Fundamenta Informaticae

Journal, 51, 2002, pp. 175–184.
Z. W. Raś and L.-S. Tsay, ‘‘Discovering extended action-rules (System DEAR)’’, in Intelligent

Information Systems 2003, Proceedings: IIS’03 Symposium, 2003, pp. 293–300.
Z. Raś and A. Wieczorkowska, ‘‘Action rules: how to increase profit of a company’’, in Principles of

Data Mining and Knowledge Discovery, Zighed, D.A. Komorowski, J. and Zytkow, J. (Eds),
Lyon: Springer-Verlag, 2000, pp. 587–592.

Z.W. Raś, A. Tzacheva and L.-S. Tsay, ‘‘Action rules’’, in Encyclopedia of Data Warehousing and
Mining, Wang, J. (Ed.), Idea Group Inc., 2005.

A. Silberschatz and A. Tuzhilin, ‘‘On subjective measures of interestingness in knowledge discovery’’,
in Proceedings: KDD’95 Conference 1995.

A. Silberschatz and A. Tuzhilin, What makes patterns interesting in knowledge discovery systems,
IEEE Transactions on Knowledge and Data Engineering, 5, 1996.

A. Tzacheva and Z.W. Raś, ‘‘Discovering non-standard semantics of semi-stable attributes’’,
in Proceedings: FLAIRS’03 Conference, 2003, pp. 330–334.

A. Tzacheva and Z.W. Raś, ‘‘Action rules mining’’, International Journal of Intelligent Systems,
Forthcoming, 2004

L.-S. Tsay and Z.W. Raś128

