
Action rules mining

Angelina A. Tzacheva1 and Zbigniew W. Raś1,2,

1 UNC-Charlotte, Computer Science Dept., Charlotte, NC 28223, USA
2 Polish Academy of Sciences, Institute of Computer Science, Ordona 21, 01-237

Warsaw, Poland

Abstract. Action rules introduced in [6] and investigated further in [7] assume
that attributes in a database are divided into two groups: stable and flexible. In
general, an action rule can be constructed from two rules extracted earlier from the
same database. Furthermore, we assume that these two rules describe two different
decision classes and our goal is to re-classify objects from one of these classes into
the other one. Flexible attributes are essential in achieving that goal since they
provide a tool for making hints to a user what changes within some values of
flexible attributes are needed for a given group of objects to re-classify them into a
new decision class. Ras and Gupta [9] proposed a method for constructing action
rules when information system is distributed and its sites are built idependently.
In paper by Ras and Tzacheva [8], a new subclass of attributes called semi-stable
attributes is introduced. Semi-stable attributes are typically a function of time,
and undergo deterministic changes (for instance attribute age or height). So, the
set of conditional attributes is partitioned into stable, semi-stable, and flexible.
Depending on semantics of attributes, some semi-stable attributes can be treated
as flexible and the same new action rules can be constructed. These new action
rules are usually built to replace some existing action rules which confidence is too
low to be of any interest to a user. The confidence of new action rules is always
higher than the confidence of rules they replace. Additionally, the notion of a cost
and feasibility of an action rule is introduced in this paper. A heuristic strategy
for constructing feasible action rules which have high confidence and possibly the
lowest cost is proposed.

1 Introduction

Action rules, introduced by Raś and Wieczorkowska in [6] and investigated
further in [7], [9] may be utilized by any type of industry maintaining large
databases, including financial sector and e-commerce. Built from classification
rules extracted from a decision system, these rules suggest ways to re-classify
consumers to a desired state. However, quite often, such a change cannot be
done directly to a chosen attribute (for instance to the attribute profit). In
that situation, definitions of such an attribute in terms of other attributes
have to be learned. These definitions are used to construct action rules show-
ing what changes in values of attributes, for a given consumer, are needed
in order to re-classify this consumer the way business user wants. This re-
classification may mean that a consumer not interested in a certain product,



2 A.A. Tzacheva and Z.W. Raś

now may buy it, and therefore may shift into a group of more profitable cus-
tomers. These groups of customers are described by values of classification
attributes in a decision system schema. Raś and Gupta [9] start with dis-
tributed autonomous information systems in their investigations. They claim
that it is wise to search for action rules at remote sites when action rules
extracted at the client site can not be implemented in practice (they are too
expensive, too risky, or business user is unable to make such changes). Also,
they show under what assumptions two action rules extracted at two differ-
ent sites can be composed. One of these assumptions says that semantics of
attributes, including the interpretation of null values, have to be the same at
both of these sites. In the present paper, this assumption is relaxed. Addi-
tionally, we introduce the notion of a cost and feasibility of an action rule.
Usually, a number of action rules or chains of action rules can be applied to
re-classify a given set of objects. Changes of values within one attribute can
be achieved more easily than changes of values within another attribute. We
present a strategy for constructing chains of action rules, driven by a change
of attribute values suggested by another action rule, which are needed to
reclassify certain objects. This chain of action rules uniquely defines a new
action rule and it is built with a goal to lower the reclassification cost for
these objects.

In papers [6], [7] and, [9] all attributes are divided into stable and flexible.

In paper by Raś and Tzacheva [8], a new subclass of attributes called semi-
stable attributes is introduced. Semi-stable attributes are typically a function
of time, and undergo deterministic changes (for instance attribute age or
height). So, in general, it is assumed that the set of conditional attributes
is partitioned into stable, semi-stable, and flexible. It was shown in [8] that
some semi-stable attributes can be treated the same way as flexible attributes.
By providing a strategy for identifying flexible attributes among semi-stable
attributes we also give a new tool for lowering the cost of action rules.

Two methods applicable for detection of non-standard semantics are pro-
posed. The first method is based on detection of abnormal relationships be-
tween values of two semi-stable attributes. The second one is based on the
property of random selection of sites from Distributed Information System
DIS and testing how many of them support a rule under consideration. Sup-
port only coming from a small number of sites gives us a hint that the decision
attribute of that rule has most probably non-standard semantics.

2 Information System and Action Rules

An information system is used for representing knowledge. Its definition,
given here, is due to Pawlak [3].

By an information system we mean a pair S = (U,A, V ), where:



Action rules mining 3

• U is a nonempty, finite set called the universe,
• A is a nonempty, finite set of attributes i.e. a : U −→ Va is a function for

a ∈ A,
• V =

⋃{Va : a ∈ A}, where Va is a set of values of the attribute a ∈ A.

Elements of U are called objects. In this paper, they are often seen as
customers. Attributes are interpreted as features, offers made by a bank,
characteristic conditions etc.

By a decision table we mean any information system where the set of at-
tributes is partitioned into conditions and decisions. Additionally, we assume
that the set of conditions is partitioned into stable and flexible. For simplicity
reason, we assume that there is only one decision attribute. Date of Birth is
an example of a stable attribute. Interest rate on any customer account is an
example of a flexible attribute (dependable on bank). We adopt the following
definition of a decision table:

By a decision table we mean an information system of the form S =
(U,ASt ∪AFl ∪ {d}), where d 6∈ ASt ∪AFl is a distinguished attribute called
decision. The elements of ASt are called stable conditions, whereas the ele-
ments of AFl are called flexible conditions.

As an example of a decision table we take S = ({x1, x2, x3, x4, x5, x6, x7, x8},
{a, c}∪{b}∪{d}) represented by Table 1. The set {a, c} lists stable attributes,
b is a flexible attribute and d is a decision attribute. Also, we assume that H
denotes a high profit and L denotes a low one.

X a b c d

x1 0 S 0 L

x2 0 R 1 L

x3 0 S 0 L

x4 0 R 1 L

x5 2 P 2 L

x6 2 P 2 L

x7 2 S 2 H

x8 2 S 2 H

Table 1. Decision System S

In order to induce rules in which the THEN part consists of the decision
attribute d and the IF part consists of attributes belonging to ASt ∪ AFl,
subtables (U,B ∪ {d}) of S where B is a d-reduct (see [3]) in S should be
used for rules extraction. By L(r) we mean all attributes listed in the IF
part of a rule r. For example, if r = [(a, 2) ∗ (b, S) → (d,H)] is a rule then



4 A.A. Tzacheva and Z.W. Raś

L(r) = {a, b}. By d(r) we denote the decision value of a rule. In our example
d(r) = H. If r1, r2 are rules and B ⊆ ASt ∪ AFl is a set of attributes, then
r1/B = r2/B means that the conditional parts of rules r1, r2 restricted to
attributes B are the same. For example if r1 = [(b, S) ∗ (c, 2) → (d,H)], then
r1/{b} = r/{b}.

In our example, we get the following optimal rules:
(a, 0) → (d, L), (c, 0) → (d, L),
(b,R) → (d, L), (c, 1) → (d, L),
(b, P ) → (d, L), (a, 2) ∗ (b, S) → (d,H), (b, S) ∗ (c, 2) → (d,H).

Now, let us assume that (a, v → w) denotes the fact that the value of
attribute a has been changed from v to w. Similarly, the term (a, v → w)(x)
means that a(x) = v has been changed to a(x) = w. Saying another words,
the property (a, v) of object x has been changed to property (a,w).

Let S = (U,ASt ∪ AFl ∪ {d}) is a decision table and rules r1, r2 have
been extracted from S. Assume that B1 is a maximal subset of ASt such
that r1/B1 = r2/B1, d(r1) = k1, d(r2) = k2 and k1 ≤ k2. Also, assume
that (b1, b2, ..., bp) is a list of all attributes in L(r1) ∩ L(r2) ∩ AFl on which
r1, r2 differ and r1(b1) = v1, r1(b2) = v2,..., r1(bp) = vp, r2(b1) = w1,
r2(b2) = w2,..., r2(bp) = wp.

By (r1, r2)-action rule r on x ∈ U we mean the expression below (see [6]):
[(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ... ∧ (bp, vp → wp)](x) ⇒
[(d, k1 → k2)](x).

We say that object x supports (r1, r2)-action rule r if:

• (∀i ≤ p)[[bi ∈ L(r)] −→ [bi(x) = vi]] and d(x) = k1,
• object x supports rule r1,
• if object y is the outcome of (r1, r2)-action rule r applied on x, then y

supports rule r2.

By the support of (r1, r2)-action rule r in S, denoted by SupS(r), we
mean the set of all objects in S supporting r.

3 Distributed Information System

By a distributed information system we mean a pair DS = ({Si}i∈I , L) where:

• I is a set of sites.
• Si = (Xi, Ai, Vi) is an information system for any i ∈ I,
• L is a symmetric, binary relation on the set I showing which systems can

directly communicate with each other.



Action rules mining 5

A distributed information system DS = ({Si}i∈I , L) is consistent if the
following condition holds:

(∀i)(∀j)(∀x ∈ Xi ∩Xj)(∀a ∈ Ai ∩Aj)
[(a[Si](x) ⊆ a[Sj ](x)) or (a[Sj ](x) ⊆ a[Si](x))].

Consistency basically means that information about any object x in one
system has to be either more general or more specific than in the other. Saying
another words two consistent systems can not have conflicting information
stored about any object x belonging to both of them.

Another problem which has to be taken into consideration is semantics of
attributes used at more than one site. This semantics may easily differ among
sites. Sometime, such a difference in semantics can be repaired quite easily.
For instance if Temperature in Celsius is used at one site and Temperature
in Fahrenheit at the other, a simple mapping will fix the problem. If two
information systems are complete and they use the same attribute but of a
different granularity level to describe objects, a new hierarchical attribute can
be formed to fix the problem. If databases are incomplete, the problem is more
complex because of the number of options available to interpret incomplete
values (including null vales). The problem is especially difficult when system
is distributed and chase techniques, based on rules extracted at more than
one site, are used by a client site to replace its incomplete values of attributes
by new values which are more complete (see [5]).

In this paper we concentrate on granularity-based semantic inconsisten-
cies. Assume first that Si = (Xi, Ai, Vi) is an information system for any
i ∈ I and that all S′is form a Distributed Information System (DIS). Addi-
tionally, we assume that, if a ∈ Ai ∩ Aj , then only the granularity levels of
a in Si and Sj may differ but conceptually its meaning, both in Si and Sj

is the same. Assume now that L(Di) is a set of action rules extracted from
Si, which means that D =

⋃
i∈I L(Di) is a set of action rules which can be

used in the process of distributed action rules discovery. Now, let us say that
system Sk, k ∈ I is queried be a user for an action rule re-classifying objects
with respect to decision attribute d. Any strategy for discovering action rules
from Sk based on action rules D′ ⊂ D is called sound if the following three
conditions are satisfied:

• for any action rule in D′, the value of its decision attribute d is of the
granularity level either equal to or finer than the granularity level of the
attribute d in Sk.

• for any action rule in D′, the granularity level of any attribute a used
in the classification part of that rule is either equal or softer than the
granularity level of a in Sk.

• attribute used in the decision part of a rule has to be classified as flexible
in Sk.



6 A.A. Tzacheva and Z.W. Raś

We assume, in the following sections, that the interpretation of any at-
tribute and the granularity level of its values is the same at all sites in which
it is used.

4 Cost and Feasibility of Action Rules

Assume now that DS = ({Si : i ∈ I}, L) is a distributed information system
(DIS), where Si = (Xi, Ai, Vi), i ∈ I. Let b ∈ Ai is a flexible attribute in
Si and b1, b2 ∈ Vi are its two values. By ρSi(b1, b2) we mean a number from
(0, +∞] which describes the average cost needed to change the attribute
value from b1 to b2 for any of the qualifying objects in Si. Object x ∈ Xi

qualifies for the change from b1 to b2, if b(x) = b1. If the above change is
not feasible in practice, for one of the qualifying objects in Si, then we write
ρSi

(b1, b2) = +∞. The value of ρSi
(b1, b2) close to zero is interpreted that

the change of values from b1 to b2 is quite trivial to accomplish for qualifying
objects in Si whereas any large value of ρSi

(b1, b2) means that this change of
values is practically very difficult to achieve for some of the qualifying objects
in Si.

If ρSi(b1, b2) < ρSi(b3, b4), then we say that the change of values from b1

to b2 is more feasible than the change from b3 to b4.

We assume here that the values ρSi(bj1, bj2) are provided by experts for
each of the information systems Si. They are seen as atomic expressions and
will be used to introduce the formal notion of the feasibility and the cost of
action rules in Si.

So, let us assume that r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ∧ (bp, vp →
wp)](x) ⇒ (d, k1 → k2)(x) is a (r1, r2)-action rule. By the cost of r denoted
by cost(r) we mean the value

∑{ρSi(vk, wk) : 1 ≤ k ≤ p}. We say that r is
feasible if cost(r) < ρSi(k1, k2).

It means that for any feasible rule r, the cost of the conditional part of r
is lower than the cost of its decision part and clearly cost(r) < +∞.

Assume now that d is a decision attribute in Si, k1, k2 ∈ Vd, and the user
would like to re-classify customers in Si from the group k1 to the group k2.
To achieve that, he may look for an appropriate action rule, possibly of the
lowest cost value, to get a hint which attribute values have to be changed.
To be more precise, let us assume that RSi [(d, k1 → k2)] denotes the set of
all action rules in Si having the term (d, k1 → k2) on their decision site.
For simplicity reason, in Section 5 of this paper, attribute d will be omitted
in (d, k1 → k2). Now, among all action rules in RSi [(d, k1 → k2)] he may
identify a rule which has the lowest cost value. But the rule he gets may still
have the cost value much to high to be of any help to him. Let us notice that
the cost of the action rule



Action rules mining 7

r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ... ∧ (bp, vp → wp)](x) ⇒ (d, k1 →
k2)(x)
might be high only because of the high cost value of one of its sub-terms in
the conditional part of the rule.

Let us assume that (bj , vj → wj) is that term. In such a case, we may look
for an action rule in RSi

[(bj , vj → wj)] which has the smallest cost value.

Assume that r1 = [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)](y) ⇒ (bj , vj → wj)(y) is such a rule which is also feasible in Si. Since
x, y ∈ Xi, we can compose r with r1 getting a new feasible rule which is given
below:

[(b1, v1 → w1) ∧ ... ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)] ∧ ... ∧ (bp, vp → wp)](x) ⇒ (d, k1 → k2)(x).

Clearly, the cost of this new rule is lower than the cost of r. However,
if its support in Si gets too low, then such a rule has no value to the user.
Otherwise, we may recursively follow this strategy trying to lower the cost
needed to re-classify objects from the group k1 into the group k2. Each suc-
cessful step will produce a new action rule which cost is lower than the cost
of the current rule. Obviously, this heuristic strategy always ends.

One can argue that if the set RSi [(d, k1 → k2)] contains all action rules re-
classifying objects from group k1 into the group k2 then any new action rule,
obtained as the result of the above recursive strategy, should be already in
that set. We agree with this statement but in practice RSi [(d, k1 → k2)] is only
a subset of all action rules. Firstly, it is too expensive to generate all possible
classification rules from an information system (available knowledge discovery
packages extract only the shortest or close to the shortest rules) and secondly
even if we extract such rules it still takes too much time to generate all
possible action rules from them. So the applicability of the proposed recursive
strategy, to search for new rules possibly of the lowest cost, is highly justified.

Again, let us assume that the user would like to reclassify some objects
in Si from the class b1 to the class b2 and that ρSi(b1, b2) is the current cost
to do that. Each action rule in RSi [(d, k1 → k2)] gives us an alternate way
to achieve the same result but under different costs. If we limit ourself to
the system Si, then clearly we can not go beyond the set RSi [(d, k1 → k2)].
But, if we allow to extract action rules at other information systems and use
them jointly with local action rules, then the number of attributes which can
be involved in reclassifying objects in Si will increase and the same we may
further lower the cost of the desired reclassification.

So, let us assume the following scenario. The action rule r = [(b1, v1 →
w1)∧(b2, v2 → w2)∧ ...∧(bp, vp → wp)](x) ⇒ (d, k1 → k2)(x), extracted from
the information system Si, is not feasible because at least one of its terms,
let us say (bj , vj → wj) where 1 ≤ j ≤ p, has too high cost ρSi(vj , wj) assign
to it.



8 A.A. Tzacheva and Z.W. Raś

In this case we look for a new feasible action rule r1 = [(bj1, vj1 →
wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq → wjq)](y) ⇒ (bj , vj → wj)(y) which
concatenated with r will decrease the cost value of desired reclassification. So,
the current setting looks the same to the one we already had except that this
time we additionally assume that r1 is extracted from another information
system in DS. For simplicity reason, we also assume that the semantics and
the granularity levels of all attributes listed in both information systems are
the same.

By the concatenation of action rule r1 with action rule r we mean a new
feasible action rule r1 ◦ r of the form:
[(b1, v1 → w1) ∧ ... ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq →
wjq)] ∧ ... ∧ (bp, vp → wp)](x) ⇒ (d, k1 → k2)(x)
where x is an object in Si = (Xi, Ai, Vi).

Some of the attributes in {bj1, bj2, ..., bjq} may not belong to Ai. Also,
the support of r1 is calculated in the information system from which r1 was
extracted. Let us denote that system by Sm = (Xm, Am, Vm) and the set
of objects in Xm supporting r1 by SupSm

(r1). Assume that SupSi
(r) is the

set of objects in Si supporting rule r. The domain of r1 ◦ r is the same as
the domain of r which is equal to SupSi(r). Before we define the notion
of a similarity between two objects belonging to two different information
systems, we assume that Ai = {b1, b2, b3, b4}, Am = {b1, b2, b3, b5, b6}, and
objects x ∈ Xi, y ∈ Xm are defined by the table below:

b1 b2 b3 b4 b5 b6

x v1 v2 v3 v4

y v1 w2 w3 w5 w6

Table 2. Object x from Si and y from Sm

The similarity ρ(x, y) between x and y is defined as: [1 + 0 + 0 + 1/2 +
1/2 + 1/2] = [2 + 1/2]/6 = 5/12. To give more formal definition of similarity,
we assume that:
ρ(x, y) = [Σ{ρ(bi(x), bi(y)) : bi ∈ (Ai ∪Am)}]/card(Ai ∪Am), where:

• ρ(bi(x), bi(y)) = 0, if bi(x) 6= bi(y),
• ρ(bi(x), bi(y)) = 1, if bi(x) = bi(y),
• ρ(bi(x), bi(y)) = 1/2, if either bi(x) or bi(y) is undefined.

Let us assume that ρ(x, SupSm(r1)) = max{ρ(x, y) : y ∈ SupSm(r1)},
for each x ∈ SupSi(r). By the confidence of r1 ◦ r we mean Conf(r1 ◦ r) =
[
∑{ρ(x, SupSm(r1)) : x ∈ SupSi(r)}/card(SupSi(r))] · Conf(r1) · Conf(r),
where Conf(r) is the confidence of the rule r in Si and Conf(r1) is the
confidence of the rule r1 in Sm.



Action rules mining 9

If we allow to concatenate action rules extracted from Si with action rules
extracted at other sites of DIS, we are increasing the total number of gener-
ated action rules and the same our chance to lower the cost of reclassifying
objects in Si is also increasing but possibly at a price of their decreased
confidence.

5 Semi-Stable Attributes

The notion of action rules introduced by Ras and Wieczorkowska (see [6]), and
recalled in Section 2, is based on attributes divided into two groups: stable and
flexible. In the process of action rule extraction from Si = (Xi, Ai, Vi), i ∈ Ai,
stable attributes are highly undesirable. Ras and Tzacheva proposed in [8]
a new classification of attributes dividing them into stable, semi-stable, and
flexible by taking into consideration semantics (interpretation) of attributes
which may easily differ between information systems.

Value a(x) of a stable attribute a ∈ Ai for any object x ∈ Xi cannot
be changed in any interpretation of a (except its granularity level). All such
interpretations are called standard.

An example of a stable attribute is place of birth. As we already men-
tioned, standard interpretations of this attribute may only differ in a granu-
larity level (we can provide street address and the town name or just the town
name). It is possible that one stable attribute implies another one. There is
a special subset of attributes called semi-stable, which at the first impression
may look stable, but they are functions of time and undergo changes in a
deterministic way. Therefore, they cannot be called stable. The change is not
necessarily in a linear fashion (see Figure 1).

x(t)

Va

Fig. 1. Semi-stable attribute age



10 A.A. Tzacheva and Z.W. Raś

An attribute may be stable for a period of time, and then begin changing
in certain direction as shown in Figure 2. Semi-stable attributes may have
many interpretations, some of which are nonstandard. We denote by SInt(a)
the set of standard interpretations of attribute a and by NSInt(a) the set of
non-standard interpretations of a. If the attribute a has a nonstandard inter-
pretation, I(a) ∈ NSInt(a), then there is a possibility that it can be changed,
and thus it may be seen as a flexible attribute in action rule extraction.

x(t)

a

b
c

Vh

Fig. 2. Semi-stable attribute height

For instance, if a = age and Va = {young, middle-aged, old}, the author
of the information system may indeed input young for a person who behaves
as young when their actual age is middle-aged. Then the interpretation is
nonstandard. The user can therefore influence this attribute. For example, if
the following action rule was mined for object x

r1 = [[(a, young →middle-aged)](x) ⇒ [(d, L → H)](x)]

with respect to decision attribute d (ex. loyalty), the user may like to change
the attribute value young to middle-aged for object x. Since the interpretation
of a is nonstandard related to the behavior associated with certain age, if the
object is put into special conditions that can affect its behavior, such as top
university, the attribute value can be changed, and the same object x might
be re-classified from low loyalty to high loyalty.

Many cases of nonstandard interpretations of attributes can be found in
information systems. It is particularly important to detect them when we
mine for rules in distributed information systems (see [5]). An example is
the attribute height. Consider the following situation: Chinese people living
in the mountains are generally taller than majority of Chinese population.



Action rules mining 11

Let Va = {short ,medium, tall} ⊂ Vi for attribute a = height , and system
Si contains data about Chinese population only in the mountains area. The
author of the information system may consider a certain Chinese person
living in the mountains medium height in relation to the rest. Now assume
another information system Sm containing data about Chinese people living
in popular urban area. In distributed action rules extraction, if Sm is mined
for rules, the interpretation would regard the height value medium from Si

as tall. Therefore, the interpretation of a in Si is nonstandard.

Numeric attributes may possess nonstandard interpretations as well. Con-
sider for instance the attribute number of children. When one is asked about
the number of children one has, that person may count step-children, chil-
dren he is taking care of, or even children who have died. In such a case, the
interpretation is nonstandard.

A flexible attribute is an attribute which value for a given object varies
with time, and can be changed by a user. Also, flexible attributes may have
many interpretations. Interest rate is an example of a flexible attribute.

Assume that Si = (Xi, Ai, Vi) is an information system which represents
one of the sites of a distributed information system DIS. Also, let us assume
that each attribute in Ai is either stable or flexible but we may not have
sufficient temporal information about semi-stable attributes in Si to decide
which one is stable and which one is flexible. In such cases we can search
for additional information, usually at remote sites for Si, to classify uniquely
these semi-stable attributes either as stable or flexible.

Clearly, by increasing the number of flexible attributes in Si we also in-
crease our chance to find cheaper action rules and the same lower the cost of
re-classifying objects in Si.

6 Discovering Semantic Inconsistencies

Different interpretations of flexible and semi-stable attributes may exist. Semi-
stable attributes, in a non-standard interpretation, can be classified as flexible
attributes and therefore can be used in action rule extraction. We discuss a
detection method of nonstandard interpretations of a semi-stable attribute at
local information system level, and next at distributed information systems
level.

Detection of a nonstandard interpretation at local level is limited to the
dependency of one semi-stable attribute to another semi-stable attribute for
which it is known that its interpretation is standard. Attribute related to
time must be available in the information system, such as the attribute age.
Furthermore, information about certain breakpoints in attribute behavior is
required, such as the break points shown in Figure 2. This information can
be stored in the information system ontology [2].



12 A.A. Tzacheva and Z.W. Raś

Assume that S = (X, A, V ) is an information system and IS is the inter-
pretation of attributes in S. Also, assume that both a, b ∈ A are semi-stable
attributes, IS(a) ∈ SInt(a) and the relation

∏
{a,b}(S) ⊆ {(va, vb) : va ∈

Va, vb ∈ Vb} is obtained by taking projection of the system S on {a, b}. The
ontology information about break points for attributes a and b in S, rep-
resented in the next section as relation R{IS(a),IS(b)}, is assuming that the
interpretation IS in S is standard for the attribute b. It is possible that some
tuples in

∏
{a,b}(S) do not satisfy the break points requirement given. In such

a case the interpretation IS of b is nonstandard, IS(b) ∈ NSInt(a).

Consider the following situation:

Example 1. Assume that S1 = (X1, {a}∪{h, j}∪{b}, V ) is an information
system represented by Table 6, where {a} is a set of stable attributes, {h, j}
is a set of semi-stable attributes, and {b} is a set of flexible attributes, where
h is height and j is number of cousins. The interpretation of j in S1 is known
to be standard, IS1(j) ∈ SInt(j). The system represents a local site.

a h b j

x1 0 a S m

x2 0 b R m

x3 0 b S n

x4 0 c R m

x5 2 b P n

x6 2 b P n

x7 2 a S m

x8 2 c S m

Table 3. Information system S1.

Figure 3 shows the break points defined by the system’s ontology for
attributes h and j as a function of time t. The number of cousins grows as
the height grows, since the person is young, and the parents’ brothers and
sisters have newborn children. The number of cousins decreases, as the height
becomes constant or shrinks, since for a person who is middle-aged or old,
the number of his/her cousins naturally decreases as they die. Therefore,

if IS1(h) ∈ SInt(h) and IS1(j) ∈ SInt(j), then
R{IS1 (h),IS1 (j)} = {(a,m), (b,m), (b, n), (c, n)}

is placed in the ontology for System S1.



Action rules mining 13

Vj

nm

toto

x(t)

Vh

c
b

a

x(t)

Fig. 3. Dependency relation between attributes h and j assuming standard inter-
pretation

From Figure 3, we see that relation instance (c,m) ∈ ∏
h,j(S1) repre-

senting objects x4, x8 does not belong to R{IS1 (h),IS1 (j)}. Therefore, I(h) ∈
NSInt(j).

In other words, objects x4, x8 do not satisfy the break point requirement
given in Figure 3, thus the interpretation of attribute height is nonstandard.

Standalone information systems provide limited capability of detecting
nonstandard semantics whereas distributed information systems supply greater
ability to have it detected. They also give the opportunity to seek for an alter-
native solution at remote sites. This is particularly important in a situation
when they are either not willing or not able to undertake the steps suggested
by action rules extracted locally. In a distributed information system (DIS)
environment, semantic inconsistencies can be detected even if temporal infor-
mation is not available. With large number of sites in DIS containing similar
attributes, certain trends can be observed, such as classification rules with
high confidence and support common for many sights. In such a situation,
it is also possible that a small number of remaining sites does not support
those common rules, or even contradict them. This gives us a hint that there
is every likelihood for nonstandard attribute interpretation at information
systems in that small number of sites.

Assume that DS = ({Si : i ∈ I}, L) is a distributed information system
(DIS), where Si = (Xi, Ai, Vi) for any i ∈ I. Association rules are extracted
from all information systems in DIS assuming some threshold ms for mini-
mum support and mc for minimum confidence. If a classification rule

r1 = [[(a, wa) ∗ (b, wb) ∗ ... ∗ (c, wc)] ⇒ (d, v1)] [ms, mc]

where d ∈ A is a semi-stable attribute in Si is extracted from Si and
supported by a large number of sites in DIS, it is called a trade, or a common
rule for DIS. If r1 is supported either only by Si or by a very small number
of sites in DIS and at the same time rule

r2 = [[(a, wa) ∗ (b, wb) ∗ ... ∗ (c, wc)] ⇒ (d, v2)] [ms, mc]



14 A.A. Tzacheva and Z.W. Raś

where v1 6= v2, is supported by a large number of sites in DIS then either the
attribute d has nonstandard interpretation in Si or r1 is an exception rule
(see [12]). To verify if r1 is an exception rule, we have to check if there is a
reasonably large number of objects having property v1 which are described
by [(a,wa) ∗ (b, wb) ∗ ... ∗ (c, wc)] at minimum one of the sites supporting r2.
Otherwise, we may assume that d has a non-standard interpretation at Si.

Assume that we do not know if the interpretation of a semi-stable at-
tribute d ∈ Ai at Si = (Xi, Ai, Vi) is standard. We have discussed the case
when attribute d is defined in Si in terms of a semi-stable attribute b, which
has standard interpretation in Si. Namely, if we identify an object in Si which
description contradicts information about attributes d, b stored in Si ontol-
ogy, then attribute d has non-standard interpretation in Si. However, it can
happen that we do not have any information about the interpretation of b in
Si. We can either look for a definition of d in terms of another semi-stable
attribute in Si or look for a definition of d in terms of attribute b at another
site of DIS. If we cannot find any attribute other than d, which is semi-stable
and has non-standard interpretation in Si, then we contact another site.

Let Ass
i be the set of all semi-stable attributes in Si. We search for a site

Sj such that d ∈ Aj and Ass
i ∩ Ass

j 6= ∅ . Let Id be the collection of all such
sites and b ∈ Ass

i ∩Ass
j 6= ∅, where j ∈ Id.

In the case where the interpretation of both attributes d, b is standard,
if j ∈ Id satisfies the property that any b ∈ Ass

i ∩ Ass
j 6= ∅ has standard

interpretation in Sj , then the site j is not considered. Thus, we need to
observe another site from Id.

Now let us assume that I{d,b} = {j ∈ Id : b ∈ Aj ∩Ass
i }. We extract rules

at sites I{d,b} describing d and having b on their left side. Either classification
rules discovered at site Si will support rules discovered at the large number
of sites in I{d,b} or conflict many of them. We claim that the interpretation of
attribute d is standard in the first case. In the second case, it is non-standard.

This strategy was implemented and tested on a DIS consisting of thir-
teen sites representing thirteen Insurance Company Datasets, with a total
of 5, 000 tuples in all DIS sites. Semi-stable attributes with non-standard
interpretation have been detected and used jointly with flexible attributes
in action rules mining. The confidence of action rules was usually higher
than the confidence of the corresponding action rules based only on flexible
attributes.

7 Heuristic Strategy for the Lowest Cost
Reclassification of Objects

Let us assume that we wish to reclassify as many objects as possible in the
system Si, which is a part of DIS, from the class described by value k1 of



Action rules mining 15

the attribute d to the class k2. The reclassification k1 → k2 jointly with its
cost ρSi(k1, k2) is seen as the information stored in the initial node n0 of the
search graph built from nodes generated recursively by feasible action rules
taken initially from RSi [(d, k1 → k2)]. For instance, the rule

r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ ... ∧ (bp, vp → wp)](x) ⇒
(d, k1 → k2)(x)

applied to the node n0 = {[k1 → k2, ρSi(k1, k2)]} generates the node
n1 = {[v1 → w1, ρSi

(v1, w1)], [v2 → w2, ρSi
(v2, w2)], ...,

[vp → wp, ρSi
(vp, wp)]},

and from n1 we can generate the node
n2 = {[v1 → w1, ρSi

(v1, w1)], [v2 → w2, ρSi
(v2, w2)], ...,

[vj1 → wj1, ρSi(vj1, wj1)], [vj2 → wj2, ρSi(vj2, wj2)], ...,
[vjq → wjq, ρSi

(vjq, wjq)], ..., [vp → wp, ρSi
(vp, wp)]}

assuming that the action rule
r1 = [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ ... ∧ (bjq, vjq → wjq)](y) ⇒

(bj , vj → wj)(y)
from RSm [(bj , vj → wj)] is applied to n1. /see Section 4/

This information can be written equivalently as: r(n0) = n1, r1(n1) = n2,
[r1 ◦ r](n0) = n2. Also, we should notice here that r1 is extracted from Sm

and SupSm(r1) ⊆ Xm whereas r is extracted from Si and SupSi(r) ⊆ Xi.
By SupSi(r) we mean the domain of action rule r (set of objects in Si

supporting r).

The search graph can be seen as a directed graph G which is dynamically
built by applying action rules to its nodes. The initial node n0 of the graph
G contains information coming from the user, associated with the system
Si, about what objects in Xi he would like to reclassify and how and what
is his current cost of this reclassification. Any other node n in G shows an
alternative way to achieve the same reclassification with a cost that is lower
than the cost assigned to all nodes which are preceding n in G. Clearly, the
confidence of action rules labelling the path from the initial node to the node
n is as much important as the information about reclassification and its cost
stored in node n. Information from what sites in DIS these action rules have
been extracted and how similar the objects at these sites are to the objects
in Si is important as well.

Information stored at the node
{[v1 → w1, ρSi(v1, w1)], [v2 → w2, ρSi(v2, w2)], ..., [vp → wp, ρSi(vp, wp)]}
says that by reclassifying any object x supported by rule r from the class
vi to the class wi, for any i ≤ p, we also reclassify that object from the
class k1 to k2. The confidence in the reclassification of x supported by node
{[v1 → w1, ρSi(v1, w1)], [v2 → w2, ρSi(v2, w2)], ..., [vp → wp, ρSi(vp, wp)]} is
the same as the confidence of the rule r.

Before we give a heuristic strategy for identifying a node in G, built for a
desired reclassification of objects in Si, with a cost possibly the lowest among



16 A.A. Tzacheva and Z.W. Raś

all the nodes reachable from the node n0, we have to introduce additional
notations.

So, assume that N is the set of nodes in our dynamically built directed
graph G and n0 is its initial node. For any node n ∈ N , by f(n) = (Yn, {[vn,j →
wn,j , ρSi

(vn,j , wn,j)]}j∈In
) we mean its domain, the reclassification steps re-

lated to objects in Xi, and their cost, all assigned by reclassification function
f to the node n, where Yn ⊆ Xi /Graph G is built for the client site Si/.

Let us assume that f(n) = (Yn, {[vn,k → wn,k, ρSi
(vn,k, wn,k)]}k∈In

). We
say that action rule r, extracted from Si, is applicable to the node n if:

• Yn ∩ SupSi
(r) 6= ∅,

• (∃k ∈ In)[r ∈ RSi
[vn,k → wn,k]]. /see Section 4 for definition of RSi

[...]/

Similarly, we say that action rule r, extracted from Sm, is applicable to
the node n if:

• (∃x ∈ Yn)(∃y ∈ SupSm(r))[ρ(x, y) ≤ λ], /ρ(x, y) is the similarity relation
between x, y (see Section 4 for its definition) and λ is a given similarity
threshold/

• (∃k ∈ In)[r ∈ RSm [vn,k → wn,k]].

It has to be noticed that reclassification of objects assigned to a node of
G may refer to attributes which are not necessarily attributes listed in Si. In
this case, the user associated with Si has to decide what is the cost of such
a reclassification at his site, since such a cost may differ from site to site.

Now, let RA(n) be the set of all action rules applicable to the node n.
We say that the node n is completely covered by action rules from RA(n)
if Xn =

⋃{SupSi(r) : r ∈ RA(n)}. Otherwise, we say that n is partially
covered by action rules.

What about calculating the domain Yn of node n in the graph G con-
structed for the system Si? The reclassification (d, k1 → k2) jointly with its
cost ρSi(k1, k2) is stored in the initial node n0 of the search graph G. Its do-
main Y0 is defined as the set-theoretical union of domains of feasible action
rules in RSi [(d, k1 → k2)] applied to Xi. This domain still can be extended
by any object x ∈ Xi if the following condition holds:

(∃m)(∃r ∈ RSm [k1 → k2])(∃y ∈ SupSm(r))[ρ(x, y) ≤ λ].

Each rule applied to the node n0 generates a new node in G which domain
is calculated in a similar way to n0. To be more precise, assume that n is such
a node and f(n) = (Yn, {[vn,k → wn,k, ρSi(vn,k, wn,k)]}k∈In). Its domain Yn

is defined as the set-theoretical union of domains of feasible action rules in⋃{RSi [vn,k → wn,k] : k ∈ In} applied to Xi. Similarly to n0, this domain
still can be extended by any object x ∈ Xi if the following condition holds:



Action rules mining 17

(∃m)(∃k ∈ In)(∃r ∈ RSm
[vn,k → wn,k])(∃y ∈ SupSm

(r))[ρ(x, y) ≤ λ].

Clearly, for all other nodes, dynamically generated in G, the definition of
their domains is the same as the one above.

Property 1. An object x can be reclassified according to the data stored
in node n, only if x belongs to the domain of each node along the path from
the node n0 to n.

Property 2. Assume that x can be reclassified according to the data
stored in node n and f(n) = (Yn, {[vn,k → wn,k, ρSi

(vn,k, wn,k)]}k∈In
).

The cost Costk1→k2(n, x) assigned to the node n in reclassifying x from
k1 to k2 is equal to

∑{ρSi
(vn,k, wn,k) : k ∈ In}.

Property 3. Assume that x can be reclassified according to the data
stored in node n and the action rules r, r1, r2,..., rj are labelling the edges
along the path from the node n0 to n.

The confidence Confk1→k2(n, x) assigned to the node n in reclassifying x
from k1 to k2 is equal to Conf [rj ◦ ... ◦ r2 ◦ r1 ◦ r] /see Section 4/.

Property 4. If node nj2 is a successor of the node nj1,
then Confk1→k2(nj2, x) ≤ Confk1→k2(nj1, x).

Property 5. If a node nj2 is a successor of the node nj1,
then Costk1→k2(nj2, x) ≤ Costk1→k2(nj1, x).

Let us assume that we wish to reclassify as many objects as possible in
the system Si, which is a part of DIS, from the class described by value k1 of
the attribute d to the class k2. We also assume that R is the set of all action
rules extracted either from the system Si or any of its remote sites in DIS.
The reclassification (d, k1 → k2) jointly with its cost ρSi(k1, k2) represent the
information stored in the initial node n0 of the search graph G. By λConf

we mean the minimal confidence in a reclassification which is acceptable to
the user and by λCost, the maximal cost the user is willing to pay for that
reclassification.

The algorithm Build-and-Search generates for each object x in Si, the
reclassification rules satisfying thresholds for minimal confidence and maxi-
mal cost.

Algorithm Build-and-Search(R, x, λConf , λCost, n,m);
Input Set of action rules R,

Object x which the user would like to reclassify,
Threshold value λConf for minimal confidence,
Threshold value λCost for maximal cost,
Node n of a graph G.

Output Node m representing an acceptable reclassification of
objects from Si.

begin



18 A.A. Tzacheva and Z.W. Raś

if Costk1→k2(n, x) > λCost, then
generate all successors of n using rules from R;
while n1 is a successor of n do

if Confk1→k2(n1, x) < λConf then stop
else

if Costk1→k2(n1, x) ≤ λCost then Output[n1]
else Build-and-Search(R, x, λConf , λCost, n1,m)

end

Now, calling the procedure Build-and-Search(R, x, λConf , λCost, n0,m),
we get the reclassification rules for x satisfying thresholds for minimal confi-
dence and maximal cost.

8 Conclusions

We should notice that the recursive call, in the current version of
Build-and-Search(R, x, λConf , λCost, n, m)

procedure, stops on the first node n which satisfies both thresholds: λConf for
minimal confidence and λCost for maximal cost. Clearly, this strategy can be
enhanced by allowing recursive calls on any node n when both thresholds are
satisfied by n and forcing recursive calls to stop on the first node n1 succeeding
n, if only Costk1→k2(n1, x) ≤ λCost and Confk1→k2(n1, x) < λConf . Then,
the recursive procedure should terminate not on n1 but on the node which
is its direct predecessor.

The above procedure can be also enhanced by searching for reclassification
rules not for a single object but simultaneously for a group of objects. This
can be done by recursively splitting the domain Yn of a node n by the action
rules from R applied to n. The split is done in a natural way, since each
action rule r applied to n has its supporting domain SupSi(r) ∩ Yn.

Finally, each node n in a graph G can be reached by following not nec-
essarily only one path from the initial node n0 to n. Each path has its own
cost and therefore it is not wise to chose the first acceptable path to compute
the cost assigned to the node n. We should rather build all path from the
node n0 to n and next compute the cost assigned to n. Also, object x can
belong to many domains, since it is not true that Yn1 ∩ Yn2 = ∅. So, in order
to solve the problem of finding optimal reclassification rules for a subset of
Xi, we have to search the whole graph G.

The last remark concerns the identification problem: which semi-stable
attributes are flexible? Clearly, by increasing the number of flexible attributes
in Si and other systems in DIS, we also enlarge the set R and the same we
change the contents of nodes in the graph G and possibly even increase the
number of edges in G. This may change entirely the output of Build-and-
Search(R, x, λConf , λCost, n0,m).



Action rules mining 19

References

1. Chmielewski M. R., Grzymala-Busse J. W., Peterson N. W., Than S., (1993),
The Rule Induction System LERS - a version for personal computers in Foun-
dations of Computing and Decision Sciences, Vol. 18, No. 3-4, 1993, Institute
of Computing Science, Technical University of Poznan, Poland, 181-212

2. Fensel, D., (1998), Ontologies: a silver bullet for knowledge management and
electronic commerce, Springer-Verlag, 1998

3. Pawlak Z., (1985), Rough Ssets and decision tables, in Lecture Notes in Com-
puter Science 208, Springer-Verlag, 1985, 186-196.

4. Pawlak, Z., (1991), Rough Sets: Theoretical aspects of reasoning about data,
Kluwer Academic Publisher, 1991.

5. Raś, Z., Dardzińska, A., “Handling semantic inconsistencies in query answering
based on distributed knowledge mining”, in Foundations of Intelligent Systems,
Proceedings of ISMIS’02 Symposium, LNCS/LNAI, No. 2366, Springer-Verlag,
2002, 66-74

6. Raś, Z., Wieczorkowska, A., (2000), Action Rules: how to increase profit of a
company, in Principles of Data Mining and Knowledge Discovery, (Eds. D.A.
Zighed, J. Komorowski, J. Zytkow), Proceedings of PKDD’00, Lyon, France,
LNCS/LNAI, No. 1910, Springer-Verlag, 2000, 587-592

7. Raś, Z.W., Tsay, L.-S., (2003), Discovering Extended Action-Rules (System
DEAR), in Intelligent Information Systems 2003, Proceedings of the IIS’2003
Symposium, Zakopane, Poland, Advances in Soft Computing, Springer-Verlag,
2003, 293-300

8. Raś, Z.W., Tzacheva, A., (2003), Discovering semantic incosistencies to im-
prove action rules mining, in Intelligent Information Systems 2003, Advances
in Soft Computing , Proceedings of the IIS’2003 Symposium, Zakopane, Poland,
Springer-Verlag, 2003, 301-310

9. Raś, Z., Gupta, S., (2002), Global action rules in distributed knowledge systems,
in Fundamenta Informaticae Journal, IOS Press, Vol. 51, No. 1-2, 2002, 175-184

10. Skowron A., Grzymala-Busse J., (1991), From the Rough Set Theory to the
Evidence Theory, in ICS Research Reports, 8/91, Warsaw University of Tech-
nology, October, 1991

11. Sowa, J.F., (2000), Ontology, Metadata and Semiotics, in Conceptual Struc-
tures: Logical, Linguistic, and Computational Issues, B. Ganter, G.W. Mineau
(Eds), LNAI 1867, Springer-Verlag, 2000, 55-81

12. Suzuki, E., Kodratoff, Y., (1998), Discovery of surprising exception rules based
on intensity of implication, in Proc. of the Second Pacific-Asia Conference on
Knowledge Discovery and Data mining (PAKDD), 1998


