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Abstract motivated the development of new sound features in
this paper.

Recently, communication, digital music creation, [Enormous data size - a digital musical object may
and computer storage technology has led to theconsist of lots of subtle changes, which is noticeaiol
dynamic increasing of online music repositories in€ven critical to human sound perception system.
both number and size, where automatic content-based High dimensionality - most  western  orchestral
indexing is critical for users to identify possible instruments have rich timbre and produce overtones,
favorite music pieces. Timbre recognition is one of thevhich results in a sound with a group of frequencies in
important subtasks for such an indexing purpose. Lot§lear ~ mathematical  relationships  (so-called
of research has been carried out in exploring newharmonics). There are many different approaches to
sound features to describe the characteristics of aletect sound timbre (for instance [2] or [4]). Some of
musical sound. The Moving Picture Expert Groupthem are quite successful on certain simply sound data
(MPEG) provides a standard set of multimedia(monophonic, short, of limited instrument types).
features, including low level acoustical features basedimensional approach to timbre description was
on latest research in this area. This paper introducegproposed in [3]. Timbre description is basically
our newly designed temporal features used fosubjective and vague, and only some subjective features
automatic indexing of musical sounds and evaluatebave well defined objective counterparts, like
them with MPEG7 descriptors, and other popularbrightness, calculated as gravity center of the

features. spectrum. Explicit formulation of rules of objective
specification of timbre in terms of digital descriptors
1. Introduction will formally express subjective and informal sound

characteristics. It is especially important in trghti of

In recent years, researchers have extensiveljuman perception of sound timbre. Therefore,
investigated lots of acoustical features to builgevolution of sound features in time should be reflected

computational model for automatic music timbre!n sound description as well. The discovered temporal
estimation. Timbre is a quality of sound that patterns may better express sound features than static

distinguishes one music instrument from another'features, especially that classic features can be very

while there are a wide variety of instrument familiesSimilar for sounds representing the same family or
and individual categories. It is rather subjectivePtCh, whereas changeability of features with pitch for
quality, defined by ANSI as the attribute of auditory "€ Same instrument makes sounds of one instrument
sensation, in terms of which a listener can judge thafissimilar. Therefore, classical sound features can
two sounds, similarly presented and having the Samg]ake correct identification of musical instrument
loudness and pitch, are different. Such definition idndependently on the pitch very difficult and
subjective and not of much use for automatic soun&'"Oneous. _ _
timbre classification. Therefore, musical sounds must Methods in  research on automatic musical
be very carefully parameterized to allow automaticnstrument sound classification go back to last few

timbre recognition. The real use of timbre-based/€ars: So far, there is no standard parameterization
grouping of music is very nicely discussed in [3]. TheUsed as a classification basis. The sound descriptors

following are some of the specific challenges thatused are based on various methods of analysis in time



domain, spectrum domain, time-frequency domain and Time-variant information is necessary for correct
cepstrum with Fourier Transform for spectral analysisclassification of musical instrument sounds, because
being most common, such as Fast Fourier Transformuasi-steady state itself is not sufficient for human
(FFT), Short-Time Fourier Transform (STFT), experts. Also, it has been observed that a human needs
Discrete Fourier Transform (DFT), and so on. Also,the beginning of the music sound to discern the type of
wavelet analysis gains increasing interest for soun@n instrument. Identifying the boundary of the
and especially for musical sound analysis andransient state enables accurate timbre recognition.
representation. Based on recent research performed Wieczorkowska et. al [22] proposed a timbre detection
this area, MPEG proposed an MPEG-7 standard, isystem with differentiated analysis in time, wherehea
which it described a set of low-level sound temporalsound segment has been split into seven intervals of
and spectral features. The low-level descriptors irequal width. However, the length of the duration of
MPEG-7 are intended to describe the time-variantransient state varies from one instrument to ampthe
information within an entire audio segment, wherethus it is difficult to find a universal quantization
most of them are, like other STFT related acousti@approach with fixed number of bins for sounds of all
features, in a form of either vector or matrix ofgar instruments. In our research, we have proposed new
size, where an audio segment was divided into a set ajpproach to differentiate the states of a segment for
frames and each row represents a power spectrum hmarmonic feature analysis.

the frequency domain within each analysis window.

Therefore, these features are not suitable for taditi 2. Audio Featuresin our research

classifiers, which require single-value cell of input

datasets. Researchers have been explored different There are many ways to categorize the audio

statistical summations in a form of single value tofeatures. In this paper, audio features in our system are
describe signatures of music instruments within vectorgirst categorized as MPEG7 descriptors and other/non-
or matrices in those features, such as TriStimU'UMPEC.‘,? descriptors in the acoustical perspective of
parameters [17], Brightness [7], and Irregularity [21],view, where both spectrum features and temporal
etc. However, current features fail to sufficiently features are included. Then, a derivative database of
describe the audio signatures which vary in time withinthose features with single valued data for KDD
a whole sound segment, esp. where multiple audig|assification will be demonstrated. The spectrum
signatures are overlapping with each other. It waseatures have two different frequency domains: Hz
widely observed that a sound segment of a note, whicftequency and Mel frequency. Frame size is carefully
is played by a music instrument, has at least thregesigned to be 120ms, so that the Oth octave G (the
states: transient state, quasi-steady state and dec@west pitch in our audio database) can be detected.
state. Vibration pattern in a transient state is knéw The hop size is 40ms with a overlapping of 80ms.
significantly differ from the one in a quasi-steadyetat Since the sample frequency of all the music objects is
Consequently, the harmonic features in the transierd4,100Hz, the frame size is 5292. A hamming window

state behavior are significantly different from thase s applied to all STFT transforms to avoid jittering in
the quasi-steady state. In the figure below, the lefthe spectrum.

graph shows the power spectrum in linear scale in the
transient state of 3A flat clarinet (a monophonicos 1 MPEG7 based descriptors
sound), where energy is distributed around a few
harmonic peaks; the right graph shows the power pased on latest research in the area, MPEG
spectrum in the quasi-steady state of the same SOU”Hublished a standard of a group of features for the
where the energy is more evenly distributed aroundjigital audio content data. They are either in the
several harmonic peaks. frequency domain or in the time domain. A STFT with
hamming window has been applied to the sample data,
where each frame generates a set of instantaneous
values.

Spectrum Centroid describes the center-of-gravity
of a log-frequency power spectrum in the following
formulas. It economically indicates the pre-dominant

Srewaeewwen vyweweoweww=.  frequency range. P (K) is a power spectrum




coefficient. Coefficients under 62.5Hz have beencompact salient statistical informatiox, is a vector

grouped together for fast computation. of power spectrum coefficients in a frame t, which are

transformed to Db scale and then normalized. N, the

Px(k),k:O,..,@ 1), total number of frequency bins, is 32 in 1/4 octave
resolution.
=10lo 6.),
C = 3 log,(1(1/1000P.(0) /3 Pi(r) 2.), X 9.0(%) )
N
where Sr is the sample rate. A mean value and I = )(,f 7.),
standard deviation of all frames have been used to k=1

describe the Spectrum Centroid of a music object.

Spectrum Spread is the Root of Mean Square value ¥ =X 8.),
of the deviation of the Log frequency power spectrum r
with respect to the gravity center in a frame. Like
Spectrum Centroid, it is an economic way to describe

the shape of the power spectrum. A
X,
- 2 ! ] 3), v — . 9)’
S—\/Z((logz(f(n)/looQ—C) Px(n))/ZPx(n) X=l:
A mean value and standard deviation of all frames _YMT_
have been used to describe the Spectrum Spread of a
music object.
Spectrum Flatness describes the flatness property ¢ —jgy" 10.),
of the power spectrum within a frequency bin, which is
ranged by edges in the following formula.
Vi :[vl V, - vk] 11)),

edge= 2°%" x1KHz 4.),

Spectrum Projection Functions

in(b) ~ ~ ~
o (b)i iJ;l))C(i) 5.), Y= |.rt XtTV1 XtTVZ e XtTVk 12),
1

SFM, = :

S %)c(i) Harmonic Centroid is computed as the average

ih(b) =il (b) + 1.5 over the sound segment duration of the instantaneous
Harmonic Centroid within a frame. The instantaneous
Harmonic Spectral Centroid is computed as the

where C(i) is the mean value of a group of power amplitude in linear scale weighted mean of the

spectrum coefficients, and the total number of eactarmonic peak of the spectrum.
group is determined by the location of each frequency

nb_harmo

bin. The value of each bin is treated as an attribute 2. f(framgharmq (A(frameharmg 13.)
value in the database. Since the octave resolutitimein IHSQ(framg = tamet______
thesis is 1/4, the total number of bands is 32. > A(frameharmg

harmo=1

Spectrum Basis Functions are used to reduce the
dimensionality by projecting the spectrum from high
dimensional space to low dimensional space with



> IHS( fram@ SH(i,k) = 5
HSC= frame=1 14)'
nb_ frames
1
Harmonic Spread is computed as the average over 2 Alk+])
the sound segment duration of the instantaneous SE{,k)= %t k=2K-1 20.),
harmonic spectral spread of frame. The instantaneous 3
harmonic spectral spread is computed as the amplitude
weighted standard deviation of the harmonic peaks of P
the spc_ectrum with respect of the instantaneous . ZlIogm(A(i,k))—Iogm(SE(i,k))| 21),
harmonic spectral centroid. IHSD(i) =+ <
> log;o(Ai k)
k=1
L ZK:AZ(i,k)[ﬁf(i,k)—lHSC(i)]z 15.),
IHSS() = — |t -
IHSC(i) S A(.K) "
=l " IHSD(i)
HSD: i=1 22),
M
M
D" IHSSj)
HSS=1% 16-), . . .
M whereA stands for amplitude of a harmonic peak in

a frame.

WhereA is the power Of thkth harmonic peak in the LOg AttaCk T|me iS deﬁned as the |Ogarithm Of the
iy, frame,K is the total number of harmonic peaks, time duration between the time the signal starts ¢o th
is the total number of frames in a music object. time it reaches its stable part, where the signal

envelope is estimated by computing the local mean

Harmonic Variation is defined as the mean value Square value of the signal amplitude in each frame.
over the sound segment duration of the instantaneous
harmonic spectral variation. The instantaneous LAT=100,o(T1-TO) 23.),
harmonic spectral variation is defined as the
normalized correlation between the amplitude of the whereTO is the time when the signal starfl is

harmonic peaks of two adjacent frames. the time the signal reaches its sustained part of
maximum part.
iA(i ~1K) [AG, k) 17 Harmonicity Rate is the proportion of harmonics
IHSV(i) = 1- =) ' ) in the power spectrum. It describes the degree of
S & oo harmonicity of a frame. It is computed by the
\/;A (i =1k) ;A (.k) normalized correlation between the signal and a lagged

representation of the signal.

K m+n-1
> IHSV() D s(j)s(j—k)
Hsv=iE 18.), rik)=— " _ 24,
M m+n-1 m+n-1 :
( Ds(i)?x D s(] ‘k)zj
Harmonic Deviation is computed as the average =m =m

over the sound segment duration of the instantaneous

Harmonic Spectral Deviation in each frame. The

instantaneous  Harmonic ~ Spectral Deviation is j) = maxr (i.k) 25.),
computed as the spectral deviation of the log amplitude k=Q

components from a global spectral envelope.



Fundamental Frequency is the frequency that best than that of the ones at the beginning or the e,
explains the periodicity of a signal. The ANSI adapt this method by taking the difference betwtben
definition of psycho-acoustical terminology sayatth maximum peak and the immediate previous local peak
“pitch is that auditory attribute of sound accoglito  of it. The instantaneous fundamental frequenchént
which sounds can be ordered on a scale from low testimated by the inverse of the time corresponding
high”. It is estimated based on the local maximwhs the difference of those two positions. We observed
the r (i,K) , which is normally in shape of a sinusoid significant improvement of the performance and the
with amplitudes ranging from —1 to 1. The figure 8CUracy. especially for the low frequency sounds

below shows the first, fourth, fith, and fourtdent Where MPEGY algorithm fails. ,
frames of a sound in the first octave F in the oafe, Upper Limit of Harmonicity describes the
b, ¢, d, which was played by an electric bass. Thifléquency beyond which the spectrum cannot be
pattern varies from frame to frame, especially \eher considered harmonic. It is _calculated based on the
sound state is changed. In some frames, the range BOWer spectrum of the original and a comb-filtered
the correlation function value is from 0 to 1 aswh  Signal.
in pattern c; in other frames, there are complex
sinusoid patterns, where each periodical consists 0 ¢(i) =s(i) ~As(j - K), j=m,(m+n-1)
set of sub-peaks anchoring either around O or 0.5.
Therefore, zero crossing is not suitable to sedwoch

m+n-1 m+n-1

local peaks. A=Y s(Ds(i-K) [ 2 8%(j - K) 28.),

> N A\~ AAN AN A a(fy,) = Zm:p'(f) Z”“fp(f) 29)),
ULH (i) = log, (f;, /1000 30.),
1\VaVAVAVAVAVAVAN

1 5501

Figure 1. Cross-correlation pattern for pitch
estimation.

27)),

wherec(j) is a comb-filtered sample dats,is the
lag corresponding to the maximum cross correlation
H(i), p(f) andp’(f) are the power spectrum coefficients
of the original signal and the combed signal inithe

Normally the first few points have highest values,
frame.

especially when the pitch is very low, thus the lag
values at the beginning are negligible comparinthéo o
long periodicity. Therefore, this part of lags shibbe Spectral Centroid is computed as the power

skipped while searching for the maximum peak. TheVeighted average of the frequency bins in the power
starting lag Q is calculated by this formula: spectrum of all the frames in a sound segment with

Welch method.
r(i,k)<c*r(i,n),n=Sr/ f0' 26.),

M
S(k):,/ZR(k)/M 3L.),
where k is the maximum position of the lag, at =1

which r(i,k) is less than a flexible threshold
according to the first lag positior, is an empirical

NFFT
threshold (0.2), fO' is the expected maximum Zf(k)ES(k)
— = 32),
fundamental frequency. SC=—" 57—
MPEG?7 suggests take the first maximum in order to > S(k)
k=1

estimate the local fundamental frequency periodcé&i
the energy of local peaks in the center of theepatt
normally presents a more stable periodicity charact



where M is the total number of frames in a sound

segmentP;(k) is thekth power spectrum coefficient in
theith frame, f(k) is thekth frequency bin.

Temporal Centroid is calculated as the time
average over the energy envelope.

lengt{ SEny

> n/srBEnyn)
n=1

lengt{SEny

> SEnyn)

Te- 33,

2.2. Other descriptors

In order to obtain compact representation of muisica

acoustical features, the following descriptors hiagen
used in the paper.

Vector descriptors. SinceV, is matrix, statistical

od = }iAzzk_l/fﬁAg 38.),
k=2 n=1
Ev= /%AZZ //'Z\‘:AZ 39.)
k n )
k=1 n=1

Brightness is calculated as the proportion of the
weighted harmonic partials to the harmonic spectrum

N N
B=YnmA, /YA, 40.),
n=1 n=1
J— 5 5
fd, = 3 Ac(Df (k)Y A 41),
k=1 k=1

Transient, steady and decay duration. In this
research, the transient duration is consideredhas t
time to reach the quasi-steady state of fundamental

value retrieval has been performed for traditionalfrequency. In this duration the sound contains more
classifiers. These statistical values are maximumgmbre information than pitch information that is

minimum, mean value, and the standard deviation Ofighly relevant to the fundamental frequency. Thus
the matrix, maximum, minimum, mean value of differentiated harmonic descriptors values in tiare

dissimilarity of each column and row, where thecalculated based on the subtle change of the
dissimilarity is measured by the following equation fundamental frequency.

Tristimulus parameters describe the ratio of the

amplitude of a harmonic partial to the total hariaon |=
partials [17]. They are first modified tristimulus |
parameter, power difference of the first and trood M
tristimulus parameter, grouped tristimulus of othen™
harmonic partials, odd and even tristimulus|,,
parameters.
2 ji 2 34.)
Tr - 'Al An .), 900
' n=1 600 /\~
4 N
h34:ZA2/ZA]2 35.)’ UW3579M1315171921232527293133353739414345474951535557595163
i=3 = Figure 2. Pitch trajectories of note 4C played by
different instruments.
h :ipﬁz %Ag 36.), We observe that during the transients, the
serm g g instantaneous fundamental frequencies are unstable,

and usually very different from the ones in the sjua
steady state, see above figure. The transient bdsde
estimated as the first frame where the pitch stays
considerately stable during a minimum period ofetim

It is computed as the total number of the contisuou
frames with similar instantaneous fundamental

10
hgg1o = ZA‘Z 37.),

N 2
DA
i=8 j=1



frequencies, which is bigger than a time-duration Roll-off is a measure of spectral shape, which is
threshold. Due to the wide range of the lengthhaf t used to distinguish between voiced and unvoiced
sample recordings, which is from around 26 to overspeech [13]. The roll-off is defined as the frequen
300 frames, and the fact that short sounds ammost  below which C percentage of the accumulated
cases, short in each state, three different enapiric magnitudes of the spectrum is concentrated, whese C
threshold values of time duration are applied atiogr  an empirical coefficient.

to the total length of each music object. For dbjéess

than 30 frames, the threshold was set to threeghwhi

was a 30 milliseconds and was more than 10% of its K

total length; for objects less than 100 and lorthan Z‘Xi(k)‘ SC@‘Xi(k)‘ 45.),

30 frames, the threshold was set to five, which Was B KL
milliseconds and was more than 5% of its total ibng
for objects longer than 100 frames, the threshad w
set to eight, which was 100ms.

The beginning of the quasi-steady state is atitbe
frame having an overall fundamental frequency i@ th
same frequency biras its N continuous following N
neighbor frames, where the total energy in the g — (K =1%. 2 46.),
spectrum is bigger than a threshold in case obrsedi Fi kZ:;QX,(k)\ ‘X'_l(k)‘) )
or noise. Each frequency bin corresponds to a music
note. The overall fundamental frequency is estithate Mel frequency cepstral coefficients describe the
by pattern recognition with a cross-correlation spectrum according to the human perception system i
function. the mel scale. They are computed by grouping the

The duration after the quasi-steady state is tdeateSTFT points of each frame into a set of 40 coeffits
as the decay state. All the duration values ar¢yy a set of 40 weighting curves with logarithmic
normalized by the length of their correspondingiaud transform and a discrete cosine transform (DCT).
objects.

Zero crossing counts the number of times that the 3. C|assification
signal sample data changes signs in a frame [19] [2

Flux is used to describe the spectral rate of change
[19]. It is computed by the total difference betwake
f magnitude of the FFT points in a frame and its
successive frame.

. The classifiers, applied in the investigations on
— ; e _ musical instrument recognition, represent pradtical
2C, =05 |sign(s[n]) ~sign(s[n-1)| 42 all known methods. In our research, so far we have
used four classifiers (Bayesian Networks and Degisi
Tree J-48) upon numerous music sound objects to
1x=0 explore the effectiveness of our new descriptors.

43.), Naive Bayesian is a widely used statistical
~1x<0 approach, which represents the dependence structure
between multiple variables by a specific type of
where sis the ' sample in the'l frame, N is the  graphical model, where probabilities and conditlena

sign(x) ={

frame size. _ . . independence statements are strictly defined. & ha
Spectrum Centroid describes the gravity center of peen successfully applied to speech recognitior [26
the spectrum [19] [23]. [14].
” The joint probability distribution function is
Z ()X, (K 14) "
C= g v P0G Xw) = [T PO 1) 47,
21X |
where X, ..., Xy are conditional independent

where N is the total number of the FFT poingk)
is the power of the kth FFT point in the ith frarfi&)  variables, andX,,; is the parent ofX; .
is the corresponding frequency of the FFT point.



Decision Tree-J48 is a supervised classificatior
algorithm, which has been extensively used for
machine learning and pattern recognition. See [18
[21]. A Tree-J48 is normally constructed top-down,
where parent nodes represent conditional attrikanes
leaf nodes represent decision outcomes. It firebshs

AN

Ho Pitch

Pitch

/N

a most informative attribute that can best difféiae S i

the dataset; it then creates branches for eactvahtef ST

the attribute where instances are divided into gsoit Q. - N A / \
repeats creating sub-branches until instances ai W sting Wasdwind

clearly separated in terms of the decision atteput
finally it tests the tree by new instances in at tes
dataset.

A Bx a ¥

e ’g& N 4
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Figure 3. Hierarchical Classification.

4. Experiments

We used a database of 3294 music recording sound
objects of 109 instruments from McGill University ) ) ) )
Master Samples CD Collection, which has been widely 1h€ audio objects in our database are grouped into
used for research on musical instrument recognilbn oUr different types: sounds without pitch, perouss
over the world. We implemented a hierarchical@d harmonic sounds, sounds played by the string
structure in which we first discriminate different instruments, and sound played by the woodwind
instrument  families (woodwind, string family, Instruments. Each type contains all different
harmonic percussion family and non-harmonic family) Instruments.
and then discriminate the sounds into differenetgp

instruments within each family. The woodwind family TABLE 1. Results of the hierarchical Classification

with all the features.

had 22 different instruments. The string family

contained seven different instruments. The harmonig-— J48—Tre0e NalveBag/S|an
percussion family included nine instruments. Tha-no &My 91'7260/0 72-68680/0
harmonic family contained 73 different instruments. NO-Pitch 77-943@0 75-216943
All classifiers were 10-fold cross validation wighsplit ~  crcussion 86-04(35@ 88-3720143
of 90% training and 10% testing. We used WEKA for 5" 76'6690/0 66-60210/0

all classifications. Woodwind 75.761% 78.0158%

In this research, we compared hierarchical
classifications with none- hierarchical classifioas in
our experiments. The hierarchical classification
schema is shown in the following figure.

Tablel shows the performance of the classifiers
constructed with all the features. Family represent
classifications to distinguish the instrument famil
type. No-pitch represents classifications of adl #udio
objects, which are belonging to the non-harmonic
family. Percussion stands for harmonic percussion
instruments.

TABLE 2. Results of the hierarchical Classification
with the MPEGY7 features.

J48-Tree NaiveBaysian
Family 86.434% 64.7041%
No-pitch 73.7299% 66.2949%
Percussion 85.2484% 84.9379%
String 72.4272% 61.8447%
Woodwind 67.8133% 67.8133%

Table2 shows the performance of the classifiers
constructed with only the MPEG7 features.
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