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Abstract 
 

Recently, communication, digital music creation, 
and computer storage technology has led to the 
dynamic increasing of online music repositories in 
both number and size, where automatic content-based 
indexing is critical for users to identify possible 
favorite music pieces. Timbre recognition is one of the 
important subtasks for such an indexing purpose. Lots 
of research has been carried out in exploring new 
sound features to describe the characteristics of a 
musical sound. The Moving Picture Expert Group 
(MPEG) provides a standard set of multimedia 
features, including low level acoustical features based 
on latest research in this area. This paper introduces 
our newly designed temporal features used for 
automatic indexing of musical sounds and evaluates 
them with MPEG7 descriptors, and other popular 
features. 

1. Introduction 

In recent years, researchers have extensively 
investigated lots of acoustical features to build 
computational model for automatic music timbre 
estimation. Timbre is a quality of sound that 
distinguishes one music instrument from another, 
while there are a wide variety of instrument families 
and individual categories. It is rather subjective 
quality, defined by ANSI as the attribute of auditory 
sensation, in terms of which a listener can judge that 
two sounds, similarly presented and having the same 
loudness and pitch, are different. Such definition is 
subjective and not of much use for automatic sound 
timbre classification. Therefore, musical sounds must 
be very carefully parameterized to allow automatic 
timbre recognition. The real use of timbre-based 
grouping of music is very nicely discussed in [3].  The 
following are some of the specific challenges that 

motivated the development of new sound features in 
this paper. 

Enormous data size - a digital musical object may 
consist of lots of subtle changes, which is noticeable or 
even critical to human sound perception system. 

High dimensionality - most western orchestral 
instruments have rich timbre and produce overtones, 
which results in a sound with a group of frequencies in 
clear mathematical relationships (so-called 
harmonics). There are many different approaches to 
detect sound timbre (for instance [2] or [4]). Some of 
them are quite successful on certain simply sound data 
(monophonic, short, of limited instrument types). 
Dimensional approach to timbre description was 
proposed in [3]. Timbre description is basically 
subjective and vague, and only some subjective features 
have well defined objective counterparts, like 
brightness, calculated as gravity center of the 
spectrum. Explicit formulation of rules of objective 
specification of timbre in terms of digital descriptors 
will formally express subjective and informal sound 
characteristics. It is especially important in the light of 
human perception of sound timbre. Therefore, 
evolution of sound features in time should be reflected 
in sound description as well. The discovered temporal 
patterns may better express sound features than static 
features, especially that classic features can be very 
similar for sounds representing the same family or 
pitch, whereas changeability of features with pitch for 
the same instrument makes sounds of one instrument 
dissimilar. Therefore, classical sound features can 
make correct identification of musical instrument 
independently on the pitch very difficult and 
erroneous. 

Methods in research on automatic musical 
instrument sound classification go back to last few 
years. So far, there is no standard parameterization 
used as a classification basis. The sound descriptors 
used are based on various methods of analysis in time 



domain, spectrum domain, time-frequency domain and 
cepstrum with Fourier Transform for spectral analysis 
being most common, such as Fast Fourier Transform 
(FFT), Short-Time Fourier Transform (STFT), 
Discrete Fourier Transform (DFT), and so on. Also, 
wavelet analysis gains increasing interest for sound 
and especially for musical sound analysis and 
representation. Based on recent research performed in 
this area, MPEG proposed an MPEG-7 standard, in 
which it described a set of low-level sound temporal 
and spectral features. The low-level descriptors in 
MPEG-7 are intended to describe the time-variant 
information within an entire audio segment, where 
most of them are, like other STFT related acoustic 
features, in a form of either vector or matrix of large 
size, where an audio segment was divided into a set of 
frames and each row represents a power spectrum in 
the frequency domain within each analysis window. 
Therefore, these features are not suitable for traditional 
classifiers, which require single-value cell of input 
datasets. Researchers have been explored different 
statistical summations in a form of single value to 
describe signatures of music instruments within vectors 
or matrices in those features, such as Tristimulus 
parameters [17], Brightness [7], and Irregularity [21], 
etc. However, current features fail to sufficiently 
describe the audio signatures which vary in time within 
a whole sound segment, esp. where multiple audio 
signatures are overlapping with each other. It was 
widely observed that a sound segment of a note, which 
is played by a music instrument, has at least three 
states: transient state, quasi-steady state and decay 
state. Vibration pattern in a transient state is known to 
significantly differ from the one in a quasi-steady state. 
Consequently, the harmonic features in the transient 
state behavior are significantly different from those in 
the quasi-steady state. In the figure below, the left 
graph shows the power spectrum in linear scale in the 
transient state of 3A flat clarinet (a monophonic 
sound), where energy is distributed around a few 
harmonic peaks; the right graph shows the power 
spectrum in the quasi-steady state of the same sound, 
where the energy is more evenly distributed around 
several harmonic peaks. 

 

Time-variant information is necessary for correct 
classification of musical instrument sounds, because 
quasi-steady state itself is not sufficient for human 
experts. Also, it has been observed that a human needs 
the beginning of the music sound to discern the type of 
an instrument. Identifying the boundary of the 
transient state enables accurate timbre recognition. 
Wieczorkowska et. al [22] proposed a timbre detection 
system with differentiated analysis in time, where each 
sound segment has been split into seven intervals of 
equal width. However, the length of the duration of 
transient state varies from one instrument to another, 
thus it is difficult to find a universal quantization 
approach with fixed number of bins for sounds of all 
instruments. In our research, we have proposed new 
approach to differentiate the states of a segment for 
harmonic feature analysis. 

2. Audio Features in our research 

There are many ways to categorize the audio 
features. In this paper, audio features in our system are 
first categorized as MPEG7 descriptors and other/non-
MPEG7 descriptors in the acoustical perspective of 
view, where both spectrum features and temporal 
features are included. Then, a derivative database of 
those features with single valued data for KDD 
classification will be demonstrated. The spectrum 
features have two different frequency domains: Hz 
frequency and Mel frequency. Frame size is carefully 
designed to be 120ms, so that the 0th octave G (the 
lowest pitch in our audio database) can be detected. 
The hop size is 40ms with a overlapping of 80ms. 
Since the sample frequency of all the music objects is 
44,100Hz, the frame size is 5292. A hamming window 
is applied to all STFT transforms to avoid jittering in 
the spectrum. 

2.1. MPEG7 based descriptors 

Based on latest research in the area, MPEG 
published a standard of a group of features for the 
digital audio content data. They are either in the 
frequency domain or in the time domain. A STFT with 
hamming window has been applied to the sample data, 
where each frame generates a set of instantaneous 
values.  

Spectrum Centroid describes the center-of-gravity 
of a log-frequency power spectrum in the following 
formulas. It economically indicates the pre-dominant 

frequency range. )(kPx is a power spectrum 



coefficient. Coefficients under 62.5Hz have been 
grouped together for fast computation. 
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where Sr is the sample rate. A mean value and 
standard deviation of all frames have been used to 
describe the Spectrum Centroid of a music object. 

Spectrum Spread is the Root of Mean Square value 
of the deviation of the Log frequency power spectrum 
with respect to the gravity center in a frame. Like 
Spectrum Centroid, it is an economic way to describe 
the shape of the power spectrum.  

∑∑ ′′−=
n

x
n

x nPnPCnfS )())())1000/)((((log 2
2

 3.), 

A mean value and standard deviation of all frames 
have been used to describe the Spectrum Spread of a 
music object. 

Spectrum Flatness describes the flatness property 
of the power spectrum within a frequency bin, which is 
ranged by edges in the following formula.  
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where )(ic is the mean value of a group of power 

spectrum coefficients, and the total number of each 
group is determined by the location of each frequency 
bin. The value of each bin is treated as an attribute 
value in the database. Since the octave resolution in the 
thesis is 1/4, the total number of bands is 32. 

Spectrum Basis Functions are used to reduce the 
dimensionality by projecting the spectrum from high 
dimensional space to low dimensional space with 

compact salient statistical information. tx  is a vector 

of power spectrum coefficients in a frame t, which are 
transformed to Db scale and then normalized. N, the 
total number of frequency bins, is 32 in 1/4 octave 
resolution. 
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[ ]k
T

t
T

t
T

ttt vxvxvxry ~~~
21 L=  12.), 

Harmonic Centroid is computed as the average 
over the sound segment duration of the instantaneous 
Harmonic Centroid within a frame. The instantaneous 
Harmonic Spectral Centroid is computed as the 
amplitude in linear scale weighted mean of the 
harmonic peak of the spectrum. 
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Harmonic Spread is computed as the average over 
the sound segment duration of the instantaneous 
harmonic spectral spread of frame. The instantaneous 
harmonic spectral spread is computed as the amplitude 
weighted standard deviation of the harmonic peaks of 
the spectrum with respect of the instantaneous 
harmonic spectral centroid. 
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where A is the power of the kth harmonic peak in the 
i th frame, K is the total number of harmonic peaks, M 
is the total number of frames in a music object. 

Harmonic Variation is defined as the mean value 
over the sound segment duration of the instantaneous 
harmonic spectral variation. The instantaneous 
harmonic spectral variation is defined as the 
normalized correlation between the amplitude of the 
harmonic peaks of two adjacent frames. 
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Harmonic Deviation is computed as the average 
over the sound segment duration of the instantaneous 
Harmonic Spectral Deviation in each frame. The 
instantaneous Harmonic Spectral Deviation is 
computed as the spectral deviation of the log amplitude 
components from a global spectral envelope. 
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where A stands for amplitude of a harmonic peak in 
a frame. 

Log Attack Time is defined as the logarithm of the 
time duration between the time the signal starts to the 
time it reaches its stable part, where the signal 
envelope is estimated by computing the local mean 
square value of the signal amplitude in each frame. 
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where T0 is the time when the signal starts, T1 is 
the time the signal reaches its sustained part of 
maximum part. 

Harmonicity Rate is the proportion of harmonics 
in the power spectrum. It describes the degree of 
harmonicity of a frame. It is computed by the 
normalized correlation between the signal and a lagged 
representation of the signal. 

5.0
1

2
1

2

1

)()(

)()(

),(











−×

−
=

∑∑

∑

−+

=

−+

=

−+

=

nm

mj

nm

mj

nm

mj

kjsjs

kjsjs

kir
 24.), 

),(max)(
1

kiriH
n

Qk

−

=
=  25.), 



Fundamental Frequency is the frequency that best 
explains the periodicity of a signal. The ANSI 
definition of psycho-acoustical terminology says that 
“pitch is that auditory attribute of sound according to 
which sounds can be ordered on a scale from low to 
high”. It is estimated based on the local maximums of 
the ),( kir , which is normally in shape of a sinusoid 

with amplitudes ranging from –1 to 1. The figure 
below shows the first, fourth, fifth, and fourteenth 
frames of a sound in the first octave F in the order of a, 
b, c, d, which was played by an electric bass. This 
pattern varies from frame to frame, especially where a 
sound state is changed. In some frames, the range of 
the correlation function value is from 0 to 1 as shown 
in pattern c; in other frames, there are complex 
sinusoid patterns, where each periodical consists of a 
set of sub-peaks anchoring either around 0 or 0.5. 
Therefore, zero crossing is not suitable to search for 
local peaks.   

 
Figure 1. Cross-correlation pattern for pitch 

estimation. 

Normally the first few points have highest values, 
especially when the pitch is very low, thus the lag 
values at the beginning are negligible comparing to the 
long periodicity. Therefore, this part of lags should be 
skipped while searching for the maximum peak. The 
starting lag Q is calculated by this formula: 
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where k is the maximum position of the lag, at 
which ),( kir is less than a flexible threshold 

according to the first lag position, c is an empirical 
threshold (0.2), 0′f  is the expected maximum 

fundamental frequency. 
MPEG7 suggests take the first maximum in order to 

estimate the local fundamental frequency period. Since 
the energy of local peaks in the center of the pattern 
normally presents a more stable periodicity character 

than that of the ones at the beginning or the end, we 
adapt this method by taking the difference between the 
maximum peak and the immediate previous local peak 
of it. The instantaneous fundamental frequency is then 
estimated by the inverse of the time corresponding to 
the difference of those two positions. We observed 
significant improvement of the performance and the 
accuracy, especially for the low frequency sounds 
where MPEG7 algorithm fails. 

Upper Limit of Harmonicity describes the 
frequency beyond which the spectrum cannot be 
considered harmonic. It is calculated based on the 
power spectrum of the original and a comb-filtered 
signal. 
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where c(j) is a comb-filtered sample data, K is the 
lag corresponding to the maximum cross correlation 
H(i), p(f) and p’(f) are the power spectrum coefficients 
of the original signal and the combed signal in the ith 
frame. 

Spectral Centroid is computed as the power 
weighted average of the frequency bins in the power 
spectrum of all the frames in a sound segment with a 
Welch method. 
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where M is the total number of frames in a sound 
segment, Pi(k) is the kth power spectrum coefficient in 
the ith frame, f(k) is the kth frequency bin. 

Temporal Centroid is calculated as the time 
average over the energy envelope. 
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2.2. Other descriptors 

In order to obtain compact representation of musical 
acoustical features, the following descriptors have been 
used in the paper. 

Vector descriptors. Since KV is matrix, statistical 

value retrieval has been performed for traditional 
classifiers. These statistical values are maximum, 
minimum, mean value, and the standard deviation of 
the matrix, maximum, minimum, mean value of 
dissimilarity of each column and row, where the 
dissimilarity is measured by the following equation: 

Tristimulus parameters describe the ratio of the 
amplitude of a harmonic partial to the total harmonic 
partials [17]. They are first modified tristimulus 
parameter, power difference of the first and the second 
tristimulus parameter, grouped tristimulus of other 
harmonic partials, odd and even tristimulus 
parameters. 
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Brightness is calculated as the proportion of the 
weighted harmonic partials to the harmonic spectrum. 
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Transient, steady and decay duration. In this 
research, the transient duration is considered as the 
time to reach the quasi-steady state of fundamental 
frequency. In this duration the sound contains more 
timbre information than pitch information that is 
highly relevant to the fundamental frequency. Thus 
differentiated harmonic descriptors values in time are 
calculated based on the subtle change of the 
fundamental frequency.  

 
Figure 2. Pitch trajectories of note 4C played by 

different instruments. 

We observe that during the transients, the 
instantaneous fundamental frequencies are unstable, 
and usually very different from the ones in the quasi-
steady state, see above figure. The transient border is 
estimated as the first frame where the pitch stays 
considerately stable during a minimum period of time. 
It is computed as the total number of the continuous 
frames with similar instantaneous fundamental 



frequencies, which is bigger than a time-duration 
threshold. Due to the wide range of the length of the 
sample recordings, which is from around 26 to over 
300 frames, and the fact that short sounds are, in most 
cases, short in each state, three different empirical 
threshold values of time duration are applied according 
to the total length of each music object. For objects less 
than 30 frames, the threshold was set to three, which 
was a 30 milliseconds and was more than 10% of its 
total length; for objects less than 100 and longer than 
30 frames, the threshold was set to five, which was 70 
milliseconds and was more than 5% of its total length; 
for objects longer than 100 frames, the threshold was 
set to eight, which was 100ms.  

The beginning of the quasi-steady state is at the first 
frame having an overall fundamental frequency in the 
same frequency bin as its N continuous following 
neighbor frames, where the total energy in the 
spectrum is bigger than a threshold in case of salience 
or noise. Each frequency bin corresponds to a music 
note. The overall fundamental frequency is estimated 
by pattern recognition with a cross-correlation 
function.  

The duration after the quasi-steady state is treated 
as the decay state. All the duration values are 
normalized by the length of their corresponding audio 
objects. 

Zero crossing counts the number of times that the 
signal sample data changes signs in a frame [19] [20]. 
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where si is the nth sample in the ith frame, N is the 
frame size. 

Spectrum Centroid describes the gravity center of 
the spectrum [19] [23]. 
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where N is the total number of the FFT points, Xi(k) 
is the power of the kth FFT point in the ith frame, f(k) 
is the corresponding frequency of the FFT point. 

Roll-off is a measure of spectral shape, which is 
used to distinguish between voiced and unvoiced 
speech [13]. The roll-off is defined as the frequency 
below which C percentage of the accumulated 
magnitudes of the spectrum is concentrated, where C is 
an empirical coefficient. 
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Flux is used to describe the spectral rate of change 
[19]. It is computed by the total difference between the 
magnitude of the FFT points in a frame and its 
successive frame. 
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Mel frequency cepstral coefficients describe the 
spectrum according to the human perception system in 
the mel scale. They are computed by grouping the 
STFT points of each frame into a set of 40 coefficients 
by a set of 40 weighting curves with logarithmic 
transform and a discrete cosine transform (DCT).  

3. Classification 

The classifiers, applied in the investigations on 
musical instrument recognition, represent practically 
all known methods. In our research, so far we have 
used four classifiers (Bayesian Networks and Decision 
Tree J-48) upon numerous music sound objects to 
explore the effectiveness of our new descriptors. 

Naïve Bayesian is a widely used statistical 
approach, which represents the dependence structure 
between multiple variables by a specific type of 
graphical model, where probabilities and conditional-
independence statements are strictly defined. It has 
been successfully applied to speech recognition [26] 
[14]. 

The joint probability distribution function is 
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where 1x , …, Nx   are conditional independent 

variables, and  ixπ  is the parent of  ix . 



Decision Tree-J48 is a supervised classification 
algorithm, which has been extensively used for 
machine learning and pattern recognition. See [18] 
[21]. A Tree-J48 is normally constructed top-down, 
where parent nodes represent conditional attributes and 
leaf nodes represent decision outcomes. It first chooses 
a most informative attribute that can best differentiate 
the dataset; it then creates branches for each interval of 
the attribute where instances are divided into groups; it 
repeats creating sub-branches until instances are 
clearly separated in terms of the decision attribute; 
finally it tests the tree by new instances in a test 
dataset. 

4. Experiments 

We used a database of 3294 music recording sound 
objects of 109 instruments from McGill University 
Master Samples CD Collection, which has been widely 
used for research on musical instrument recognition all 
over the world. We implemented a hierarchical 
structure in which we first discriminate different 
instrument families (woodwind, string family, 
harmonic percussion family and non-harmonic family), 
and then discriminate the sounds into different type of 
instruments within each family. The woodwind family 
had 22 different instruments. The string family 
contained seven different instruments. The harmonic 
percussion family included nine instruments. The non-
harmonic family contained 73 different instruments. 
All classifiers were 10-fold cross validation with a split 
of 90% training and 10% testing. We used WEKA for 
all classifications. 

In this research, we compared hierarchical 
classifications with none- hierarchical classifications in 
our experiments. The hierarchical classification 
schema is shown in the following figure.  

 
Figure 3.  Hierarchical Classification. 

The audio objects in our database are grouped into 
four different types: sounds without pitch, percussive 
and harmonic sounds, sounds played by the string 
instruments, and sound played by the woodwind 
instruments. Each type contains all different 
instruments. 

TABLE 1. Results of the hierarchical Classification 
with all the features. 

 J48-Tree NaïveBaysian 
Family 91.726% 72.6868% 
No-pitch 77.943% 75.2169% 
Percussion 86.0465% 88.3721% 
String 76.669% 66.6021% 
Woodwind 75.761% 78.0158% 

 
Table1 shows the performance of the classifiers 

constructed with all the features. Family represents 
classifications to distinguish the instrument family 
type. No-pitch represents classifications of all the audio 
objects, which are belonging to the non-harmonic 
family. Percussion stands for harmonic percussion 
instruments. 

TABLE 2. Results of the hierarchical Classification 
with the MPEG7 features. 

 J48-Tree NaïveBaysian 
Family 86.434% 64.7041% 
No-pitch 73.7299% 66.2949% 
Percussion 85.2484% 84.9379% 
String 72.4272% 61.8447% 
Woodwind 67.8133% 67.8133% 

 
Table2 shows the performance of the classifiers 

constructed with only the MPEG7 features. 



TABLE 3. Results of the none-hierarchical 
Classification. 

 J48-Tree NaïveBaysian 
All 70.4923% 68.5647% 
MPEG 65.7256% 56.9824% 

 
Table3 shows the performance of the classifiers 

constructed without hierarchical schema. 

5. Conclusion and future work 

By the results from the experiments, we conclude 
that the non-MPEG features significantly improved the 
performance of the classifiers. However, for sounds 
played by instruments from the string family and the 
woodwind family, there is no significant improvement 
by adding the hierarchical schema into the system. 
Since we consider the transient duration as the time to 
reach the stable state of the pitch of a note, the 
transient state contains more information, which is 
highly correlated to the timbre properties and less 
relevant to the pitch properties. For classification of the 
instrument families, the feature vectors from the 
transient state have a better overall performance than 
those from the quasi-steady state and from the whole 
segment over most classifiers except for Decision Tree 
J48. Similar results we observed on identification of 
the instruments within the String family. We also 
observed that the Woodwind family has shorter 
transient duration than the String family in average. 
The frame size and hop size need to be adjusted to 
capture subtle variation in the transient duration. It 
could explain the fact that feature vector from the 
quasi-steady state have better overall performance than 
those from the transient state and the whole segment 
for classification of the instruments within the 
Woodwind family. 

The proposed research is still in its early stages. 
More new features in different acoustic states and 
music objects from more instruments families in 
different articulations will be investigated. Also, future 
research shall explore the efficiency of the 
classification system based on segmented sequence of 
music piece. 
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