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Abstract. We present a generalization of a strategy, called SCIKD,
proposed in [7] that allows to reduce a disclosure risk of confidential
data in an information system S [10] using methods based on knowledge
discovery. The method proposed in [7] protects confidential data against
Rule-based Chase, the null value imputation algorithm driven by cer-
tain rules [2], [4]. This method identifies a minimal subset of additional
data in S which needs to be hidden to guarantee that the confidential
data are not revealed by Chase. In this paper we propose a bottom-up
strategy which identifies, for each object x in S, a maximal set of values
of attributes which do not have to be hidden and still the information
associated with secure attribute values of x is protected. It is achieved
without examining all possible combinations of values of attributes. Our
method is driven by classification rules extracted from S and takes into
consideration their confidence and support.

1 Introduction

This article discusses an important issue in data mining: how to provide mean-
ingful knowledge without compromising data confidentiality. In conventional
database systems, data confidentiality is achieved by hiding sensitive data from
unauthorized users. However, hiding is not sufficient in knowledge discovery
systems (KDS) due to null imputation method like rule-based Chase ([2], [4])
which are designed to predict null or missing values. Suppose that attributes
in a database contain medical information about patients; some portions are
not confidential while others are confidential (they are hidden from users). In
this case, part or all of the confidential data in the attribute may be revealed.
In other words, self-generated rules extracted from non-confidential portions of
data can be used to find secret data.

Security in KDS is studied in many research areas, such as cryptography,
statistics, and data mining. A well known security problem in cryptography
area is how to acquire global knowledge without revealing the data stored in
each local site in a distributed autonomous information system (DAIS). Pro-
posed solutions are based primarily on secure multiparty protocol ([12], [5])
which ensures that each participant cannot learn more than its own input data



and outcome of a public function. Various authors expanded the idea. Clifton
and Kantarcioglou employed the protocol for association rule mining for ver-
tically and horizontally partitioned data [8]. Authors Du and Zhan pursued a
similar idea to build a decision tree system [6]. Protection of sensitive rules has
been discussed by Oliveira and Zaiane [9]. Authors suggested a solution to pro-
tecting sensitive association rules in the form of ”sanitization process” that hides
selective patterns from frequent itemsets. The data security problem discussed
in this article is different from other researches in the following ways. First, we
focus on the accuracy of existing data or knowledge instead of statistical charac-
teristics of data. Second, we aim to protect sensitive data in a database instead
of sensitive rules.

Our paper takes the definition of an information system proposed by Pawlak
[10] as a simplified model of a database. However, the notion of its incomplete-
ness differs from the classical rough set approach by allowing a set of weighted
attribute values as a value of an attribute. We also assume that the sum of these
weights has to be equal 1. If weights assigned to attribute values have to be
greater than a user specified threshold value A, then we get information system
of type A as introduced in [4].

Additionally we assume that one or more attributes in an information system
S of type A contain confidential data that have to be protected and S is a part
of a distributed autonomous information system (DAIS) which provides a set
of rules applicable at S as a KB [11]. We have to be certain that values of any
confidential attribute can not be revealed from the available data in S and KB
by Chase [2] or any other null value imputation method while minimizing the
changes in the original information system. Also, we assume that we can hide the
precise information about objects from the user but we can not replace existing
data by false data. For instance, if someone is 18 years old, we can say that she
is young or her age is unknown but we can not say that she is 24 years old. In
pursue of such requirements, we propose a protection method named as SCIKD
for information systems of type A. The method identifies weighted transitive
closure of attribute values involved in confidential data reconstruction, and uses
the result to identify the maximum number of attribute values that can remain
unchanged.

2 Chase as Tool for Revealing Hidden Values

We briefly provide some background on a null value imputation algorithm Chase
based on rule-discovery strategy called FRID [2]. Assume that S = (X, A,V),
where V = | J{V, : a € A} and each a € A is a partial function from X into
2Ve — {(}. In the first step, Chase algorithm identifies all incomplete attributes
in S. An attribute is incomplete if there is an object in S with incomplete
information on this attribute. The values of all incomplete attributes in S are
treated as concepts to be learned (in a form of rules) either directly from S or
from S and its remote sites (if S is a part of DAIS). The second step of Chase
algorithm is to extract all these rules and store them in a knowledge base D



for S [11]. The next step is to replace incomplete information in S by values
provided by rules in D. This process is recursively repeated till no new hidden
values in S can be revealed.

Definition:
We say that S = (X, A, V) is a partially incomplete information system of type
A, if the following four conditions hold:

— X is the set of objects, A is the set of attributes, and V = J{V, : a € A} is
the set of values of attributes,

— (Ve e X)(Va € A)as(z) € V, or ag(x) = {(vi,pi) : 1 <i <m}],
— (Vz € X)(Va € A)[(as(z) = {(vi,p;) : 1 <i<m}) = S0 pi = 1],
— (Ve X)(Va € A)l(as(x) = {(vi,pi) : 1 <i<m}) — (Vi)(pi = N)].

An example of an information system of type \ = % is given in Table 1.

X a b c d e f g
T1 (al,g)(agé) b1 c1 dy el fl g1
zy  (a2,3)(as,3)  (b1,3)(b2,3) ds e1 fe
T3 a1 ba (c1,3)(e3,5)  u es f2
T4 as c2 d1 (e1,3)(€2,5) [
Zs5 (a17§)(a37%) (b17%)(b27%) C2 dy €1 f2 g1
T as ba Cc3 d1 (627%)(637%) f3
x7  as b1 (c1,3)(c2,%) €2 I
xX; ((137%)(0,4,%) b1 Cc2 €3 f?

Table 1. Information System S

Let us assume that another information system S has the same values as
S except a(z1)={(a1,2), (az, 1)} and b(x5)={(b1,2), (b2, 1)} In both cases, an
attribute value assigned to an object in Sy is less general than in 5.

Now, let us assume that S, S5 are partially incomplete information systems,
both of type A. They provide descriptions of the same set of objects X using the
same set of attributes A. The meaning and granularity of values of attributes
in A for both systems S, S is also the same. Additionally, we assume that
as(z) = {(a;,pi) : 1 <m} and ag, (z) = {(a2;,p2;) : i < ma}.

Now, we introduce the relation ¥, called containment relation. We say that
(S,S2) € ¥, if the following two conditions hold:



— (Vo € X)(Va € A)[card(ag)) > card(ags,(z))],

— (Vz € X)(Va € A)[[card(as(z)) = card(as,(x))] —
[Ei;ﬁj P2 — p2;| > Zi;&j lpi — p;lll.

Instead of saying that containment relation holds between S and Ss, we can
equivalently say that S was transformed into S5 by containment mapping ¥. Al-
gorithm Chases, described by Dardziriska and Ras in [2], converts an information
system S of type A to a new more complete information system Chases(S) of
the same type. The algorithm differs from other known strategies for chasing
incomplete data in relational tables because of the assumption concerning par-
tial incompleteness of data (sets of weighted attribute values can be assigned by
Chases to an object as its new value). This assumption forced authors in [3] to
develop a new discovery algorithm, called ERID, for extracting rules from incom-
plete information systems of type A. The syntax of classification rules discovered
by ERID is the same as syntax of similar rules discovered by classical methods,
like LERS or RSES. However, the method of computing their confidence and
support is different.

X a b c d e f g
z1 (a1,2)(az,3) b ¢ e1 i ¢
w2 (a2,3)(as,3)  (b1,3)(02,3) e f2
T3 a1 ba (617%)(637%) €3 f2
T4 as c2 (e1,2)(€2,3)  fo
x5 (a1,3)(as,5)  (br,3)(b2,3) e el f2 g
T6 as ba c3 (e2,3)(e3,3) fs
7 as b1 (c1,3)(c2,%) €2 I
xT; (a;;,%)(cu;,%) b1 Cc2 €3 f2

Table 2. Information System Sy

Algorithm Chaseg based on ERID can be used as a null value imputation tool
to reveal hidden symbolic data. The method proposed in [7] protects confidential
data against Chases assuming that it is driven by certain rules. It identifies a
minimal subset of additional data in S which needs to be hidden to guarantee
that the confidential data can not be revealed by Chase. In this paper we gen-
eralize this strategy by proposing an algorithm which protects confidential data
against C'hases driven by ERID. It is a bottom-up strategy which identifies, for
each object x in S, a maximal set of values of attributes which do not have to be
entirely hidden and still the information associated with secure attribute values
of x is protected.



3 Algorithm Protecting Confidential Data against
Rule-based Chase

In this section we present an algorithm which protects values of a hidden at-

tribute over null value imputation C'hases based on ERID. Suppose we have an
information system S as shown in Table 1 of type A = % S is transformed to

Sq by hiding the confidential attribute d as shown in Table 2. The rules in the
knowledge base KB are summarized in Table 3. For instance r; = [by - ¢; — aq]
is an example of a rule belonging to KB and its confidence is 1.

Rule Conf a b c d e f g
1 1 (a1) b1 c1

o 1 (a1) c1 f

73 % (b1) c1

T4 1 (b1) €1

T5 1 ai (61) f1

T6 1 ai C1 (61)

7 2 (c1) e1 a9
T8 1 ai C1 (dl)

T9 1 b1 C1 (d1)

710 1 (dl ) f1

Table 3. Rules contained in KB. Values in parenthesis are decision values

To describe the algorithm, first we define the following sets,

— afx) = {a € A : a(x) # Null}, the set of attribute values in Sy used to
describe z

— af(t), the set of attribute values used in ¢, where t is their conjunction

— R(x) = {(t - ¢) € KB: a(t) C a(x)}, the set of rules in KB where the
attribute values used in ¢ are contained in «(x)

= B(z) = H{a(t) U{ct: [t — d € R(z)}.

In our example R(x1) = {r1,r2,r3,74,75,7'6,77,78,7'9,7"10 }, and [B(z1) =
{a1,b1,¢1,d1,e1, f1, 1} By using Chases based on ERID, d; replaces the hidden
slot d(xz1) by rules from {rg,rg,r10}. Rules rg, r1o guarantee the confidence 1
assigned to di, whereas the rule rg only guarantees the confidence % which
is above the threshold value A\ = % In addition, other rules from R(z;) also
predict attribute values listed in {¢g, t9,%10}. These interconnections often build
up a complex chain of inferences. The task of blocking such inference chains
and identifying the minimal set of concealing values is not straightforward [7],
especially that the confidence assigned to rules in KB and the confidence assigned
to attribute values in S; have to be taken into consideration.

To reduce the complexity and minimize the size of the set of hidden val-
ues, a bottom up approach has been adapted. We check the values that remain



unchanged starting from a singleton set containing attribute value a by using
weighted transitive closure [4] (if @ — b and b — ¢, then a — ¢, which gives us
the set {a,b,c}). What about computing the weights assigned to a, b, ¢? Let us
assume that a — b has a confidence \; and b — ¢ has a confidence Ay. Then,
weight 1 is assigned to a, weight Ay is assigned to b, and weight (A1 - A\g) is
assigned to c. If A3 is a weight associated with a, then weight (A3 A1) is assigned
to b, and weight (Ag-A1-A2) is assigned to c. If the weight assigned to any of the
elements in {a, b, c} is below the threshold value A, then this element is removed
from {a, b, c}. Our goal is to increase the initial set size as much as possible. Let
us notice that any element of the resulting set can be generated by following
two different paths. Each path assigns a different weight to that element. In all
such cases, the highest weight is chosen by our algorithm. This approach auto-
matically rules out any superset of must-be-hidden values, and minimizes the
computational cost. The justification of this is quite simple. Weighted transitive
closure has the property that the superset of a set s also contains s. Clearly, if
a set of attribute values predicts dy, then the set must be hidden regardless of
the presence/abscence of other attribute values.

To outline the procedure, we start with a set 8(z) = {(a1, %), b1, c1,€e1, f1,91}
for the object x; which construction is supported by 10 rules from KB, and
check the transitive closure of each singleton subset d(z) of that set. If the
transitive closure of §(z) contains classified attribute value d; and the weight
associated with d; is greater than A, then d(x) does not sustain, it is marked,
and it is not considered in later steps. Otherwise, the set remains unmarked. In
the second iteration of the algorithm, all two-element subsets of S(x) built only
from unmarked sets are considered. If the transitive closure of any of these sets
does not contain d; with weight associated to it greater than A, then such a set
remains unmarked and it is used in the later steps of the algorithm. Otherwise,
the set is getting marked. If either all sets in a currently executed iteration step
are marked or we have reached the set ((z), then the algorithm stops. Since
only subsets of 3(z) are considered, the number of iterations will be usually not
large.

So, in our example the following singleton sets are considered:

{(a1, %)}Jr = {(a1, %)} is unmarked

{b1}" = {b1,} is unmarked

{er}t ={(a1,2), (b1, 2),c1,(e1,2),(d1, 3)} contains di and 3 > X so it is marked
{e1}" = {b1,e1} is unmarked

{fl}7L = {d1, f1} contains d; so it is marked

{91} = {g1} is unmarked

Clearly, ¢; and f; have to be concealed. The next step is to build sets of
length 2 and determine which of them can sustain. We take the union of two
sets only if they are both unmarked and one of them is a singleton set.

{(a1, %),61}+ = o, %),bl} is unmarked
{(a1, %),61}+ = {(a1, %),bl,el} is unmarked
{(a1, %),g1}+ = {(a1, %),gl} is unmarked



{b1,61}+ = {b1,e1} is unmarked

{bl,gl}+ = {b1, 91} is unmarked

{er, 913" = {(a1,2),(b1,2),(c1,2),(d1,2),e1,91} contains di and 2 > X so it is
marked

Now we build 3-element sets from previous sets that have not been marked.

{(a1,2),b1,e1}" = {(a1, 2),b1, €1} is unmarked
{(a1, %),61,91}+ = {(as, %),bl,g1} is unmarked
{b1, €1, g1}+ is not considered as a superset of {e1, g1} which was marked.

We have {a1,b1,e1} and {a1,b1, g1} as unmarked sets that contain the max-
imum number of elements and do not have the transitive closure containing d
with associated weight greater than A. In a similar way, we compute the maximal
sets for any object x;.

The corresponding algorithm, called G-SCIKD, is a generalization of SCIKD
strategy presented in [7]. If an attribute values revealed by G-SCIKD has a
confidence below A, then this attribute value is removed from consideration.
This constraint is semantically similar to the constraint A used in ERID [2].

4 Experiment

We implemented G-SCIKD on a PC running Windows XP and Oracle database
version 10g. The code was written in PL/SQL language with PL/SQL Developer
version 6.

The sampling data table containing 4,000 objects with 10 attributes was ex-
tracted randomly from a complete database describing personal income reported
in the Census data [1]. The data table was randomly partitioned into 4 tables
that each have 1,000 tuples. One of these tables is called client and the remain-
ing 3 are called servers. Now, we hide all values of one attribute that includes
income data at the client site. From the servers, 13 rules are extracted by FRID
and stored in K B of the client. Additionally, 75 rules describing incomplete or
partially hidden attributes at the client site are extracted by ERID. All these
rules are used to reveal values of incomplete attributes by Chase algorithm [2]. It
appears that 739 attribute values (7.39% of the total number of attribute values
in client table) have to be additionally hidden. The presented method can easily
be used to protect two or more confidential attributes in an information system.
In this case, a set of attribute values in z; should be hidden if the closure of this
set contains any of the classified data.
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