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Abstract. Traditional query processing provides exact answers to queries.
It usually requires that users fully understand the database structure
and content to issue a query. Due to the complexity of the database ap-
plications, the so called global queries can be posed which traditional
query answering systems can not handle. In this paper a query answer-
ing system based on distributed data mining is presented to rectify these
problems. Task ontologies are used as a tool to handle semantic incon-
sistencies between sites.

1 Introduction

In many �elds, such as medical, banking and educational, similar databases are
kept at many sites. An attribute may be missing in one database, while it occurs
in many others. Missing attributes lead to problems. A user may issue a query to
a local database S1 in search for objects in S1 that match a desired description,
only to realize that one component a1 of that description is missing in S1 so
that the query cannot be answered. The de�nition of a1 may be extracted from
databases at other sites and used to identify objects in S1 having property a1.
The simplicity of this approach is no longer in place when the semantics of terms
used to describe objects in a client and remote sites di�er. Sometime, such a
di�erence in semantics can be repaired quite easily. For instance if "Temperature
in Celsius" is used at one site and "Temperature in Fahrenheit" at the other, a
simple mapping will �x the problem. If databases are complete and two attributes
have the same name and di�er only in their granularity level, a new hierarchical
attribute can be formed to �x the problem. If databases are incomplete, the
problem is more complex because of the number of options available to interpret
incomplete values (including null vales). The problem is especially diÆcult when
rule-based chase techniques are used to replace null values by values which are
less incomplete.

The notion of an intermediate model, proposed by [Maluf and Wiederhold]
[1], is very useful to deal with heterogeneity problem, because it describes the



database content at a relatively high abstract level, suÆcient to guarantee homo-
geneous representation of all databases. Knowledge bases built jointly with task
ontologies proposed in this paper, can be used for a similar purpose. Knowledge
bases contain rules extracted from databases at remote sites.

In this paper, the heterogeneity problem is introduced from the query answer-
ing point of view. Query answering system linked with a client site transforms,
so called, global queries using de�nitions extracted at remote sites. These def-
initions may have so many di�erent interpretations as the number of remote
sites used to extract them. Task ontologies are used to �nd new interpretations
representing consensus of all these sites.

2 Distributed Information Systems

In this section, we recall the notion of a distributed information system and a
knowledge base for a client site formed from rules extracted at remote sites. We
introduce the notion of local queries and give their standard semantics.

By an information system we mean S = (X;A; V ), where X is a �nite set of
objects, A is a �nite set of attributes, and V =

S
fVa : a 2 Ag is a set of their

values. We assume that:

� Va; Vb are disjoint for any a; b 2 A such that a 6= b,
� a : X �! 2Va � f;g is a function for every a 2 A.

Instead of a, we may write a[S] to denote that a is an attribute in S.

By distributed information system we mean DS = (fSigi2I ; L) where:

� I is a set of sites.
� Si = (Xi; Ai; Vi) is an information system for any i 2 I ,
� L is a symmetric, binary relation on the set I .

A distributed information system DS = (fSigi2I ; L) is consistent if the fol-
lowing condition holds:

(8i)(8j)(8x 2 Xi \Xj)(8a 2 Ai \Aj)
[(a[Si](x) � a[Sj ](x)) or (a[Sj ](x) � a[Si](x))].

Let Sj = (Xj ; Aj ; Vj) for any j 2 I . In the remainder of this paper we assume
that Vj =

S
fVja : a 2 Ajg.

From now on, in this section, we use A to denote the set of all attributes in
DS, A =

S
fAj : j 2 Ig. Also, by V we mean

S
fVj : j 2 Ig.

Before introducing the notion of a knowledge base, we begin with a de�nition
of s(i)-terms and their standard interpretationMi in DS = (fSjgj2I ; L), where
Sj = (Xj ; Aj ; Vj) and Vj =

S
fVja : a 2 Ajg, for any j 2 I .

By a set of s(i)-terms (also called a set of local queries for site i) we mean a
least set Ti such that:



{ 0;1 2 Ti,
{ w 2 Ti for any w 2 Vi,
{ if t1; t2 2 Ti, then (t1 + t2); (t1 � t2);� t1 2 Ti.

By a set of s(i)-formulas we mean a least set Fi such that:

{ if t1; t2 2 Ti, then (t1 = t2) 2 Fi .

De�nition of DS-terms (also called a set of global queries) and DS-formulas
is quite similar (we only replace Ti by

S
fTi : i 2 Ig and Fi by F in two de�nitions

above).
We say that:

{ s(i)-term t is primitive if it is of the form
Q
fw : w 2 Uig for any Ui � Vi,

{ s(i)-term is in disjunctive normal form (DNF) if t =
P
ftj : j 2 Jg where

each tj is primitive.

Similar de�nitions can be given for DS-terms.
Clearly, it is easy to give an example of a local query. The expression:

select � from F lights

where airline = "Delta"
and departure time = "morning"
and departure airport = "Charlotte"
and aircraft = "Boeing"

is an example of a non-local query (DS-term) in a database

F lights(airline; departure time; arrival time;
departure airport; arrival airport).

Semantics of s(i)-terms is de�ned by the standard interpretation Mi in a
distributed information system DS = (fSjgj2I ; L) as follows:

{ Mi(0) = ;, Mi(1) = Xi

{ Mi(w) = fx 2 Xi : w 2 a(x)g for any w 2 Via,
{ if t1; t2 are s(i)-terms, then

Mi(t1 + t2) =Mi(t1) [Mi(t2),
Mi(t1 � t2) =Mi(t1) \Mi(t2),
Mi(� t1) = Xi �Mi(t1).
Mi(t1 = t2) =
(if Mi(t1) =Mi(t2) then T else F )
where T stands for True and F for False

The sound and complete axiomatization of the above semantics for a complete
distributed information system is given, for instance, in paper by [Ras][5]. This
semantics is slightly modi�ed for distributed incomplete information systems
(see paper by [Ras and Joshi][7]).



Now, we are ready to introduce the notion of (k; i)-rules, for any i 2 I . We
use them to build a knowledge base at site i 2 I .

By (k; i)-rule in DS = (fSjgj2I ; L), k; i 2 I , we mean a triple (c; t; s) such
that:

{ c 2 Vk � Vi,
{ t; s are s(k)-terms in DNF and they both belong to Tk \Ti,
{ Mk(t) �Mk(c) �Mk(t+ s).

Any (k; i)-rule (c; t; s) inDS can be seen as a de�nition of c which is extracted
from Sk and can be used in Si.

For any (k; i)-rule (c; t; s) in DS = (fSjgj2I ; L), we say that:

{ (t! c) is a k-certain rule in DS,
{ (t+ s! c) is a k-possible rule in DS.

Let us assume that r1 = (c1; t1; s1), r2 = (c2; t2; s2) are (k; i)-rules. We say
that: r1; r2 are strongly consistent, if either c1; c2 are values of two di�erent
attributes in Sk or a DNF form equivalent to t1 � t2 does not contain simple
conjuncts.

Now, we are ready to de�ne a knowledge base Dki. Its elements are called
de�nitions of values of attributes from Vk � Vi in terms of values of attributes
from Vk \ Vi.

Namely, Dki is de�ned as a set of (k; i)-rules such that:
if (c; t; s) 2 Dki and the equation t1 =� (t+ s) is true in Mk, then (� c; t1; s) 2
Dki.
The idea here is to have de�nition of � c in Dki if already de�nition of c is in
Dki. It will allow us to approximate (learn) concept c from both sites, if needed.

By a knowledge base for site i, denoted by Di, we mean any subset of
S
fDki :

(k; i) 2 Lg. If de�nitions are not extracted at a remote site, partial de�nitions
(c; t) corresponding to (t ! c), if available, can be stored in a knowledge base
at a client site.

3 Semantic Inconsistencies and Distributed Knowledge

Systems

In this section, we introduce the notion of a distributed knowledge system (DKS)
and next we present problems related to its query answering system QAS. We
discuss the process of handling semantic inconsistencies in knowledge extracted
at di�erent DKS sites and next we outline query transformation steps based on
distributed knowledge mining.

By Distributed Knowledge System (DKS) we mean DS = (f(Si; Di)gi2I ; L)
where (fSigi2I ; L) is a distributed information system, Di =

S
fDki : (k; i) 2 Lg

is a knowledge base for i 2 I .
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Figure 1 shows an example of DKS and its query answering system QAS

that handles global queries.

For simplicity reason only two sites of DKS are considered in our example.
A user queries site 1 asking for all its objects satisfying q = (a1 � c2) + (f2 � g1).
The user is interested only in objects at site 1. The �rst part of the query, which
is (a1 � c2), can be handled by local QAS because both its attribute values
are within the domain of the information system at site 1. For instance, taking
optimistic interpretation of all attribute values at site 1 (null values are treated
as supporting values), objects x1 and x2 will satisfy query (a1 � c2). Let us
consider the second part of the query q, which is (f2 � g1). Attribute value f2 is
not in the domain V1 of the information system S1 at site 1 but its de�nition is
in knowledge base D1 at site 1. This de�nition can be used to replace the value
f2 in q by a term which de�nes f2. In our example, either a partial de�nition
(f2; a1 � b2+ d2) or a de�nition (f2; a1 � b2+ d2;� (a1 � b2+ d2)� � d2) of f2 can
be generated from D1. The attribute value g1 used in a query q is neither in the
domain D1 nor its de�nition is in D1. In this case we have to search for a remote
site, where de�nition of g1 can be extracted from its information system. In our
example site 2 satis�es this requirement. Expression (g1; a2) can be seen as a
partial de�nition of g1 which can be extracted from S2. Alternatively, expression
(g1; a2;� a1� � a2) can be used as a de�nition of g1 found at site 2. To simplify
the problem further, assume that partial de�nitions of f2 and g1 are used to
replace query q by a new query which can be handled locally by QAS at site 1.
This new query approximating q, described by a term (a1+c2)+(a1�b2+d2)�a2,
can be seen as a lower approximation of q in rough sets terminology. If we use
de�nition of f2 and de�nition of g1 instead of partial de�nitions, query q can
be replaced by a rough query. Rough queries are especially useful when the
boundary area in a rough query representation is small. In a distributed scenario,
similar to the one presented in this paper, this boundery area is getting smaller
and smaller when more and more sites are used to search for de�nitions of
non-local attributes (f2 and g1 in our example). Now, let's go back to term
(a1 � c2)+(a1 � b2+d2)�a2. If the distribution law can be applied then our term
would be transformed to (a1 � c2) + (a1 � b2 � a2 + d2 � a2) and next assuming
that properties a1 � a2 = 0 and 0 � t = 0 hold we would get its �nal equivalent
form which is a1 � c2 + d2 � a2. However if each of our three terms a1 � b2, d2, a2
is computed under three di�erent semantics, then there is a problem with the
above tranformation process and with a �nal meaning of (a1 � b2 � a2 + d2 � a2).

For instance, let us assume a scenario where partial de�nition (f2; a1 � b2)
was extracted under semantics M1, partial de�nition (f2; d2) under semantics
M2, and (g1; a2) under semantics M3. Null value is interpreted below as a set
of all possible values for a given attribute. Also, x has the same meaning as the
pair (x; 1).

Semantics M1 (see [Ras and Joshi][7]) is de�ned as:

{ M1(v) = f(x; k) : v 2 a(x) & k = card(a(x))g if v 2 Va,

{ M1(t1 � t2) = M1(t1)
M1(t2), M1(t1 + t2) = M1(t1)�M1(t2).



To de�ne 
, �, let us assume that Pi = f(x; p<x;i>) : p<x;i> 2 [0; 1] &
x 2 Xg where X is a set of objects. Then, we have:

{ Pi 
 Pj = f(x; p<x;i> � p<x;j>): x 2 Xg,
{ Pi � Pj = f(x;max(p<x;i>; p<x;j>)): x 2 Xg.

Semantics M2 is de�ned as:

{ M2(v) = fx : v 2 a(x) & card(a(x)) = 1g if v 2 Va,
{ M2(t1 � t2) = M2(t1) \M2(t2), M2(t1 + t2) = M2(t1) [M2(t2).

Finally, semantics M3 is de�ned as:

{ M3(v) = fx : v 2 a(x)g if v 2 Va,
{ M3(t1 � t2) = M3(t1) \M3(t2), M3(t1 + t2) = M3(t1) [M3(t2).

Assume now, the following relationship between semantics Mi and Mj :
Mi �Mj i� [ (x; k) 2Mi(a) �! (9k1 � k)[(x; k1) 2Mj(a)] ].

It can be easily proved that � is a partial order relation.
In our example, for any v 2 Va, we have: M2(v) �M1(v) �M3(v).
We say that functors + and � preserve monotonicity property for semantics

N1, N2 if the following two conditions hold:

{ [N1(t1) � N2(t1) & N1(t2) � N2(t2)] implies N1(t1 + t2) � N2(t1 + t2),
{ [N1(t1) � N2(t1) & N1(t2) � N2(t2)] implies N1(t1 � t2) � N2(t1 � t2).

Let (
;�) be a partially ordered set of semantics. We say that it preserves
monotonicity property for + and �, if + and � preserve monotonicity property
for any N1, N2 in 
. It can be easily checked that (fM1;M2;M3g;�) preserves
monotonicity property for + and �.

We adopt the de�nition of ontology proposed by Mizoguchi [2]. He claims that
ontology should consist of task ontology which characterizes the computational
architecture of a (distributed) knowledge system which performs a task and
domain ontology which characterizes the domain knowledge where the task is
performed.

In the scenario presented in our paper, a number of remote sites for a given
client site has to be accessed. The same terms, used in knowledge extraction
or local query processing, can have di�erent interpretations at each of these
sites. In a query transformation process, many subterms forming any of these
intermidiate queries may come from de�nitions extracted not necessarily from
the same site of DKS. Clearly, in this situation our query can not be processed
unless a common, possibly optimal, semantics for all these subterms is found.

We claim that one way to solve this problem is to assume that partially
ordered set of semantics (
;�), preserving monotonicity property for + and �,
is a part of global ontology (or task ontology in Mizoguchi's [2] de�nition).

In our example, we evaluate query q taking �rst M2 and next M3 as two
common semantics for all subterms obtained during the transformation process



of q because M2(v) � M1(v) � M3(v). In general, if (
;�) is a lattice and
fMigi2I is a set of semantics involved in transforming query q, then we should
takeMmin =

T
fMigi2I (the greatest lower bound) andMmax =

S
fMigi2I (the

least upper bound) as two common semantics for processing query q.

Common semantics is also needed because of the necessity to prove soundness
and possibly completeness of axioms to be used in a query tranformation process.
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Fig. 2. Query and Rough Query Processing by DKS

Figure 2 gives a 
owchart of a query transformation process in QAS assuming
that local query semantics at all contacted sites is the same and DKS is consis-
tent (granularity levels of the same attributes at remote sistes and the client site
are the same). This 
owchart will be replaced by two similar 
owcharts (corre-
sponding toMmin andMmax) if semantics at contacted remote sites and a client
site di�er. Semantics Mmin and Mmax can be seen jointly as a rough semantics.



The word rough is used here in the sense of rough sets theory (see [Pawlak][3]).
Saying another words, the semantics used during query transformation process
can be seen only as one which is between two semantics Mmin and Mmax.

If we increase the number of sites from which de�nitions of non-local at-
tributes are collected and then resolve inconsistencies among them (see [Ras][4]),
the local con�dence in resulting de�nitions is expected to be higher since they
represent consensus of more sites. At the same time, if the number of remote sites
involved in a query transformation process is increased, the number of di�erent
semantics may increase as well which in result may also increase the roughness
of the answer to the query.

4 Conclusion

Clearly, the easiest way to solve semantic inconsistencies problem is to apply
the same semantics at all remote sites. However when databases are incomplete
and we replace their null values using rule-based chase algorithms based on rules
locally extracted then we are already commited to the semantics used by these
algorithms. If we do not keep track what and how null values have been replaced
by rule-based chase algorithms, there is no way back for us. Also, it sounds
rather unrealistic that one semantics for incomplete databases can be chosen
as a standard. We claim that in such cases a partially ordered set of semantics
(
;�) or its equivalent structure should be a part of task ontologies to solve the
problem.
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