SWATT

A software-based attestation method
for embedded devices

Lecture outline

Introduction
Problem definition, assumptions & model

SWATT
Future work

Introduction

e Attestation is the ability to affirm to be
correct, true, or genuine

e We would like to provide the ability to verify
the memory content of a device we are about
to interact with

* This is one way to establish the absence of
malware (viruses worms, trojan horses...)

Introduction

Embedded devices cannot be physically
secured & may often be in a hostile
surrounding

Cost is a major issue, even a small increase in
device cost leads to a significant increase in
high volume production

Hardware solutions may be expensive

Devices will typically have no virtual memory.
(Kennel & Jamieson method)

Introduction

e Software based attestation method (can be
used on legacy devices, no need for special
hardware)

e Attests the device code, static data &
configuration settings

 The verifier does not require direct (hardware)
access to device memory

Introduction

SWATT: A challenge response protocol

1. Generate Random
challenge 2.Challenge (+ Attestation Routine)

Precompute result \

3. Execute
Embedded\ A ttestation

Device Routine

/

4. Challenge Result

5. Compare results

Measure response time

Lecture outline

Introduction
Problem definition, assumptions & model

SWATT
Future work

Definitions

Naive attempt:

e Verifier sends a challenge, device uses challenge
as MAC key & computes MAC on memory, result
is returned to verifier

v’ Replay attack
v Pre-computation

X Malware can cheat — empty memory content can
be used to store malware & skipped during the
MAC computation. Malware code could also
move original code to another device which will
be used for MAC computation

Definitions

e MAC is not good enough, can we find an
effective verification procedure?

e If the memory contents of the device is the
same as the value expected by the verifier the
checksum will always be correct & verification
will be successful

e Verification will fail with high probability if the
memory contents of the device differs from
the expected content

Assumptions

e Verification procedure exists on the device (or
downloaded prior to verification)

e Verifier knows the expected memory layout

e Verifier is intimately familiar with device HW
— Clock speed
— Memory architecture
— Memory size
— Instruction set (ISA)

Threat model

e Attacker has full control over the device
memory

e Attacker does not modify the device HW
— Increase memory size
— Change memory access timing
— Increase CPU clock speed

e Attacker does not tamper with bios

Lecture outline

Introduction
Problem definition, assumptions & model

SWATT
Future work

SWATT

General concept:

The random challenge is used to seed the
pseudorandom number generator

Number are used to traverse memory & update MAC

Malware cannot predict which memory will be
requested next (altered memory or original memory)

An extra if statement must be added to divert load
operations from the altered memory

The increase in running time will be noticeable

SWATT

Desired verification process properties

e The PRG should be optimized for CPU
architecture (rc4 for 8bit, Helix for32 bit)

e Resistance to replay & pre-computation attacks is
achieved by seeding the PRG with a random
challenge

 High probability of detecting changes

— Every memory location must be accessed
Coupon collector problem shows that we need to
make O(nIn(n)), where n is the memory size

— MAC should reflect changes to a single byte

SWATT

Desired properties — Cont.

 Small code size — an ‘if’ statement translates to a
compare instruction + a conditional branch i.e.
~2-3 CPU cycles. If this is to be noticeable the
verification procedure should take few tens of
CPU cycles (not inc. init & epilogue)

e Optimized implementation — if attacker can find a
more optimized implementation of the
verification procedure it will be possible to
conceal the extra ‘if’

SWATT

Desired properties — Cont.

 Non parallelizable — To prevent multiple
devices from performing distributed
computation, to solve this the actual memory
access is based on the RNG & the current

checksum value

SWATT
Experimental results

e Genuine software

e Attacker’s version
— Single byte of modified code
— Single ‘if’ statement in the verification procedure

[§=]

— Lepitimate verification cods N
« = Anacker's verification code
+ Timedifference

[P A - = o

T |secomels |

A =

I'III'IIr'IIrIIrIlrl'lrI'III'II['IIr'IIrIIrI'I[I

Pd Lok Ba b

ol led s ol l s Be Palolulalilololslaldslsl®

L Lertd 1 $et03 2t} § 2 et Ja+)5

MNumbear of mamory aooes5as

SWATT

Considerations for practical use:
e Number of iterations

e Architecture:

— Harvard: only program memory (code + static) needs to be
verified. Different read latencies can be serve an attacker

— Von — Neumann: code & data share memory.
How do we handle the data section (stack, sensor readings...)

* Software must be designed to have checkpoints where data state
is predictable

e Verifier can download data section
e Empty memory regions:

— should be filled with a random pattern (so that an attacker
cannot suppress the read operation & save time)

Future work

Checksum / RNG
— Will vary between platforms

Code Optimization

— Theoretical framework to proof maximum
optimization

How to perform device attestation remotely

— Untrusted network

— Unpredictable networking latencies

Devices with sophisticated architecture

— Vitrual Memory

— Branch prediction

SWATTPro

* Try to prevent static analysis to the attestation
functions
— Randomization
— Encryption
— Self-modifying code (this is what virus do)
— Opaque prediction
— Junk instruction

e Mechanisms 1, 2,4, and 5 are easy to
understand

e Let us look at number 3

— Three operations: jump, read, and self-modifying

— The self-modifying segment will determine where
to jump and what to read

