The Feasibility of Launching and Detecting Jamming Attacks in Wireless Networks

Authors: Wenyuan XU, Wade Trappe, Yanyong Zhang and Timothy Wood

OUTLINE

- I. Introduction
- 2. Jamming Attack Models
- 3. Statistics for detecting jamming attacks
- 4. Jamming Detection with consistency checks
- 5. Related Work
- 6. Conclusion

INTRODUCTION

- Wireless networks have gained great popularity. Is providing security is a critical issue??
- An Adversary is empowered to launch a severe DoS attack by blocking the wireless medium. Jamming
- The first stage in defense is understanding the types of **Jamming** attacks and

Jammer Attack Models

Normal MAC protocol:

Need to send m

Is No Backoff
idle?

Yes start to send m

Jammer:

Constant Jammer

 Constant Jammer- continually emits a radio signal (noise). The device will not wait for the channel to be idle before transmitting. Can disrupt even signal strength comparison protocols.

Deceptive Jammer

Deceptive Jammer- constantly injects regular packets with no gap between packets. A normal device will remain in the receive state and cannot switch to the send state because of the constant stream of incoming packets.

Random Jammer

Random Jammer- alternates between sleeping and jamming. Can act as constant or deceptive when jamming. Takes energy conservation into consideration.

Reactive Jammer

Reactive Jammer- other three are active this is not. It stays quiet until there is activity on the channel. This targets the reception of a message. This style does not conserve energy however it may be harder to detect.

How do we measure Communication?

- Packet Sent Ratio (PSR)-the ratio of packets successfully sent by a legitimate sender
 - MAC protocols, Carrier-Sensing and signal strength comparison causing buffered and dropped packets
- Packet Delivery Ratio (PDR)- ratio of packets successfully delivered compared to sent(packets may be corrupt even if received)
 - measured by receiver with pass CRC and preamble
 - measured by sender with packets sent and ACK

Experiment Setup

Receiver B

Involving three parties:

- Normal nodes:
 - Sender A
 - Receiver B
- Jammer X

Parameters

- Four jammers model
- Distance
 - Let $d_{XB} = d_{XA}$
 - Fix d_{AB} at 30 inches
- Power
 - $P_A = P_B = P_X = -4dBm$
- MAC
 - Fix MAC threshold
 - Adaptive MAC threshold (BMAC)

Sender A

Experiment Results

Constant Jammer						
d _{xa} (inch)	ВМАС		FixMAC			
	PSR(%)	PDR(%)	PSR(%)	PDR(%)		
38.6	74.37	0.43	1.00	1.94		
54.0	77.17	0.53	1.02	2.91		
72.0	99.57	93.57	0.92	3.26		

Reactive Jammer									
		BMAC		FixMAC					
d _{xa} (inch)		PSR(%)	PDR(%)	PSR(%)	PDR(%)				
	38.6	99.00	0.00	100.0	0.00				
m =	54.0	100.0	99.24	100.0	99.87				
7bytes	72.0	100.0	99.35	100.0	99.87				
	38.6	99.00	0.00	100.0	0.00				
m =	44.0	99.00	58.05	100.0	87.26				
33bytes	54.0	99.25	98.00	100.0	99.53				

What attributes will help us detect jamming?

Signal Strength

Carrier Sensing Time

Packet Delivery Ratio

Signal Strength

How can we use Signal Strength to detect Jamming?

- Signal strength distribution may be affected by the presence of a jammer
- Each device should gather its own statistics to make its own decisions on the possibility of jamming
- Establish a base line or build a statistical model of normal energy levels prior to jamming of noise levels....But how??

Two Methods for Signal Strength

I. Basic Average and Energy Detection

 We can extract two statistics from this reading, the average signal strength and the energy for detection over a period of time

2. Signal Strength Spectral Discrimination

- A method that employs higher order crossings (HOC) to calculate the differences between samples
- This method is practical to implement on resource constrained wireless devices, such as sensor nodes

SIGNAL STRENGTH

- -The average values for the constant jammer and the MaxTraffic source are roughly equal
- -the Constant jammer and deceptive jammer have roughly the same average values
- -The signal strength average from a CBR source does not differ much from the reactive jammer scenario
- These results suggest that we may not be able to use simple statistics such as average signal strength to identify jamming

More on Signal Strength

Not Successful

- •We can not distinguish the reactive or random jammer from normal traffic
- •A reactive or random jammer will alternate between busy and idle in the same way as normal traffic behaves
- •HOC will work for some jammer scenarios but are not powerful enough to detect all jammer scenarios

Next....Carrier Sensing Time

- 802.11 uses CSMA and RTS/CTS so if the channel is occupied either a time out or stuck in channel sensing
- Establish an average sensing time during normal traffic to allow you to compare when you may be jammed.
- Only works with fixed signal strength not adaptive thresholds such as BMAC.
- Determine when large sensing times are results of jamming by setting a threshold
- Threshold set conservatively to reduce false positive (significance testing)

Carrier Sensing Time Analysis

Observations:

- •It detects the Constant and Deceptive Jammer
- •It does not detect the Reactive or Random Jammer

Finally, the best for last....Packet Delivery Ratio

- How much PDR degradation can be caused by non-jamming, normal network dynamics, such as congestion?
- Result: PDR 78%
- It can be measured in two ways, by the sender or receiver
- the PDR can be used to differentiate a jamming attack from a congested network.
- A simple threshold based on PDR is a powerful statistic to determine Jamming vs. congestion.
- It can not account for all network dynamics.

Basic Statistics Summary

- Both Signal Strength and Carrier Sensing time can only detect the constant and deceptive jammer.
- Neither of these two statistics is effective in detecting the random or the reactive jammer.
- PDR is a powerful statistic to determine Jamming vs. congestion. It can not account for all network dynamics.

We need Consistency Checks to be Sure

- I. Signal Strength Consistency Checks
- 2. Location Consistency Checks

Assumptions

- Each node detects whether it is jammed
- Each node maintains a neighbor list from routing layer
- Network deployment is dense so each node has several neighbors
- All legitimate nodes participate by sending heartbeat beacons(allows for reliable estimate of PDR over time)

PRD/Signal Strength Consistency

4.1 Signal Strength Consistency Checks

Observed Normal relationships

- •High signal strength yields a high PDR
- Low signal strength yields a low PDR
- Jammed scenario: a high signal strength but a low PDR

•The Jammed region has above 99% signal strength confidence intervals and whose PDR is below 65%

PDRVS DISTANCE

Observations:

- Neighbors that are close should have high PDR values, if they have low PDR values they are Jammed
- All nodes advertise their current. location and their PDRs to their neighbors to ensure there is a minimum amount of traffic to establish PDR. Thus PDR = 0 if no packets received

 •Similar to the SS consistency check. An initial baseline to represent the profile of
- a normal environment (PDR,d) for each node.
- olf a lower PDR is observed than should be for a given distance under normal radio conditions than the node declares it is Jammed.

5. RELATED WORK

• This work focuses on being able to detect and under stand attacks. Do you understand that you are under attack??

 Countermeasures: Physical layer design technologies such as spread spectrum work but have not found wide spread deployment in commodity wireless devices.

 The use of Low density parity check codes, Reed-Solomon codes, channel surfing or on demand link layer frequency hopping and spatial retreats....yes, Run Away!!

6. CONCLUSIONS

 Protecting our wireless networks is important

Jamming is a viable threat

 Detecting Jamming is the first step in defeating it