The Sybil Attack in Sensor Networks: Analysis & Defenses

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Introduction

- Security in Sensor Network
 - Wireless network natures
 - Sensor nodes constraints
- Sybil Attacks
 - First described in peer-to-peer networks.
 - An attack against identity.
 - A particularly harmful attack in sensor networks.

Definition of Sybil Attack

- In this paper
 - A malicious device illegitimately takes on multiple identities.
 - The additional identities are called Sybil nodes.
- Question:
 - How does an attacker create Sybil nodes and use them?

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Sybil Attack Taxonomy

- Dimension I Direct vs. Indirect
 Communication
 - Direct Communication
 - Legitimate nodes can communicate with Sybil nodes directly.
 - Indirect Communication
 - One or more of the malicious devices claims to be able to reach the Sybil nodes.
 - Messages sent to a Sybil node are routed through one of these malicious nodes.

Sybil Attack Taxonomy

- Dimension II Fabricated vs. Stolen Identities
 - Fabricated
 - Simply create arbitrary new Sybil identities.
 - Stolen
 - Assign other legitimate identities to Sybil nodes.
 - May go undetected if attacker destroys or disable them.
 - Identity Replication Attack
 - The same identity is used many times and exists in multiple places in the network.

Sybil Attack Taxonomy

- **Dimension III** Simultaneity
 - Simultaneous
 - All Sybil identities participate in the network at once.
 - Non-Simultaneous
 - Only act as a smaller number of identities at any given time by:
 - Letting different identities join and leave
 - Or only using each identity once.
 - Having several physical devices swap identities.

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Known Attacks

- Distributed Storage
 - Defeat replication and fragmentation mechanisms
- Routing
 - Attack routing algorithm
 - Geographic routing
 - Evade misbehavior detection mechanisms

New Attacks

- Data Aggregation
 - With enough Sybil nodes, an attacker may be able to completely alter the aggregate reading.
- Voting
 - Depending on the number of identities the attacker owns, he may be able to determine the outcome of any vote.
 - Either claim a legitimate node is misbehaving or Sybil nodes can vouch for each other...

New Attacks

Fair Resource Allocation

- Using Sybil attack, a malicious node can obtain an unfair share of any resource shard in per-node manner.
- Consequently, cause DoS to legitimate node, and also give the attacker more resources to perform attacks.

Misbehavior Detection

- Sybil nodes could "spread the blame".
- Even action is taken to revoke the offending nodes, the attacker can continue using new Sybil identities to misbehave.

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Defenses

- Two types of ways to validate an identity
 - Direct validate
 - Indirect validate

Defenses

• Previous Defense

Resource testing

By verifying that each identity has as much of the tested resource as a physical device.

- Computation, storage
- and communication
- Unsuitable for wireless sensor networks
 - WHY?

New Defenses in this paper

- Radio Resource Testing
- Random Key Predistribution
- Registration
- Position Verification
- Code Attestation

Radio Resource Testing

- Direct validation
- Assumptions
 - Any physical device has only one radio
 - A radio is incapable of simultaneously sending or receiving on more than one channel.
- The basic idea:
 - A node assigns each of its n neighbors a different channel.
 - By challenging a neighbor node on the exclusively assigned channel, a sensor node can detect Sybil nodes with a certain probability.

Radio Resource Testing with enough channels

• Suppose:

- s Sybil nodes out of n neighbors.
- One channel for each neighbor.
- Pr (choose a channel is not being transmitted on)

$$= \frac{s}{n}$$

• **Pr** (not detecting a Sybil node) $= \frac{n-s}{s}$

Repeat test for r round
 Pr (no Sybil nodes being detected)

$$= \left(\frac{n-s}{n}\right)^{r}$$

Figure 1: Probability of no Sybil nodes being detected, using the radio defense, with a channel for every neighbor. Assumes 15 neighbors (including Sybil nodes), any number of which could be malicious.

Radio Resource Testing with limited channels

 In case of limited channels, only subset of its neighbors can be tested at one time.

Radio Resource Testing with limited channels

Repeating this test for r rounds
 The probability of a Sybil node being detected is

$$\begin{split} Pr(detection) = & 1 - Pr(nondetection)_{1round}^{r} \\ = & 1 - \left(1 - Pr(detection)_{1round}\right)^{r} \\ = & 1 - \left(1 - \sum_{allS,M,G} \frac{\binom{s}{S}\binom{m}{M}\binom{g}{G}}{\binom{n}{c}} \frac{S - (m - M)}{c}\right)^{r} \end{split}$$

Figure 2: Probability of no Sybil nodes being detected, using the radio defense, with fewer channels than neighbors. Assumes 5 correct neighbors, 5 malicious neighbors, and 5 Sybil neighbors.

Random Key Predistribution

Random Key Predistribution

- Each node is assigned a random set of keys or keyrelated information.
- In key set-up phase, each node can discover or compute the common key it shares with its neighbors...
- Node-to-node secrecy.

Random Key Predistribution

Key ideas:

- Associating the node identity with the keys assigned to the node.
- Key validation, i.e., the network being able to verify part or all of the keys that an identity claims to have.
 - Direct or Indirect Validation?

Different variants

- Key pool
- Single-space pairwise key distribution
- Multi-space pairwise key distribution

- An Extension
 - Let $\Omega(ID) = \{K_{\beta_1}, K_{\beta_2}, \dots, K_{\beta_k}\}$ be the set of keys assigned to ID,
 - ID is the identity of the node, anc β_i is the index of its ith key in the key pool,
 - The set of keys that node ID possesses are determined by:

$$\beta_i = PRF_{H(ID)}(i),$$

- where *H* is a hash function, and *PRF* is a pseudo random function.
- The index of a node's i^{th} key, β_i is determined by a *pseudo* random function with H(ID) as the function's key, and i as its input.

- An example
 - Node ID = 30
 - Key set = { K_1 , K_8 , K_{12} , K_{78} , ...}
 - Rule: pick the 3rd indices
 - How to validate this node ID (= 30) ??
 - Test whether PRF $_{H(30)}$ (3) = 12 ??
 - What properties does this scheme have?

What can the attacker do?

- Capture legitimate nodes and read off the keys,
- Build up a compromised key pool S,
- Fabricate usable Sybil identities ID' to use in Sybil attack, which means ID' must be able to pass the validation by other nodes.

• Question:

- Given a set of compromised keys S
- How difficult for an attacker to generate a usable Sybil identity?
- How to evaluate the difficulty?

- How to evaluate the difficulty?
 - The time complexity to generate a usable Sybil node ID given a set of compromised nodes could be expressed in terms of the probability p that a random identity is a usable Sybil identity.
 - So, the expected number of times an attacker has to try to find a usable Sybil identity is 1/p.

Random Key Predistribution

- In contrast, Pairwise key distribution
 - Assigns a unique key to each pair of nodes...
 - Single-space Pairwise Key Distribution
 - Multi-space Pairwise Key Distribution

Multi-space Pairwise Key Distribution

- To further enhance the security of single-space...
- In this scheme, each sensor node will be assigned *k* out of the *m* key spaces.
- Key computation
 - Use single-space scheme, if they have one or more key spaces in common.

Summary of Random Key Predistribution

- Key Pool
 - One-way function
 - Indirect validation
- Single-space pairwise key distribution
 - $-\lambda$ -secure property
 - Direct validation ensures globally consistent outcome.
- Multi-space pairwise key distribution

Other Defenses

- Identity Registration
 - Based on a trusted central authority
 - However,
 - Attacker may be able to control the good list.
 - Need maintain the deployment information
- Position Verification
 - Assume network is immobile.
 - Verify the physical position of each node.
 - How to securely verify a node's exact position is still an open question.
 - Mobile attacker's identity needs to be verified simultaneously.

Other Defenses

- Code Attestation
 - Code running on a malicious node must be different form that on a legitimate node.
 - The technique is not readily applicable to wireless network.
 - High cost
 - Energy consumption

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Comparison and Discussion

• All these Sybil Defenses...

Defense	Who Can Validate	Remaining Sybil Vulnerabilities
Radio	Neighbors	Indirect Com., Non-Simult.
Position Verification	Neighbors	Indirect Com.*
Registration	Anyone	Stolen IDs
Key Predistribution	Anyone w/shared keys	Stolen IDs**
Code Attestation	Anyone	None***

^{*} Assume that nodes can only verify the position that they directly communicate with;

^{**} Key predistribution can not stop an attacker from using stolen identities... but it does make it more difficult for the attacker to steal identities in the first place.

Outlines

- Introduction
- Three Dimensions of Sybil Attack Taxonomy
- Attacks
 - Known & New attacks
- Defenses
 - Radio Resource Testing
 - Random Key Predistribution
 - Other Defenses
- Discussion
- Conclusion

Conclusions

- The first paper that systematically analyzes the Sybil attack and its defenses in sensor networks.
- It introduces a taxonomy of the different forms of the Sybil attack.
- Several new defenses are proposed.

Conclusions

- In radio resource testing
 - Based on the assumption that each node has only one channel and can't send and receive simultaneously on more than one channel.
 - How a sensor node assigns the radio channels to its neighbors?
 - The testing process may consumes a lot of battery power
- In random key predistribution
 - If some keys are compromised, the attacker may be able to falsely claim the identities of many non-compromised sensor nodes.
 - It's not practical in a mobile wireless network environment.
- Other defenses
 - Have their own drawbacks and not very applicable in wireless sensor networks...