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Abstract—In November 2017, Hecht and Kamlofsky sub-
mitted HK17, a quaternion(octonion)-based Diffie-Hellman key
exchange protocol, to NIST post-quantum cryptography project,
and thought that at least O(p8) arithmetic operations are needed
for a passive adversary to recover the shared key where p is the
modulo used in the scheme. Later, Bernstein and Lange pointed
out that the shared key can be recovered with O(p) arithmetic
operations, which implies that HK17 with small p is not secure.
However, their attack does not work in practice for the scheme
with sufficiently large p, although the scheme is still efficient.
In this paper, we propose an attack to show that just constant
arithmetic operations, or Õ(log p) bit operations, are enough to
recover the shared key for a passive adversary. Note that even the
legal party in the protocol needs at least Õ(log p) bit operations
to establish the shared key. We break HK17 completely in the
practical sense.

I. INTRODUCTION

Due to Shor’s algorithms [10], [11], the cryptographic
protocols based on integer factorization and discrete logarithm
problem can be efficiently broken with practical quantum
computers. Besides, the improvements of some quantum algo-
rithms like Grover’s algorithm [7] demand us to reevaluate the
security of classical cryptographic protocols. The parameters
should be no doubt selected carefully to resist the attack
from quantum computers, which will make the protocols
less efficient. Therefore, it become more and more urgent
to construct cryptographic primitives that can resist quantum
attacks since more and more people believed that the practical
quantum computers move to reality closer and closer.

Under such a circumstance, NIST initiated a process to so-
licit, evaluate, and standardize one or more quantum-resistant
public-key cryptographic algorithms since 2016. It called for
proposals of post quantum cryptosystems including public key
encryption, digital signature and key encapsulation. Later in
November of 2017, NIST published the Round 1 submissions
for the Post-Quantum Cryptography. Among all the candidate
schemes, a key exchange protocol called HK17 was proposed
by Hecht and Kamlofsky [8].

Key exchange (KE) protocol is a fundamental cryptographic
primitive, which allows two communicators to establish a
common key so that they can do the further communica-

tion securely. Since KE protocol can establish a common
key securely over an insecure channel, it is widely used in
building communication protocols, such as SSL/TLS. The
first KE protocol was proposed by Diffie and Hellman [5].
It is based on the discrete logarithm problem, and obviously
insecure under the quantum attacks. Therefore post-quantum
key exchange protocol constitutes a substantial part of the
NIST post-quantum cryptography project.

So far, plenty of post-quantum KE protocols have been
proposed these years, such as [1], [3], [6]. Most of them are
based on the lattice problems. However, HK17 employs an
interesting mathematical object called hypercomplex numbers
like quaternions and octonions as the basic elements in their
protocol, which is very different from most of the other KE
protocols.

Quaternions are noncommutative generalization of the com-
plex numbers, and octonions are nonassociative generalization
of quaternions. Using the noncommutativity of quaternions
and octionions, HK17 employs the DH structure [5] to im-
plement the key exchange protocol.

Roughly speaking, when establishing the shared key, Al-
ice first generates two octonions (or quaternions) oA and
oB over Zp, and chooses two random polynomials f1, f2,
then computes rA = f1(oA)oBf2(oA) and sends oA, oB ,
rA to Bob. After receiving Alice’s message, Bob choos-
es two random polynomials h1, h2, and computes rB =
h1(oA)oBh2(oA), then sends rB back to Alice. Finally,
Alice computes KA = f1(oA)rBf2(oA) and Bob computes
KB = h1(oA)rAh2(oA). They will share the common key
KA = KB .

Hecht and Kamlofsky [8] claimed that HK17 has some
strong points, such as: using ordinary modular arithmetic but
without big number libraries since they can choose p not very
big, relatively fast operation, non-associativity of products and
powers, parametric security levels, no classical nor quantum
attacks at sight, possible resistance to side-channel attacks,
easy firmware migration and conjectured semantical security
IND-CCA2 compliance.

However, Bernstein and Lange [2] pointed out that the
shared key can be recovered with O(p) arithmetic operations,



which implies that HK17 with small p is not secure.
We have to point out that the Bernstein-Lange attack does

not work in practice for HK17 with p sufficiently large,
although the scheme with large p is still efficient. For example,
the Bernstein-Lange attack on a PC failed to recover the
shared key for HK17 with parameter p = 184467440737
recommended in [8], since it will need about 264 operations.
Hence, a natural question is whether the scheme could be
secure if p is sufficiently large.

Almost at the same time, we independently propose an
attack to show that HK17 is insecure. We go further than
Bernstein and Lange by showing that just constant arithmetic
operations, or Õ(log p) bit operations, are enough to recover
the shared key for a passive adversary. Note that even the legal
party in the protocol needs at least Õ(log p) bit operations to
establish the shared key. We break HK17 completely in the
practical sense.

More precisely, both our attack and Bernstein-Lange attack
are based on the following key observation: given a polynomial
f and an octonion (resp. quaternion) o, there exists some a, b ∈
Zp such that f(o) = a · o+ b. Hence, the task to recover the
shared key can be reduced to the question of finding a, b, c, d
such that rA = (a · oA + b)oB(c · oA + d). Bernstein and
Lange used a clever exhaustive search method to solve this
problem which needs O(p) arithmetic operations, whereas we
employ the method of solving a system of linear equations
to solve this problem which needs just constant arithmetic
operations. Note that rA = (a · oA + b)oB(c · oA + d) =
ac ·oAoBoA+ad ·oAoB+bc ·oBoA+bd ·oB . We will obtain
a system of linear equations with 8 linear equations but just
4 unknowns ac, ad, bc, bd. Hence we can efficiently find a set
of solutions for ac, ad, bc, bd. Moreover, we can show a set of
solution of a, b, c, d can also be obtained efficiently from the
solution for ac, ad, bc, bd.

Roadmap. The remainder of the paper is organized as
follows. In Section II, we give some preliminaries needed.
In Section III, we describe the HK17 key exchange scheme.
We present our attack in Section IV and a short conclusion is
given in Section V.

II. PRELIMINARIES

There are four famous normed division algebras: real num-
bers R, complex numbers C, quaternions H, and octonions O.
The real numbers have a complete order whereas the complex
numbers are not ordered. The quaternions are not commutative
and the octonions are neither commutative nor associative.

A. Quaternions

Quaternions H were invented by Hamilton in 1843. In
general, a quaternion q can be represented in the following
form:

q = a+ bi+ cj + dk

where a, b, c, d are all real numbers and i, j,k are the funda-
mental quaternion units, which satisfy the following identities:

i2 = j2 = k2 = ijk = −1.

TABLE I
MULTIPLICATION TABLE OF THE UNIT OCTONIONS

eiej
ej

e0 e1 e2 e3 e4 e5 e6 e7

ei

e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Denote q∗ = a− bi− cj − dk the conjugate of q and

‖q‖ =
√
q · q∗ =

√
q∗ · q =

√
a2 + b2 + c2 + d2

the norm of q.
Using the same approach of interpreting a complex number

a + bi as a pair [a, b] of real numbers, q can be written into
[a, b, c, d].

B. Octonions

The octonions O were invented by Graves in 1844 and Cay-
ley in 1845 independently. Generally speaking, an octonion o
can be represented as a real linear combination of the unit
octonions:

o = a0e0 + a1e1 + · · ·+ a7e7

where e0 is the real number 1 and e1, . . . , e7 are fundamental
octonion units, which satisfy

eiej =


ej i = 0,

ei j = 0,

− δije0 + εijkek otherwise,

where δij is the Kronecker delta and εijk = 1 when ijk = 123,
145, 176, 246, 257, 357, 347, 365.

Equivalently, the product of each pair of terms can also be
given by multiplication of the coefficients and a multiplication
table of the unit octonions, like the following table.

Similar to complex numbers and quaternions,

o∗ = a0e0 − a1e1 − a2e2 − · · · − a7e7
is the conjugate of o, and

‖o‖ =
√
o · o∗ =

√
o∗ · o =

√
a20 + a21 + · · ·+ a27

is the norm of o. Throughout the paper, we will use the
following notations for real and imaginary part of an octonion
o ∈ O,

Re(o) = (o+ o∗)/2 ∈ R, Im(o) = (o− o∗)/2.

Similarly, each octonion o can be written as a vector
o = [a0, · · · , a7] ∈ R8. The norm of o is just ‖o‖ =√
a20 + · · ·+ a27, the conjugate is o∗ = [a0,−a1, · · · ,−a7]

and the inverse is o−1 = o∗/‖o‖2.
Theorem 1: For o ∈ O, we have o2 = 2Re(o)o− ‖o‖2.

Proof. The identity o∗ = 2Re(o)− o implies ‖o‖2 = oo∗ =
2Re(o)o− o2. �



Different from the quaternions and complex numbers, the
octonions do not satisfy the associative law, but the Moufang
identities.

Theorem 2: (Moufang identities [4]) Let a, b, c ∈ O, then
we have

c(a(cb)) = (((ca)c)b),
a(c(bc)) = (((ac)b)c),
(ca)(bc) = (c(ab))c,
(ca)(bc) = c((ab)c).

The Moufang identities imply the alternative law for octonions
immediately. That is,

Corollary 1: For a, b ∈ O, we have

(aa)b = a(ab),

(ab)a = a(ba),

a(bb) = (ab)b.

This property will make the HK17 work correctly.

C. Quaternions and Octonions over Zp

In the following, we will only take the octonions to state
the process, and the quaternions will be similar.

From the definition of octonions, we can consider the
octonions O as a vector space over R, together with some
special multiplication operation of vectors. More precisely, we
have the following map:

O −→ R8

o = [a0, a1, . . . , a7] 7→ (a0, a1, . . . , a7)

and the multiplication of two vectors is given before.
Based on such observation, we can construct "octonions"

over Zp, which will be denoted O(Zp). First Z8
p is a vector

space over Zp, which can also be seen as a linear space over
a finite field. Then we can define a multiplication operation
of two vectors in Z8

p using the multiplication of octonions.
More precisely, given two vectors a = (a0, a1, . . . , a7) and
b = (b0, b1, . . . , b7), we define the multiplication of a and b
as
a · b = (a0, a1, . . . , a7) · (b0, b1, . . . , b7) :=

(a0b0 − a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7,
a0b1 + a1b0 + a2b3 − a3b2 + a4b5 − a5b4 − a6b7 + a7b6,

a0b2 − a1b3 + a2b0 + a3b1 + a4b6 + a5b7 − a6b4 − a7b5,
a0b3 + a1b2 − a2b1 + a3b0 + a4b7 − a5b6 + a6b5 − a7b4,
a0b4 − a1b5 − a2b6 − a3b7 + a4b0 + a5b1 + a6b2 + a7b3,

a0b5 + a1b4 − a2b7 + a3b6 − a4b1 + a5b0 − a6b3 + a7b2,

a0b6 + a1b7 + a2b4 − a3b5 − a4b2 + a5b3 + a6b0 − a7b1,
a0b7 − a1b6 + a2b5 + a3b4 − a4b3 − a5b2 + a6b1 + a7b0),

where all the operations involved are those defined for Zp.
As the discussion before, we know that this multiplication

operation satisfies the alternative law.
Similarly, we can also construct "octonions" over any field

Fq with q = pm or over any ring Zq with q = pr11 · · · prmm .
Generally, all theorems except division-related results for
octonions hold in O(Zq), since it is not a division algebra.

For more related discussion, the reader is referred to [12].

III. THE HK17 KEY EXCHANGE SCHEME

A. The Octonions Version of HK17

The HK17 Key Exchange scheme uses some hypercomplex
numbers such as quaternions and octonions over Zp as defined
before. We take the octonions version as an example to
describe it.
Initialization:

1) Alice chooses two non-zero octonions oA, oB with each
coordinate uniformly in Zp with some prime p;

2) Alice chooses two integers m, n and a non-zero polyno-
mial f(x) ∈ Zp[x] with degree d such that f(oA) 6= 0,
and (f,m, n) is Alice’s private key;

3) Alice sends oA and oB to Bob;
4) Bob chooses two integers r, s and a non-zero polynomial

h(x) ∈ Zp[x] with degree d such that h(oA) 6= 0, and
(h, r, s) is Bob’s private key.

Computing the tokens:
1) Alice computes the value rA = f(oA)

moBf(oA)
n and

sends it to Bob;
2) Bob computes the value rB = h(oA)

roBh(oA)
s and

sends it to Alice.
Computing Session Keys:

1) Alice computes her key: KA = f(oA)
mrBf(oA)

n;
2) Bob computes his key: KB = h(oA)

rrAh(oA)
s;

3) Finally Alice and Bob share the common key KA =
KB .

It can be easily verified that

KA = f(oA)
mrBf(oA)

n

= f(oA)
m(h(oA)

roBh(oA)
s)f(oA)

n

= h(oA)
rf(oA)

moBf(oA)
nh(oA)

s

= h(oA)
rrAh(oA)

s

= KB .

B. Parameter Sets and Security

Hecht and Kamlofsky [8] thought that the best attack against
HK17 was to enumerate all possible values for the shared
key, which needs p8 operations. Hence, with parameter p, they
thought HK17 can achieve the 8 log p-bit security.

The parameter sets and the conjectured security in [8] are
listed in the following table.

d p
pre-quantum

security (bits)
post-quantum
security (bits)

16 251 64 32
32 65521 128 64
64 4294967291 256 128

128 184467440737 512 256

However, Bernstein and Lange [2] pointed out that the
shared key can be recovered with just O(p) arithmetic oper-
ations. For p = 251, 65521, their attack succeeded to recover
the shared key on a PC. For p = 4294967291, we believe their
attack will work if it is implemented properly. However, on
a PC, the attack failed to recover the shared key for HK17



with parameter p = 184467440737, since it will need about
264 operations.

IV. BREAK HK17 COMPLETELY

We will show that HK17 can be broken completely with just
constant arithmetic operations, or Õ(log p) bit operations. The
octonions version of HK17 is taken as an example to explain
our attack.

A. The key observation

We have the following key observations.
Lemma 1: For any octonion o ∈ O(Zp), there exist α, β ∈

Zp such that
o2 + αo+ β = 0.

Furthermore, for any polynomial g(x) ∈ Zp[x], there exist a,
b ∈ Zp, such that

g(o) = a · o+ b.

Proof 1: Suppose o ∈ O(Zp). The first statement follows
from Theorem 1, in which α = −2Re(o) mod p and β =
‖o‖2 mod p.

For the second statement, given any polynomial g(x) ∈
Zp[x], it can be written into

g(x) = (x2 + αx+ β)q(x) + (ax+ b),

with q(x) ∈ Zp[x] and a, b ∈ Zp, which implies immediately
that

g(o) = ao+ b.

Lemma 2: For HK17, given oA, oB , rA, there exists a
polynomial time (in log p) algorithm to find a, b, c, d ∈ Zp

such that

rA = (a · oA + b)oB(c · oA + d). (1)

Proof 2: By Lemma 1, we know that there exist a, b, c, d ∈
Zp, such that

f(oA)
m = a · oA + b,

f(oA)
n = c · oA + d.

Therefore, we can write

rA = f(oA)
moBf(oA)

n

= (a · oA + b)oB(c · oA + d)

= ac · oAoBoA + ad · oAoB + bc · oBoA + bd · oB

By comparing every corresponding coordinate of rA and ac ·
oAoBoA + ad · oAoB + bc · oBoA + bd · oB , we will have
eight linear equations with four unknowns ac, ad, bc, bd. More
precisely, to find ac, ad, bc, bd, we need to solve the following
system of linear equations:

rA = (s1, s2, s3, s4) ·A

over Z4
p, where A =


oAoBoA,
oAoB ,
oBoA,
oB

 ∈ Z4×8
p . By the existence

of a, b, c, d, we can always solve the system of the eight linear
equations to get a solution (s1, s2, s3, s4) for (ac, ad, bc, bd).

There are two cases to be considered.

1) A has full row rank.
A solution (s1, s2, s3, s4) can be directly obtained by
solving the linear equations. Moreover (s1, s2, s3, s4) =
(ac, ad, bc, bd) in this case. Note that since a, b can not
be zero at the same time if rA 6= 0, so we can tell from
which is nonzero. For example if s1 = 0 and s2 = 0,
then b must not be zero. Similarly, we can also know
that if c or d is zero or not.
All these cases are presented in the following and can
be easily verified to satisfy the Equation (1).

a) If s1 6= 0, then a, c 6= 0, and we set (a, b, c, d) =
(1, s−11 s3, s1, s2).
It can be easily verified that (a, b, c, d) =
(1, s−11 s3, s1, s2) must be a solution, since

rA = (a · oA + b)oB(c · oA + d)

= a(oA + a−1b)oB(c · oA + d)

= (oA + a−1b)oB(ac · oA + ad).

Note that we can also set a to be any nonzero
element in Zp and solve the other corresponding
b, c, d.
Similarly, we have

b) If s1 = s2 = 0, then a = 0, and we set b = 1,
c = s3, d = s4;

c) If s1 = s3 = 0, then c = 0, and we set a = s1,
b = s2, d = 1;

2) A does not have full row rank.
It is obvious that a specific solution (s1, s2, s3, s4) can
be obtained efficiently.
Note that if one of a, b, c, d is zero, at least two of
ac, ad, bc, bd are zero. Hence we try to find a solution
(s′1, s

′
2, s
′
3, s
′
4) with all s′i 6= 0 for i = 1, 2, 3, 4 or at least

two of s′i are zero. If the specific solution (s1, s2, s3, s4)
satisfies such property, we simply set s′i = si. Oth-
erwise, there is exactly one of si, which equals to 0.
Without loss of generality, we suppose s1 = 0 and
s2, s3, s4 6= 0. In such case, we first find a nontrivial
solution (t1, t2, t3, t4) such that (t1, t2, t3, t4) ·A = 0.

a) If t1 = 0, note that at most one of t2, t3, t4 is
zero, then either t2 or t3 is nonzero. Without loss of
generality, we can assume t2 6= 0. We first compute
r = −s2 · t−12 ∈ Zp, then set (s′1, s

′
2, s
′
3, s
′
4) =

(0, 0, s3 + r · t3, s4 + r · t4);
b) If t1 6= 0, we find an r ∈ Zp, such that all

si + r · ti(i = 1, 2, 3, 4) are not zero, which can
be done since p > 4 is big enough. Then we set
(s′1, s

′
2, s
′
3, s
′
4) = (r · t1, s2 + r · t2, s3 + r · t3, s4 +

r · t4).
Hence, in both cases, we can efficiently find a solution
(s′1, s

′
2, s
′
3, s
′
4) with all s′i 6= 0 for i = 1, 2, 3, 4 or at

least two of s′i are zero. What we will do is to solve
(a, b, c, d) using the same way as in the full-rank case.



Lemma 3: For HK17 key exchange scheme, if we can find
any two polynomial g1(x), g2(x) ∈ Zp[x], such that

rA = g1(oA)oBg2(oA),

then the shared key is

K = g1(oA)rBg2(oA).

Proof 3: Note that

KB = h(oA)
rrAh(oA)

s

= h(oA)
r(g1(oA)rBg2(oA))h(oA)

s

= g1(oA)h(oA)
rrBh(oA)

sg2(oA)

= g1(oA)rBg2(oA)

= K.

The lemma follows.

B. Our Attack

Based on the lemmas above, we present our attack.
Step 1. When the adversary gets oA, oB , rA by eavesdrop-

ping, he can compute a, b, c, d ∈ Zp such that

rA = (a · oA + b)oB(c · oA + d),

by Lemma 2.
Step 2. Compute

K = (a · oA + b)rB(c · oA + d).

By Lemma 3, we know K is exactly the shared key
established by Alice and Bob.

Remark 1: In [8], a quaternions version was also proposed,
which has the same framework to the octonions version, but
with an additional normalization. It can be easily concluded
that our attack can be extended to the quaternions version of
HK17, since any quaternion q satisfies

q2 − 2Re(q)q + ‖q‖2 = 0.

Remark 2: Another natural idea to generalize HK17 is to
replace the octonions (or quaternions) with some matrices
over finite field. However, it seems the matrix-version will
still be insecure since any matrix satisfies its characteristic
polynomial by the famous Cayley-Hamilton theorem, and then
our attack still works. However, we would like to point out that
if the octonions (or quaternions) are replaced with the elements
in some non-commutative (semi)groups, the corresponding
scheme may be secure (see [9] for some examples).

C. Experimental Result

We implemented our attack with SageMath on a PC with
Intel(R)_Core(TM)_i5-5200U_CPU_@_2.20GHz, 8G RAM
and Windows 7 OS. We randomly generated several instances
with the recommended parameters in [8] and all shared key can
be recovered efficiently, not only for the instances with small
p which were already broken in [2], but also for the instances
with the largest parameter p = 184467440737 ≈ 264 which
can not be broken practically on a PC before.

TABLE II
TIME OF OUR ATTACK FOR LARGE PARAMETERS

log2(p) 64 128 256 512 1024
Time(in second) 0.175 0.179 0.202 0.875 1.472

Furthermore, we replaced p = 184467440737 with random
p with 128, 256, 512 and 1024 bits for HK17 and tested our
attack against the randomly generated instances with such p’s.
We found that even with 1024-bits p, the running time for the
protocol HK17 was still reasonable. However, our attacks can
also be completed in around one second and always succeeded.
The detailed time for our attacks is listed as in Table II.

V. CONCLUSION

In this paper, we present a practical attack for HK17 key
exchange protocol, by which we find that HK17 is not secure
even with large parameters for a passive adversary.
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