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Abstract

This paper compares the efficiency of various algorithms for implementing public key en-
cryption scheme RLCE on 64-bit CPUs. By optimizing various algorithms for polynomial and
matrix operations over finite fields, we obtained several interesting (or even surprising) results.
For example, it is well known (e.g., Moenck 1976 [13]) that Karatsuba’s algorithm outperforms
classical polynomial multiplication algorithm from the degree 15 and above (practically, Karat-
suba’s algorithm only outperforms classical polynomial multiplication algorithm from the degree
35 and above ). Our experiments show that 64-bit optimized Karatsuba’s algorithm will only
outperform 64-bit optimized classical polynomial multiplication algorithm for polynomials of
degree 115 and above over finite field GF (210). The second interesting (surprising) result shows
that 64-bit optimized Chien’s search algorithm ourperforms all other 64-bit optimized polyno-
mial root finding algorithms such as BTA and FFT for polynomials of all degrees over finite field
GF (210). The third interesting (surprising) result shows that 64-bit optimized Strassen matrix
multiplication algorithm only outperforms 64-bit optimized classical matrix multiplication al-
gorithm for matrices of dimension 750 and above over finite field GF (210). It should be noted
that existing literatures and practices recommend Strassen matrix multiplication algorithm for
matrices of dimension 40 and above. All experiments are done on a 64-bit MacBook Pro with
i7 CPU with a single thread. The reported results should be appliable to 64 or larger bits CPU.
For 32 or smaller bits CPUs, these results may not be applicable. The source code and library
for the algorithms covered in this paper will be available at http://quantumca.org/.

Key words: Reed-Solomon code; generalized Reed-Solomon code; Karatsuba’s algorithm;
Chien’s search algorithm; Strassen matrix multiplication algorithm

1 Introduction

This paper investigates efficient algorithms for implementing quantum resistant public key en-
cryption scheme RLCE. Specifically, we will compare various decoding algorithms for generalized
Reed-Solomon (GRS) codes: Berlekamp-Massey decoding algorithms; Berlekamp-Welch decoding
algorithms; Euclidean decoding algorithms; and list decoding algorithm. The paper also compares
various efficient algorithms for polynomial and matrix operations over finite fields. For example, the
paper will cover Chien’s search algorithm; Berlekamp trace algorithm; Forney’s algorithm, Strassen
algorithm, and many others. The focus of this document is to identify the optimized algorithms for
implementing the RLCE encryption scheme by Wang [19, 20] on 64-bit CPUs. The experimental
results for these algorithms over finite fields GF (210) and GF (211) are reported in this document.
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2 Finite fields

2.1 Representation of elements in finite fields

In this section, we present a Layman’s guide to several representations of elements in a finite field
GF (q). We assume that the reader is familiar with the finite field GF (p) = Zp for a prime number
p and we concentrate on the construction of finite fields GF (pm).
Polynomials: Let π(x) be an irreducible polynomial of degree m over GF (p). Then the set of all
polynomials in x of degree ≤ m−1 and coefficients from GF (p) form the finite field GF (pm) where
field elements addition and multiplication are defined as polynomial addition and multiplication
modulo π(x)

For an irreducible polynomial f(x) ∈ GF (p)[x] of degree m, f(x) has a root α in GF (pm).
Furthermore, all roots of f(x) are given by the m distinct elements α, αp, · · · , αpm−1 ∈ GF (pm).
Generator and primitive polynomial: A primitive polynomial π(x) of degree m over GF (p)
is an irreducible polynomial that has a root α in GF (pm) so that GF (pm) = {0} ∪ {αi : i =
0, · · · , pm− 1}. As an example for GF (23), x3 +x+ 1 is a primitive polynomial with root α = 010.
That is,

α0 = 001 α1 = 010 α2 = 100 α3 = 011

α4 = 110 α5 = 111 α6 = 101 α7 = 001

Note that not all irreducible polynomials are primitive. For example 1+x+x2+x3+x4 is irreducible
over GF (2) but not primitive. The root of a generator polynomial is called a primitive element.
Matrix approach: The companion matrix of a polynomial π(x) = a0+a1x+ · · ·+am−1xm−1+xm

is defined to be the m×m matrix

M =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −am−1


The set of matrices 0,M, · · · ,Mpm−1 with matrix addition and multiplication over GF (p) forms
the finite field GF (pm).
Splitting field: Let π(x) ∈ GF (p)[x] be a degree m irreducible polynomial. Then GF (pm) can be
considered as a splitting field of π(x) over GF (p). That is, assume that π(x) = (x−α1) · · · (x−αm)
in GF (pm). Then GF (pm) is obtained by adjoining these algebraic elements α1, · · · , αm to GF (p).

2.2 Finite field arithmetic

Let α be a primitive element in GF (q). Then for each non-zero x ∈ GF (q), there exists a 0 ≤
y ≤ q − 2 such that x = αy where y is called the discrete logarithm of x. When field elements
are represented using their discrete logarithms, multiplication and division are efficient since they
are reduced to integer addition and subtraction modulo q − 1. For additions, one may use Zech’s
logarithm which is defined as

Z(y) : y 7→ logα(1 + αy). (1)

That is, for a field element αy, we have αZ(y) = 1 +αy. If one stores Zech’s logarithm in a table as
pairs (y, Z(y)), then the addition could be calculated as

αy1 + αy2 = αy1(1 + αy2−y1) = αy1αZ(y2−y1) = αy1+Z(y2−y1).
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For the finite fieldGF (2m), the addition is the efficient XOR operation. Thus it is better to store two
tables to speed up the multiplication: discrete logarithm table and exponentiation tables. For the
discrete logarithm table, one obtains y on input x such that x = αy. For the exponentiation table,
one obtains y on input x such that y = αx. In order to multiply two field elements x1, x2, one first
gets their discrete logarithms y1, y2 respectively. Then one calculates y = y1 + y2. Next one looks
up the exponentiation table to find out the value of αy. Note that we have x1x2 = αy1αy2 = αy1+y2 .

3 Polynomial and matrix arithmetic

3.1 Fast Fourier Transform (FFT)

The Fast Fourier transform maps a polynomial f(x) = f0 + f1x+ · · ·+ fn−1x
n−1 to its values

FFT(f(x)) = (f(α0), · · · , f(αn−1)).

Fast Fourier Transforms (FFT) are useful for improving RLCE decryption performance. In this
section, we review FFT over GF (pm) with p > 2 and FFT over GF (2m). The applications of FFTs
will be presented in next sections.

3.1.1 FFT over GF (pm) with p > 2

Let n be even and α be a primitive nth root of unit in GF (pm) with p > 2. That is, αn = 1. It
should be noted that for a field with characteristics 2 such as GF (2m), such kind of primitive roots
do not exist. FFT uses the fact that

(αi)2 = (αi+
n
2 )2

for all i. Note that for the complex number based FFT, this fact is equivalent to the fact that
α

n
2 = −1 though the value “−1” should be interpreted appropriately in finite fields. Suppose that

f(x) = f0 + f1x+ · · ·+ fn−1x
n−1. If n is odd, we can add an term 0 ·xn−1 to f(x) so that f(x) has

degree n−1. Define the even index polynomial f [0](x) =
∑n−2

2
i=0 f2ix

i and the odd index polynomial

f [1](x) =
∑n−2

2
i=0 f2i+1x

i of degree n−2
2 . Since f(x) = f [0](x2) + xf [1](x2), we can evaluate f(x) on

the n points α0, · · · , αn−1 by evaluating the two polynomials f [0](x) and f [1](x) on the n
2 points{

α0, α2, α4, · · · , α2n−2} =
{
α0, α2, α4, · · · , α

n
2
−1
}

and then combining the results. By carrying out

this process recursively, we can compute FFT(f(x)) in O(n log n) steps instead of O(n2) steps.

3.1.2 FFT over GF (2m) and Cantor’s algorithm

For finite fields with characteristics 2 such as GF (2m), one may use Cantor’s algorithm [7] and
its variants [18, 9] for efficient FFT computation. These techniques are also called additive FFT
algorithms and could be used to compute FFT(f(x)) over GF (2m) in O(m22m) steps.

Let β0, · · · , βd−1 ∈ GF (2m) be linearly independent overGF (2) and let B be a subspace spanned
by βi’s over GF (2). That is,

B = span(β0, · · · , βd−1) =

{
d−1∑
i=0

aiβi : ai ∈ GF (2)

}
.
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For 0 ≤ i < 2d with the binary representation i = ad−1ad−1 · · · a0, the i-th element in B is
B[i] =

∑d−1
i=0 aiβi. For 0 ≤ i ≤ d− 1, let Wi = span(β0, · · · , βi). Then we have

{0} = W−1 (W0 (W1 ( · · · (Wd−1

and Wi = (βi +Wi−1) ∪Wi for i = 0, · · · , d− 1. This can be further generalized to

β +Wi = (β + βi +Wi−1) ∪ (β +Wi)

for i = 0, · · · , d − 1 and all β ∈ GF (2m). Next define the minimal polynomial si(x) ∈ GF (2m)[x]
of Wi as

si(x) =
∏
α∈Wi

(x− α)

for i = 0, · · · , d − 1. It is shown in [18] that si(x) is a GF (2)-linearized polynomial where the
concept of linearized polynomial is given in Section 3.5.3. Furthermore, by the fact that

si(x) =
∏
α∈Wi

(x− α) =

 ∏
α∈Wi−1

(x− α)

 ∏
α∈βi+Wi−1

(x− α)

 = si−1(x) · si−1(x− βi)

and by the fact that si(x) is a linearized polynomial, we have

si(x) = si−1(x) · si−1(x− βi) = si−1(x) (si−1(x)− si−1(βi))

for i = 0, · · · , d − 1. Table 1 lists the polynomials si(x) over GF (210) for the base βi = b9b8 · · · b0
where bj = 0 for j 6= i and bi = 1.

Table 1: Linearized polynomials si(x) over GF (210)

s0(x) = x2 + x
s1(x) = x4 + 0x007x2 + 0x006x
s2(x) = x8 + 0x17dx4 + +0x205x2 + 0x379x
s3(x) = x16 + 0x2b5x8 + 0x3f4x4 + 0x177x2 + 0x037x
s4(x) = x32 + 0x18ax16 + 0x139x8 + 0x353x4 + 0x3f4x2 + 0x015x
s5(x) = x64 + 0x179x32 + 0x0b3x16 + 0x303x8 + 0x09fx4 + 0x0b2x2 + 0x2e5x
s6(x) = x128 + 0x394x64 + 0x35fx32 + 0x28fx16 + 0x3efx8 + 0x041x4 + 0x0dex2

+0x135x
s7(x) = x256 + 0x2bdx128 + 0x2cfx64 + 0x2e1x32 + 0x1a5x16 + 0x3f4x8 + 0x279x4

+0x3a8x2 + 0x112x
s8(x) = x512 + 0x214x256 + 0x043x128 + 0x292x64 + 0x070x32 + 0x0cex16 + 0x0b3x8

+0x24cx4 + 0x081x2 + 0x204x

Table 2 lists the polynomials si(x) over GF (210) for the base βi = b10b9 · · · b0 where bj = 0 for
j 6= i and bi = 1.

With these preliminary definition, we first review von zur Gathen and Gerhard’s additive
FFT algorithm. Let β0, · · · , βd−1 ∈ GF (2m) be linearly independent over GF (2) and let B =
span(β0, · · · , βd−1). For a given polynomial f(x) of degree less than 2d, we evaluate f(x) over all
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Table 2: Linearized polynomials si(x) over GF (211)

s0(x) = x2 + x
s1(x) = x4 + 0x007x2 + 0x006x
s2(x) = x8 + 0x17dx4 + +0x60cx2 + 0x770x
s3(x) = x16 + 0x4c3x8 + 0x6c0x4 + +0x390x2 + 0x192x
s4(x) = x32 + 0x48ax16 + 0x278x8 + 0x528x4 + 0x274x2 + 0x1afx
s5(x) = x64 + 0x69ex32 + 0x4ecx16 + 0x619x8 + 0x4fdx4 + 0x05bx2

+0x0ccx
s6(x) = x128 + 0x734x64 + 0x294x32 + 0x357x16 + 0x4a0x8 + 0x1f8x4

+0x211x2 + 0x1bfx
s7(x) = x256 + 0x50bx128 + 0x52bx64 + 0x31bx32 + 0x0dax16 + 0x56ex8

+0x0c0x4 + 0x230x2 + 0x47ex
s8(x) = x512 + 0x385x256 + 0x584x128 + 0x4b0x64 + 0x11fx32 + 0x2efx16

+0x261x8 + 0x429x4 + 0x68dx2 + 0x185x
s9(x) = x1024 + 0x703x512 + 0x781x256 + 0x7c9x128 + 0x7dax64 + 0x4d2x32

+0x444x16 + 0x60cx8 + 0x69fx4 + 0x5d7x2 + 0x542x

points in B using the following algorithm GGFFT(f(x), d, B) = 〈f(B[0]), · · · , f(B[2d − 1])〉. The al-
gorithm assumes that the polynomials si(x), the values si(β) and si(βi+1)

−1 for −1 ≤ i < j ≤ d−1
are pre-computed.

Gathen-Gerhard’s GGFFT(f(x), i, d, B, bi+1, · · · , bd−1):
Input: i ∈ [−1, d− 1], f ∈ GF (2m)[x], deg(f(x)) < 2i+1, and bi+1, · · · , bd−1 ∈ GF (2).
Output: 〈f(α+ β) : α ∈Wi〉 where β = bi+1βi+1 + · · ·+ bd−1βd−1.
Algorithm:

1. If i = −1, return f .

2. Compute g(x), r0(x) ∈ GF (2m)[x] such that

f(x) = g(x) (si−1(x) + si−1(β)) + r0(x) and deg(r0(x)) < 2i−1.

Let r1(x) = r0(x) + si−1(βi) · g(x).

3. Return GGFFT(r0(x), i− 1, d, B, 0, bi+1, · · · , bd−1) ∪ GGFFT(r1(x), i− 1, d, B, 1, bi+1, · · · , bd−1).

It is shown in [18] that the algorithm GGFFT(f(x), d, B) runs with O(2dd2) multiplications and
additions. We next review Gao-Mateer’s FFT algorithm [9] which runs with O(2dd) multiplications
and O(2dd2) additions.

Gao-Mateer’s GMFFT(f(x), d, B)):
Input: f ∈ GF (2m)[x], deg(f(x)) < 2d, B = span(β0, · · · , βd−1)
Output: 〈f(B[0]), · · · , f(B[2d − 1])〉.
Algorithm:

1. If deg(f(x)) = 0, return 〈f(0), f(0)〉.

2. If d = 1, return 〈f(0), f(β1)〉.
5



3. Let g(x) = f(βdx).

4. Use the algorithm in the next paragraph to compute Taylor(g(x)) as in (3) and let

g0(x) =
l−1∑
i=0

gi,0x
i and g1(x) =

l−1∑
i=0

gi,1x
i. (2)

5. Let γi = βiβ
−1
d and δi = γ2i − γi for 0 ≤ i ≤ d− 2.

6. Let G = span(γ0, · · · , γd−2) and D = span(δ0, · · · , δd−2)

7. Let
FFT(g0(x), d− 1, D) = 〈u0, · · · , u2d−1−1〉
FFT(g1(x), d− 1, D) = 〈v0, · · · , v2d−1−1〉

8. Let wi = ui +G[i] · vi and w2d−1+i = wi + vi for 0 ≤ i < 2d−1.

9. Return 〈w0, · · · , w2d−1〉.

For a polynomial g(x) of degree 2l − 1 over GF (2m), the Taylor expansion of g(x) at x2 − x is
a list 〈g0,0 + g0,1x, · · · , gl−1,0 + gl−1,1x〉 where

g(x) = (g0,0 + g0,1x) + (g1,0 + g1,1x)(x2 − x) + · · ·+ (gl−1,0 + gl−1,1x)(x2 − x)l−1 (3)

and gi,j ∈ GF (2m). The Taylor expansion of g(x) could be computed using the following algorithm
Taylor(g(x)):

1. If deg(g(x)) < 2, return g(x).

2. Find l such that 2l+1 < 1 + deg(g(x)) ≤ 2l+2.

3. Let g(x) = h0(x)+x2
l+1
(
h1(x) + x2

l
h2(x)

)
where deg(h0) < 2l+1,deg(h1) < 2l, deg(h2) < 2l.

4. Return 〈Taylor(h0(x) + x2
l
(h1(x) + h2(x))), Taylor(h1(x) + h2(x) + x2

l
h2(x))〉.

It is shown in [9] that the algorithm GMFFT uses at most 2d−1 log2(2d) additions and 2d+1 log(2d)
multiplications.

3.1.3 Inverse FFT over GF (pm)

For a polynomial f(x) = f0 + f1x+ · · ·+ fn−1x
n−1, the Inverse FFT is defined as

IFFT(FFT(f(x))) = IFFT(f(α0), · · · , f(αn−1)) = (f0, · · · , fn−1).

Assume that n = pm − 1 and αn = 1. The Mattson-Solomon polynomial of f is defined as

F (x) =

n−1∑
i=0

f(αi)xn−i. (4)

By the fact that
xn − 1 = (x− 1)(1 + x+ · · ·+ xn−1),
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we have
n−1∑
i=0

ai = 0 for all a ∈ GF (q) with a 6= 1. Then

F (αj) =

n−1∑
i=0

f(αi)αj(n−i)

=
n−1∑
i=0

n−1∑
u=0

fuα
uiαj(n−i)

=
n−1∑
u=0

fu

n−1∑
i=0

α(u−j)i

= nfj

(5)

It follows that IFFT(FFT(f(x))) = FFT
(
F (x)
n

)
.

The relationship between FFT and IFFT may also be explained using the fact for Vendermonde

matrix that Vn(α0, · · · , αn−1)−1 = Vn(α−0,··· ,α−(n−1))
n . It is noted that

FFT(f(x)) = (f0, · · · , fn−1)


1 1 · · · 1
1 α1 · · · αn−1

1 α2 · · · α2(n−1)

...
...

. . .
...

1 αn−1 · · · α(n−1)2

 = (f0, · · · , fn−1)Vn(α0, · · · , αn−1)

On the other hand,

FFT(F (x)) =
(
f(α0), · · · , f(αn−1)

)


1 αn · · · αn(n−1)

1 αn−1 · · · α(n−1)(n−1)

1 αn−2 · · · α(n−1)(n−2)

...
...

. . .
...

1 α1 · · · α(n−1)



= FFT(f(x))


1 1 · · · 1

1 α−1 · · · α−(n−1)

1 α−2 · · · α−(n−2)

...
...

. . .
...

1 α−(n−1) · · · α−(n−1)
2


= FFT(f(x)) · Vn(α−0, · · · , α−(n−1))
= n · FFT(f(x)) · Vn(α0, · · · , αn−1)−1
= n · (f0, · · · , fn−1)

3.1.4 Inverse FFT over GF (2m)

For FFT over GF (2m) in Section 3.1.2, the output is in the order f(B[0]), · · · , f(B[2m−1]) instead
of the order f(α0), · · · , f(α2m−1). Thus in order to calculate F (x) in Section 3.1.3, we need to find
a list of indices j0, · · · , j2m−1−1 such that B[ji] = αi for 0 ≤ i ≤ 2m−1 − 1. Then we can let

F (x) =

n−1∑
i=0

f(B[ji])x
n−i.

7



Similarly, after IFFT(F (x)) = (F (B[0]), · · · , F (B[2m − 1])) is obtained, we will have fi = F (B[ji])
for 0 ≤ i ≤ 2m−1 − 1. On the other hand, in order to use the techniques in Sections 3.1.3 and
3.1.2 to interpolate a polynomial, one essentially needs a base {β0, · · · , βm−1} to generate the entire
field GF (2m) and to compute FFT over the entire field GF (2m). This is inefficient for polynomials
whose degrees are much smaller than 2m−1.

In the following, we describe the Chinese Reaminder Theorem based IFFT algorithm from von
zur Gathen and Gerhard [18] that takes advantage of the additive FFT property. Let β0, · · · , βd−1 ∈
GF (2m) be linearly independent over GF (2) and let B = span(β0, · · · , βd−1).
Gathen-Gerhard’s GGIFFT(i, B, β, f(β +Wi)):

Input: i ∈ [0, d− 1], β, and 〈f(β+Wi[0]), · · · , f(β+Wi[2
i+1 − 1])〉 where β =

d−1∑
j=i+1

bjβj for some

bi+1, · · · , bd−1 ∈ GF (2).
Output: f(x) ∈ GF (2m)[x] with deg(f(x)) < 2i+1.
Algorithm:

1. If i = 0, then return f(x) = β−10 (f(β) + f(β + β0))x+ f(β) + β−10 β(f(β) + f(β + β0)).

2. Let β′ = β + βi and

f0(x) = GGIFFT(i− 1, B, β, f(β +Wi−1))
f1(x) = GGIFFT(i− 1, B, β′, f(β′ +Wi−1))

where deg(f0(x)) < 2i and deg(f1(x)) < 2i.

3. Return f(x) = (si−1(x) + si−1(β)) · (f0(x) + f1(x)) · si−1(βi)−1 + f0(x).

3.2 Polynomial multiplication I: Karatsuba algorithm

For two polynomials f(x) and g(x), we can rewrite them as

f(x) = f1(x)xn1 + f2(x) and g(x) = g1(x)xn1 + g2(x)

where f1, f2, g1, g2 has degree less than n1. Then

f(x)g(x) = h1(x)x2n1 + h2(x)xn1 + h3(x)

where
h1(x) = f1(x)g1(x)
h2(x) = (f1(x) + f2(x))(g1(x) + g2(x))− h1(x)− h3(x)
h3(x) = f2(x)g2(x)

Karatsuba’s algorithm could be recursively called and the time complexity is O(n1.59). Our ex-
periments show that Karatsuba’s algorithm could improve the efficiency of RLCE scheme for most
security parameters.

3.3 Polynomial multiplication II: FFT

For RLCE over GF (pm), one can use FFT to speed up the polynomial multiplication and divi-
sion. For two polynomials f(x) and g(x), we first compute FFT(f(x)) and FFT(g(x)) in at most
O(n log2 n) steps. With n more multiplications, we obtain FFT(f(x)g(x)). From FFT(f(x)g(x)),
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the interpolation can be computed using the inverse FFT as f(x)g(x) = FFT−1(f(x)g(x)). This can
be done in O(n log2 n) steps. Thus polynomial multiplication can be done in O(n log2 n) steps. Our
experiements show that FFT based polynomial multiplication helps none of the RLCE encryption
schemes.

3.4 Polynomial division

Given polynomials f(x) and g(x) with deg(f) = n and deg(g) = n1, we want to find q(x) and
r(x) such that f(x) = g(x)q(x) + r(x) in O(n log n) step. The algorithm is described in terms of
polynomials with infinite degrees which is called polynomial series. A polynomial with an infinite
degree has an inverse if it is in the form of a0 +xh(x) where a0 6= 0 and h(x) is a polynomial series.

Furthermore, we have (1 + x)−1 =
∑∞

0 (−x)i and
(∑∞

i (i+ 1)xi
)−1

= (1− x)2. If we substitute x
with 1

y in f(x) = g(x)q(x) + r(x), we obtain

fR(y) = qR(y)gR(y) + yn−n1−1rR(y) = gR(y)qR(y) mod yn−n1−1 (6)

where hR(y) = ydeg(h)h( 1y ) with the reversed order of coefficients for any polynomial h. By the

assumption that g(x) has degree n1, we know that gR is inevitable in the polynomial series. Thus
(6) implies that

qR(y) = fR(y)(gR(y))−1 mod yn−n1−1 (7)

In order to compute qR(y), only n−n1− 1 terms from the polynomial series (gR(y))−1 is required.
The following algorithm INV(h(x), t) can be used to compute the first t terms of (h(x))−1 for
h(x) =

∑n1−1
i=0 aix

i.

1. If t = 1, output 1
a0

.

2. h′ = INV(h(x),
⌈
t
2

⌉
).

3. output (h′(x)− (h(x)h′(x)− 1)h′(x)) mod xt.

If the fast polynomial multiplication algorithm is used for the computation of h′(x)− (h(x)h′(x)−
1)h′(x), the the above algorithm INV(h(x), t) usesO(n1 log n1) steps. The following is theO(n log n)
algorithm for computing q(x) and r(x) given f(x) and g(x).

1. Let fR(x) = xnf( 1x) and gR(x) = xn1g( 1x).

2. Let (gR(x))−1(y) = INV(gR(x), n− n1 − 1).

3. Let qR(x) = fR(x)(gR(x))−1(y) mod xn−n1−1.

4. Let q(x) = xn−n1−1qR( 1x).

5. Let r(x) = f(x)− q(x)g(x).

3.5 Factoring polynomials and roots-finding

3.5.1 Exhaustive search algorithms

The problem of finding roots of a polynomial Λ(x) = 1 + λ1x + · · · + λtx
t could be solved by

an exhaustive search in time O(tpm). Alternatively, one may use Fast Fourier Transform that we
have discussed in the preceding sections to find roots of Λ(x) using at most m2pm log2(p) steps.
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Furthermore, one may also use Chien’s search to find roots of Λ(x). Chien’s search is based on the
following observation.

Λ(αi) = 1 + λ1α
i + · · ·+ λt(α

i)t

= 1 + λ1,i + · · ·+ λt,i
Λ(αi+1) = 1 + λ1α

i+1 + · · ·+ λt(α
i+1)t

= 1 + λ1,iα+ · · ·+ λt,iα
t

= 1 + λ1,i+1 + · · ·+ λt,i+1

Thus, it is sufficient to compute the set {λj,i : i = 1, · · · , q − 1; j = 1, · · · , t} with λj,i+1 = λj,iα
j .

Chien’s algorithm can be used to improve the performance of RLCE encryption schemes when 64-
bits ⊕ is used for parallel field additions. For non-64 bits CPUs, Chien does not provide advantage
over exhaustive search algorithms. For the security parameters 128, Chien’s search has better
performance than FFT based search. For the security parameters 192 and 256, FFT based search
has better performance than Chien’s search.

3.5.2 Berlekamp Trace Algorithm

Berlekamp Trace Algorithm (BTA) can find the roots of a degree t polynomial in time O(mt2). A
polynomial f(x) = f0 + f1x+ · · ·+ ftx

t has no repeated roots if gcd(f(x), f ′(x)) = 1. Without loss
of generality, we may assume that f(x) has no repeated roots. For each x ∈ GF (pm), the trace of
x is defined as

Tr(x) =
m−1∑
i=0

xp
i
.

We recall that if we consider GF (pm) as a m-dimensional vector space over GF (p), then a trace
function is linear. That is, Tr(ax + by) = Tr(ax) + Tr(bx) for a, b ∈ GF (p) and x, y ∈ GF (pm).
Furthermore, we have Tr(xp) = Tr(x) for x ∈ GF (pm) and Tr(a) = ma for a ∈ GF (p). It is known
that in GF (pm), we have

xp
m − x =

∏
s∈GF (p)

(Tr(x)− s) . (8)

Let α be the root of a primitive polynomial of degree m over GF (p). Then (1, α, · · · , αm−1) is a
polynomial basis for GF (pm) over GF (p) and (α, · · · , αpm−1

) is a normal basis for GF (pm) over
GF (p). Substituting αix for x in equation (8), we get

(αi)p
m
xp

m − αix =
∏

s∈GF (p)

(
Tr(αix)− s

)
.

This implies

xp
m − x = α−i

∏
s∈GF (p)

(
Tr(αix)− s

)
.

If f(x) is a nonlinear polynomial that splits in GF (pm), then f(x)|(xpm − x). Thus we have

f(x) =
∏

s∈GF (p)

gcd
(
f(x),Tr(αix)− s

)
. (9)

By applying equation (9) with i = 0, 1, · · · ,m− 1 or i = 1, p, · · · , pm−1, we can factor f(x). In
order to speed up the computation of Tr(αix) modulo f(x), one pre-computes the residues of
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x, x2, · · · , xpm modulo f(x). By adding these residues, one gets the residue of Tr(x). Furthermore,
by multiplying these residues with αi, α2i, · · · , αipm respectively, one obtains the residue of Tr(αix).

For RLCE implementation over GF (2m), the BTA algorithm can be described as follows.

Input: A polynomial f(x) and pre-compute Tri(x) = x2
i

mod f(x) for i = 1, · · · ,m.
Output: A list of roots (r0, · · · , rnf

) = BTA(f(x)).
Algorithm:

1. Let j = 0.

2. If f(x) = x+ α, return α.

3. Use Tri(x) to compute Tr(αjx) mod f(x).

4. If j > m, return ∅.

5. Let p(x) = gcd(Tr(αjx), f(x)) and q(x) = f(x)
p(x) .

6. Let j = j + 1 and return BTA(p(x)) ∪ BTA(q(x)).

BTA algorithm converts one multiplication into several additions. In RLCE scheme, field mul-
tiplication is done via table look up. Our experiments show that BTA algorithm is slower than
Chien’s search or exhaustive search algorithms for RLCE encryption scheme.

3.5.3 Linearized and affine polynomials

In the preceding section, we showed how to compute the roots of polynomials using BTA algorithm.
In practice, one factors a polynomial using BTA algorithm until degree four or less. For polynomials
of lower degrees (e.g., lower than 4), one can use affine multiple of polynomials to find the roots
of the polynomial more efficiently (see., e.g., Berlekamp [4, Chapter 11]). We first note that a
linearized polynomial over GF (pm) is a polynomial of the form

g(x) =

n∑
i=0

gix
pi

with gi ∈ GF (pm). Note that for a linearized polynomial g, we have g(ax+ by) = g(ax) + g(bx) for
a, b ∈ GF (p) and x, y ∈ GF (pm). An affine polynomial is a polynomial in the form a(x) = g(x) + a
where g(x) is a linearized polynomial and a ∈ GF (pm). For small degree polynomials, one can
convert it to an affine polynomial which is a multiple of the given polynomial. The root of the
affine polynomial could be found by solving a linear equation system of m equations.

The roots of a degree t polynomial f(x) are calculated as follows. At step i ≥ 0, one computes
a degree 2dlog2 te+i affine multiple of f(x). The roots of the affine polynomial could be found by
solving the following linear equation system of order m over GF (2). If the system has no solution,
one moves to step i+ 1.

Let A(x) = g(x)+c =

n∑
i=0

gix
pi +c be an affine polynomial and α0, α, · · · , αm−1 be a polynomial

basis for GF (2m) over GF (2). Let c = c0α
0 + · · ·+ cm−1α

m−1 and x = x0α
0 + · · ·+ xm−1α

m−1 ∈
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GF (2m) be a root for A(x). Then we have the following linear equation system:

A(x) = 0 ⇐⇒ g(x) = c

⇐⇒ g

(
m−1∑
i=0

xiα
i

)
=

m−1∑
i=0

xi · g(αi) =

m−1∑
i=0

ciα
i = c

⇐⇒
m−1∑
i=0

xi n∑
j=0

gjα
ipj

 =

m−1∑
i=0

ciα
i

⇐⇒
m−1∑
i=0

xi m−1∑
j=0

ei,jα
j

 =

m−1∑
i=0

ciα
i

⇐⇒
m−1∑
i=0

αi m−1∑
j=0

xjej,i

 =

m−1∑
i=0

ciα
i

That is, ci =

m−1∑
j=0

xjej,i for i = 0, · · · ,m where ej = (ej,0, · · · , ej,m−1) =

n∑
i=0

giα
jpi . The linear

system could also be written as:
e0,0 e1,0 · · · em−1,0
e0,1 e1,1 · · · em−1,1

...
...

. . . . . .
e0,m−1 e1,1 · · · em−1,m−1




x0
x1
...

xm−1

 =


c0
c1
...

cm−1

 (10)

For the affine polynomial x2 + ax + c. We consider two cases. For a = 0, the square root of c
could be calculated directly as cp

m−1
. For a 6= 0, we substitute x with x = ay and obtain a new

polynomial y2+y+ c
a2

. Thus we have ej = αj+α2j which could be pre-computed. For a polynomial
p(x) = x3+ax2+bx+c, it has a degree 4 affine multiple polynomial p1(x) = (x+a)(x3+ax2+bx+c) =
x4 + (a2 + b)x2 + (ab1 + c)x + ac. For a degree 4 polynomial p(x) = x4 + ax3 + bx2 + cx + d, let
x = y +

√
c
a . We obtain p(y) = y4 + ay3 + (a

√
c
a + b)y2 + ( cba + d). Next let z = 1

y . Then

we have the affine polynomial p(z) = z4 +
a
√

c
a
+b)

bc
a
+d

z2 + a
cb
a
+d
z + 1

cb
a
+d

. For the affine polynomial

x4 +ax2 + bx+ c, we have ej = bαj +aα2j +α4j . For the affine polynomial x8 +ax4 + bx2 + dx+ c,
we have ej = dαj + bα2j + aα4j + α8j .

As a special case, we consider the roots for quadratic polynomials over the finite fields GF (210)
and GF (211). For p(x) = x2 + x + c over GF (2m) with c 6= 0, p(x) has a root if and only if
Tr(x) = 0. Let c = c0 + c1α + · · · + cm−1α

m−1 and Tr(x) = 0. Then the roots for p(x) are
x = x0 + x1α+ · · ·+ xm−1α

m−1 and x+ 1 where
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1. If m = 10, then
x9 = c3 + c5 + c6 + c9
x8 = c3 + c5 + c6
x7 = c0 + c1 + c2 + c4 + c5 + c8 + c9
x6 = c0 + c5
x5 = c0
x4 = c8 + c9
x3 = c0 + c3
x2 = c0 + c1 + c2 + c3 + c6 + c9
x1 = c1 + c3 + c5 + c6 + c9
x0 = 0

2. If m = 11, then
x10 = c5 + c7 + c9 + c10
x9 = c3 + c5 + c6 + c9 + c10
x8 = c3 + c6
x7 = c1 + c2 + c3 + c4 + c5 + c6 + c8 + c10
x6 = c9 + c10
x5 = c3 + c5 + c6 + c8 + c9 + c10
x4 = c1 + c2 + c3 + c4 + c5 + c8 + c10
x3 = c3 + c4 + c5 + c6 + c8 + c9 + c10
x2 = c2 + c3 + c4 + c5 + c6 + c8 + c10
x1 = c0
x0 = 0

3.6 Matrix multiplication and inverse: Strassen algorithm

Strassen algorithm is more efficient than the standard matrix multiplication algorithm. Assume
that A is a n1 × n2 matrix, B is a n2 × n3 matrix, and all n1, n2, n3 are even numbers. Then
C = AB could be computed by first partition A,B,C as follows

A =

(
A1,1 A1,2

A2,1 A2,2

)
, B =

(
B1,1 B1,2

B2,1 B2,2

)
, C =

(
C1,1 C1,2

C2,1 C2,2

)
where Ai,j are n1

2 ×
n2
2 matrices, Bi,j are n2

2 ×
n3
2 matrices, and Bi,j are n1

2 ×
n3
2 matrices. Then we

compute the following 7 matrices of appropriate dimensions:

M1 = (A1,1 +A2,2)(B1,1 +B2,2)
M2 = (A2,1 +A2,2)B1,1

M3 = A1,1(B1,2 −B2,2)
M4 = A2,2(B2,1 −B1,1)
M5 = (A1,1 +A1,2)B2,2

M6 = (A2,1 −A1,1)(B1,1 +B1,2)
M7 = (A1,2 −A2,2)(B2,1 +B2,2)

Next the Ci,j can be computed as follows:

C1,1 = M1 +M4 −M5 +M7

C1,2 = M3 +M5

C2,1 = M2 +M4

C2,2 = M1 −M2 +M3 +M6
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The process can be carried out recursively until A and B are small enough (e.g., of dimension
around 30) to use standard matrix multiplication algorithms. Note that if the numbers of rows
or columns are odd, we can add zero rows or columns to the matrix to make these numbers even.
Please note that in Strassen’s original paper, the performance is analyzed for square matrices of
dimension u2v where v is the recursive steps and u is the matrix dimension to stop the recursive
process. For a matrix of dimension n, Strassen recommend n ≤ u2v. Our experiments show that
Strassen matrix multiplication could be used to speed up RLCE encryption scheme for several
security parameters.

For matrix inversion, let

A =

(
A1,1 A1,2

A2,1 A2,2

)
, A−1 =

(
C1,1 C1,2

C2,1 C2,2

)
Then we compute

M1 = A−11,1

M2 = A2,1M1

M3 = M1A1,2

M4 = A2,1M3

M5 = M4 −A2,2

M6 = M−15

C1,2 = M3M6

C2,1 = M6M2

M7 = M3C2,1

C1,1 = M1 −M7

C2,2 = −M6

Similarly, for matrices with odd dimensions, we can add zero rows/columns and identity matrices
in the lower right corner to carry out the computation recursively.

Strassen inversion algorithm generally has better performance than Gauss elimination based
algorithm. However, it has high incorrect abortion rate. Thus it is not useful for RLCE encrypiton
schemes. For example, Strassen inversion algorithm will abort on the following matrix over GF (210)
though its inverse does exist. The following matrix is a common matrix for which the matrix inverse
is needed in RLCE implementation.

0 313 0 626 252 266 62 841 0 506 0
0 0 0 636 389 357 852 638 0 869 0
0 0 701 656 635 143 130 392 0 278 0
0 0 711 433 1020 841 46 185 1000 369 0
0 0 813 692 219 657 579 0 13 777 0
0 0 350 923 632 270 950 0 228 105 0
0 0 105 445 0 954 916 0 809 268 0
0 0 963 217 0 619 903 0 566 442 0
0 0 0 455 0 815 219 0 708 242 0

129 0 0 334 0 702 481 0 0 614 0
769 0 0 4 0 729 955 0 0 545 433


Note that in order to avoid the incorrect abortion in Strassen inversion algorithm, one may use

the Bunch-Hopcroft [6] triangular factorization approach LUP combined with Strassen inversion
algorithm. Since the LUP factorization requires additional steps for factorization, it will not improve
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the performance for RLCE encryption schemes and we did not implement it. Alternatively, one
may use the Method of Four Russians for Inversion (M4RI) [2] to speed up the matrix inversion
process. Our analysis shows that the M4RI performance gain for RLCE encryption scheme is
marginal. Thus we did not implement it either.

3.7 Vector matrix multiplication: Winograd algorithm

Winograd’s algorithm can be used to reduce the number of multiplication operations in vector
matrix multiplication by 50%. Note that this approach could also be used for matrix multiplication.
The algorithm is based on the following algorithm for inner product computation of two vectors
x = (x0, · · · , xn−1) and y = (y0, · · · , yn−1). We first compute

x̄ =

bn2−1c∑
j=0

x2jx2j+1 and ȳ =

bn2−1c∑
j=0

y2jy2j+1

Then the inner product x · y is given by

x · y =



bn2−1c∑
j=0

(x2j + y2j+1)(x2j+1 + y2j)− x̄− ȳ n is even

bn2−1c∑
j=0

(x2j + y2j+1)(x2j+1 + y2j)− x̄− ȳ + xn−1yn−1 n is odd

The Winograd algorithm converts each field multiplication into several field additions. Our
experiments show that Winograd algorithm is extremely slow for RLCE encryption implementations
when table look up is used for field multiplication.

3.8 Experimental results

We have implemented these algorithms that we have discussed in the preceding sections. Table
3 gives experimental results on finding roots of error loator polynomials in RLCE schemes. The
implementation was run on a MacBook Pro with masOS Sierra version 10.12.5 with 2.9GHz Intel
Core i7 Processor. The reported time is the required milliseconds for finding roots of a degree t
polynomial over GF (210) (an average of 10,000 trials). These results show that generally Chien’s
search is the best choice.

Table 3: Milliseconds for finding roots of a degree t error locator polynomial over GF (210)

t FFT Chien Search Exhaustive search BTA

78 .4781572 .2871678 .7360182 1.1814685

80 .5021798 .2864403 .7506306 1.2784691

114 .6632026 .4155929 1.0445943 1.9991356

118 .6892365 .4280331 1.0773125 2.1493591

230 1.3742336 .8323220 2.0717924 5.7388549

280 1.7690640 1.0194170 2.4806118 8.3730290
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On the other hand, for small degree polynomials, Chien’s search might be the best choice. Table
4 gives experimental results on finding roots of small degree polynomials. These polynomial degrees
are the common degrees for polynomials in list-decoding based RLCE schemes. The implementation
was run on a MacBook Pro with masOS Sierra version 10.12.5 with 2.9GHz Intel Core i7 Processor.
The reported time is the required milliseconds for finding roots of a degree t polynomial over
GF (210) (an average of 10,000 trials). These results show that for degree 4 or less, the linearized
and affine polynomial based BTA is the best choice. For degrees above 4, Chien’s search is the best
choice.

Table 4: Milliseconds for finding roots of a small degree t polynomial over GF (210)

t Chien Search BTA FFT Exhaustive search

4 .0197496 .0009202 .1117984 .1175816

6 .0261202 .0537054 .1174620 .1252327

8 .0330730 .1215397 .1402607 .1419983

10 .0418521 .1288605 .1417330 .1605130

14 .0537797 .1780427 .1481447 .1908748

18 .0669920 .2288600 .1805597 .2228205

Table 5 gives experimental results for RLCE polynomial multiplications. The implementation
was run on a MacBook Pro with masOS Sierra version 10.12.5 with 2.9GHz Intel Core i7 Processor.
The reported time is the required milliseconds for multiplying a degree t polynomial with a degree
2t polynomial over GF (210) (an average of 10,000 trials). From the experiment, it shows that
Karatsuba’s polynomial algorithm only outperforms standard polynomial algorithm for polynomisl
degrees above degree 115. It is noted that in standard test, Karatsuba’s polynomial algorithm
outperforms standard polynomial algorithm for polynomial degrees above degree 35 already.

Table 5: Milliseconds for multiplying a pair of degree t and 2t polynomials over GF (210)

t Karatsuba Standard Algorithm FFT

78 .0470269 .0374369 1.4651561

80 .0546122 .0423766 1.4891211

114 .0794242 .0775524 2/4723263

118 .0811117 .0833309 2.5360034

230 .2371405 .3117507 6.3380415

280 .3444224 .4547458 7.8866734

Table 6 gives experimental results for RLCE related matrix multiplications. The implementation
was run on a MacBook Pro with masOS Sierra version 10.12.5 with 2.9GHz Intel Core i7 Processor.
The reported time is the required seconds for multiplying two n × n matrices (or invert an n × n
matrix) over GF (210) (an average of 100 trials)..
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Table 6: Seconds for multiplying a pairs of (inverting a) n× n matrices over GF (210)

n Strassen Mul. Standard Mul. Winograd Mul. Gauss Elimination Inv Strassen Inv.

376 .17881616 .15684892 .57614453 .23071715 .22307581

470 .42498317 .30317405 1.12305698 .44601063 .53218560

618 .77971244 .65356388 2.68176523 .97155253 .98632941

700 1.01458090 .94067030 3.77942598 1.41453963 1.30181261

764 1.20244299 1.21845951 4.88860081 1.82576160 1.55965069

800 1.36761960 1.605249880 6.27596202 2.14227823 1.80930063

4 Reed-Solomon codes

4.1 The original approach

Let k < n < q and a0, · · · , an−1 be distinct elements from GF (q). The Reed-Solomon code is
defined as

C = {(m(a0), · · · ,m(an−1)) : m(x) is a polynomial over GF (q) of degree < k} .

There are two ways to encode k-element messages within Reed-Solomon codes. In the original
approach, the coefficients of the polynomial m(x) = m0 + m1x + · · · + mk−1x

k−1 is considered as
the message symbols. That is, the generator matrix G is defined as

G =


1 · · · 1
a0 · · · an−1
...

. . .
...

ak−10 · · · ak−1n−1


and the the codeword for the message symbols (m0, · · · ,mk−1) is (m0, · · · ,mk−1)G.

Let α be a primitive element of GF (q) and ai = αi. Then it is observed that Reed-Solomon code
is cyclic when n = q−1. For each j > 0, let m = (m0, · · · ,mk−1) and m′ = (m0α

0,m1α
1, · · · ,mk−1α

k−1).
Then m′(αi) = m0α

0 +m1α
1αi + · · ·+mk−1α

k−1αi(k−1) = m(αi+1). That is, m′ is encoded as(
m′(α0), · · · ,m′(αn−1)

)
=
(
m(α), · · · ,m(αn−1),m(α0)

)
which is a cyclic shift of the codeword for m.

Instead of using coefficients to encode messages, one may use m(a0), · · · ,m(ak−1) to encode the
message symbols. This is a systematic encoding approach and one can encode a message vector
using Lagrange interpolation.

4.2 The BCH approach

We first give a definition for the t-error-correcting BCH codes of distance δ. Let 1 ≤ δ < n = q− 1
and let g(x) be a polynomial over GF (q) such that g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0
where α is a primitive n-th root of unity (note that it is not required to have α ∈ GF (q)). It
is straightforward to check that g(x) is a factor of xn − 1. For w = n − deg(g) − 1, a message
polynomial m(x) = m0 +m1x + · · ·+mwx

w over GF (q) is encoded as a degree n− 1 polynomial
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c(x) = m(x)g(x). A BCH codes with b = 1 is called a narrow-sense BCH code. A BCH code with
n = qm−1 is called a primitive BCH code where m is the multiplicative order of q modulo n. That
is, m is the least integer so that α ∈ GF (qm).

A BCH code with n = q − 1 and α ∈ GF (q) is called a Reed-Solomon code. Specifically, let
1 ≤ k < n = q− 1 and let g(x) = (x−αb)(x−αb+1) · · · (x−αb+n−k−1) = g0 + g1x+ · · ·+ gn−kx

n−k

be a polynomial over GF (q). Then a message polynomial m(x) = m0 + m1x + · · · + mk−1x
k−1 is

encoded as a degree n − 1 polynomial c(x) = m(x)g(x). In other words, the Reed-Solomon code
is the cyclic code generated by the polynomial g(x). The generator matrix for this definition is as
follows:

G =


g0 g1 · · · gn−k 0 · · · 0
0 g0 · · · gn−k−1 gn−k · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · gn−2k+1 gn−2k+2 · · · gn−k

 =


g(x)
xg(x)

...
xk−1g(x)


For BCH systematic encoding, we first choose the coefficients of the k largest monomials of c(x)

as the message symbols. Then we set the remaining coefficients of c(x) in such a way that g(x)
divides c(x). Specifically, let cr(x) = m(x) · xn−k mod g(x) which has degree n − k − 1. Then
c(x) = m(x) · xn−k − cr(x) is a systematic encoding of m(x). The code polynomial c(x) can be
computed by simulating a LFSR with degree n−k where the feedback tape contains the coefficients
of g(x).

4.3 The equivalence

The equivalence of the two definitions for Reed-Solomon code could be established using the re-
lationship between FFT and IFFT. For each Reed-Solomon codeword f(x) in the BCH approach,

it is a multiple of the generating polynomial g(x) =

n−k∏
j=1

(
x− αj

)
. Let F (x) be defined as in (4).

Since f(αj) = 0 for 1 ≤ j ≤ n− k, F (x) has degree at most k − 1. By the identity (5), we have

FFT(F (x)) =
(
F (α0), · · · , F (αn−1)

)
= n · f(x).

Thus f(x) is also a Reed-Solomon codeword in the original approach.
For each Reed-Solomon codeword (a0, · · · , an−1) in the original approach, it is an evaluation of

a polynomials F (x) of degree at most k−1 on α0, · · · , αn−1. Let f(x) be the function satisfying the

identity (4) obtained by interpolation. Then f(x) = FFT
(
F (x)
n

)
, (a0, · · · , an−1) is the coefficients

of n ·f(x), and f(αj) = 0 for j = 1, · · · , n−k. Thus f(x) is a multiple of the generating polynomial
g(x).

4.4 Generalized Reed-Solomon codes

For an [n, k] generator matrix G for a Reed-Solomon code, we can select n random elements
v0, · · · , vn−1 ∈ GF (q) and define a new generator matrix

G(v0, · · · , vn−1) = G


v0 0 · · · 0
0 v1 · · · 0
...

...
. . .

...
0 0 · · · vn−1

 = G · diag(v0, · · · , vn−1).
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The code generated by G(v0, · · · , vn−1) is called a generalized Reed-Solomon code. For a generalized
Reed-Solomon codeword c, it is straightforward that c · diag

(
v−10 , · · · , v−1n−1

)
is a Reed-Solomon

codeword. Thus the problem of decoding generalized Reed-Solomon codes could be easily reduced
to the problem of decoding Reed-Solomon codes.

5 Decoding Reed-Solomon code

5.1 Peterson-Gorenstein-Zierler decoder

This sections describes Peterson-Gorenstein-Zierler decoder which has computational complexity
O(n3). Assume that Reed-Solomon code is based on BCH approach and the received polynomial is

r(x) = c(x) + e(x) = r0 + r1x+ · · ·+ rn−1x
n−1.

We first calculate the syndromes Sj = r(αj) for j = 1, · · · , n− k.

Sj = r0 + r1α
j + · · ·+ rn−1(α

j)n−1

= r0 + r1,j + · · ·+ rn−1,j
Sj+1 = r0 + r1α

j+1 + · · ·+ rn−1(α
j+1)n−1

= r0 + r1,jα+ · · ·+ rn−1,jα
n−1

= r0 + r1,j+1 + · · ·+ rn−1,j+1

From the above equations, it is sufficient to compute the set {ri,j : i = 1, · · · , n−1; j = 1, · · · , n−k}
with ri,j+1 = ri,jα

i and then add them together to get the syndromes.
Let the numbers 0 ≤ p1, · · · , pt ≤ n− 1 be error positions and epi be error magnitudes (values).

Then

e(x) =
t∑
i=1

epix
pi .

For convenience, we will use Xi = αpi to denote error locations and Yi = epi to denote error
magnitudes. It should be noted that for the syndromes Sj for j = 1, · · · , n− k, we have

Sj = r(αj) = c(αj) + e(αj) = e(αj) =
t∑
i=1

epi(α
j)pi =

t∑
i=1

YiX
j
i .

That is, we have 
X1

1 X1
2 · · · X1

t

X2
1 X2

2 · · · X2
t

...
...

. . .
...

Xn−k
1 Xn−k

2 · · · Xn−k
t




Y1
Y2
...
Yt

 =


S1
S2
...

Sn−k

 (11)

Thus we obtained n− k equations with n− k unknowns: X1, · · · , Xt, Y1, · · · , Yt. The error locator
polynomial is defined as

Λ(x) =

t∏
i=1

(1−Xix) = 1 + λ1x+ · · ·+ λtx
t. (12)

Then we have
Λ(X−1i ) = 1 + λ1X

−1
i + · · ·+ λtX

−t
i = 0 (i = 1, · · · , t) (13)
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Multiply both sides of (13) by YiX
j+t
i , we get

YiX
j+t
i Λ(X−1i ) = YiX

j+t
i + λ1YiX

j+t−1
i + · · ·+ λtYiX

j
i = 0 (14)

For i = 1, · · · , t, add equations (14) together, we obtain

t∑
i=1

(YiX
j+t
i ) + λ1

t∑
i=1

(YiX
j+t−1
i ) + · · ·+ λt

t∑
i=1

(YiX
j
i ) = 0 (15)

Combing (11) and (15), we obtain

Sjλt + Sj+1λt−1 + · · ·+ Sj+t−1λ1 + Sj+t = 0 (j = 1, · · · , t) (16)

which yields the following linear equation system:
S1 S2 · · · St
S2 S3 · · · St+1
...

...
. . .

...
St St+1 · · · S2t−1




λt
λt−1

...
λ1

 =


−St+1

−St+2
...
−S2t

 (17)

Since the number of errors is unknown, Peterson-Gorenstein-Zierler tries various t from the maxi-
mum n−k

2 to solve the equation system (17). After the error locator polynomial Λ(x) is identified,
one can use exhaustive search algorithm, Chien’s search algorithm, BTA algorithms, or other root-
finding algorithms to find the roots of Λ(x). After the error locations are identified, one can use
Forney’s algorithm to determined the error values. With e(x) in hand, one subtracts e(x) from
r(x) to obtain c(x).
Computational complexity: Assume that (αj)i for i = 0, · · · , n − 1 and j = 0, · · · , n − k have
been pre-computed in a table. Then it takes 2(n− 1)(n− k) field operations to compute the values
of S1, · · · , Sn−k. After Si are computed, it takes O(t3) field operations (for Gaussian eliminations)
to solve the equation (17) for each chosen t.

5.1.1 Forney’s algorithm

For Forney’s algorithm, we define the error evaluator polynomial (note that n− k ≥ 2t)

Ω(x) = Λ(x) +
t∑
i=1

XiYix
t∏

j=1,j 6=i
(1−Xjx) (18)

and the syndrome polynomial

S(x) = S1x+ S2x
2 + · · ·S2tx2t.

Note that

S(x)Λ(x) =

(
2t∑
l=1

t∑
i=1

YiX
l
ix
l

)
t∏

j=1

(1−Xjx) mod x2t+1

=
t∑
i=1

Yi

2t∑
l=1

(Xix)l
t∏

j=1

(1−Xjx) mod x2t+1

=
t∑
i=1

Yi(1−Xix)
2t∑
l=1

(Xlx)i
t∏

j=1,j 6=i
(1−Xjx) mod x2t+1

(19)
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Using the fact that (1− x2t+1) = (1− x)(1 + x+ · · ·+ x2t), we have

(1−Xix)

2t∑
l=1

(Xix)l = Xix− (Xix)2t+1 = Xix mod x2t+1.

Thus

S(x)Λ(x) =
t∑
i=1

YiXix
t∏

j=1,j 6=i
(1−Xjx) mod x2t+1.

This gives us the key equation

Ω(x) = (1 + S(x))Λ(x) mod x2t+1. (20)

Note: In some literature, syndrome polynomial is defined as S(x) = S1 + S2x + + S2tx
2t−1. In

this case, the key equation becomes

Ω(x) = S(x)Λ(x) mod x2t. (21)

Let Λ′(x) = −
t∑
i=1

Xi

∏
j 6=i

(1−Xjx) =

t∑
i=1

iλix
i−1. Then we have Λ′(X−1l ) = −Xl

∏
j 6=l

(1−XjX
−1
l ).

By substituting X−1l into Ω(x), we get

Ω(X−1l ) =
t∑
i=1

XiYiX
−1
l

t∏
j=1,j 6=i

(1−XjX
−1
l ) = Yl

t∏
j=1,j 6=l

(1−XjX
−1
l ) = −YlX−1l Λ′(X−1l )

This shows that

epl = Yl = −
Xl · Ω(X−1l )

Λ′(X−1l )
.

Computational complexity: Assume that (αj)i for i = 0, · · · , n − 1 and j = 0, · · · , n − k have
been pre-computed in a table. Furthermore, assume that both Λ(x) and S(x) have been calculated
already. Then it takes O(n2) field operations to calculate Ω(x). After both Ω(x) and Λ(x) are
calculated, it takes O(n) field operations to calculate each epl . As a summary, assuming that S(x)
and Λ(x) are known, it takes O(n2) field operations to calculate all error values.

5.2 Berlekamp-Massey decoder

In this section we discuss Berlekamp-Massey decoder [12] which has computational complexity
O(n2). Note that there exists an implementation using Fast Fourier Transform that runs in time
O(n log n). Berlekamp-Massey algorithm is an alternative approach to find the minimal degree t
and the error locator polynomial Λ(x) = 1+λ1x · · ·+λtx

t such that all equations in (16) hold. The
equations in (16) define a general linear feedback shift register (LFSR) with initial state S1, · · · , St.
Thus the problem of finding the error locator polynomial Λ(x) is equivalent to calculating the
linear complexity (alternatively, the connection polynomial of the minimal length LFSR) of the
sequence S1, · · · , S2t. The Berlekamp-Massey algorithm constructs an LFSR that produces the
entire sequence S1, · · · , S2t by successively modifying an existing LFSR to produce increasingly
longer sequences. The algorithm starts with an LFSR that produces S1 and then checks whether
this LFSR can produce S1S2. If the answer is yes, then no modification is necessary. Otherwise,
the algorithm revises the LFSR in such a way that it can produce S1S2. The algorithm runs in
2t iterations where the ith iteration computes the linear complexity and connection polynomial for
the sequence S1, · · · , Si. The following is the original LFSR Synthesis Algorithm from Massey [12].

21



1. Λ(x) = 1, B(x) = 1, u = 1, L = 0, b = 1, i = 0.
2. If i = 2t, stop. Otherwise, compute

d = Si +

L∑
j=1

λjSi−j (22)

3. If d = 0, then u = u+ 1, and go to (6).
4. If d 6= 0 and i < 2L, then

Λ(x) = Λ(x)− db−1xuB(x)
u = u+ 1

and go to (6).
5. If d 6= 0 and i ≥ 2L, then

T (x) = Λ(x)
Λ(x) = Λ(x)− db−1xuB(x)
L = i+ 1− L
B(x) = T (x)
b = d
u = 1

(23)

6. i = i+ 1 and go to step (2).

Discussion: For the sequence S1, · · · , Si, we use Li = L(S1, · · · , Si) to denote its linear complexity.

We use Λ(i)(x) = 1+λ
(i)
1 x+λ

(i)
2 x2+· · ·+λ(i)Li

xLi to denote the connection polynomial for the sequence
S1 · · ·Si that we have obtained at iteration i. At iteration i, the constructed LFSR can produce
the sequence S1S2 · · ·Si. That is,

Sj = −
Li∑
l=1

λ
(i)
j Sj−l, j = Li + 1, · · · , i

Let i0 denote the last position where the linear complexity changes during the iteration and let di
denote the discrepancy obtained at iteration i using the equation (22). That is,

di = Si +

Li−1∑
j=1

λ
(i−1)
j Si−j .

We show that Λ(i)(x) = Λ(i−1)(x) − dib−1xuB(x) is the connection polynomial for the sequence
S1, · · · , Si. The case for di = 0 is trivial. Assume that di 6= 0. Then B(x) = Λ(i0)(x) and b = di0+1.
By the construction in Step 4 and Step 5, we have Λ(i)(x) = Λ(i−1)(x) − did−1i0+1x

uΛ(i0)(x). For
v = Li, Li + 1, · · · , i− 1, we have

Sv +
∑Li

j=1 λ
(i)
j Sv−j = Sv +

∑Li−1

j=1 λ
(i−1)
j Sv−j + did

−1
i0+1

(
Sv−i+i0+1 +

∑Li0
j=1 λ

(i0)
j Sv−i+i0+1−j

)
=

{
0 Li ≤ u ≤ i− 1

di − did−1i0+1di0+1 u = i

Computational complexity: As we have mentioned in Section 5, it takes 2(n − 1)(n − k) field
operations to calculates the sequence S1, · · · , Sn−k. In the Berlekamp-Massey decoding process,
iteration i requires at most 2(i−1) field operations to calculate di and at most 2(i−1) operations to
calculate the polynomial Λ(i)(x). Thus it takes at most 4t(2t− 1) operations to finish the iteration
process. In a summary, Berlekamp-Massey decoding process requires at most 2(n − 1)(n − k) +
4t(2t− 1) field operations.
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5.3 Euclidean decoder

Assume that the polynomial S(x) is known already. By the key equation (20), we have

Ω(x) = (1 + S(x))Λ(x) mod x2t+1

with deg(Ω(x)) ≤ deg(Λ(x)) ≤ t. The generalized Euclidean algorithm could be used to find a
sequence of polynomials R1(x), · · · , Ru(x) , Q1(x), · · · , Qu(x) such that

x2t+1 −Q1(x)(1 + S(x)) = R1(x)
1 + S(x)−Q2(x)R1(x) = R2(x)
· · ·
Ru−2(x)−Qu(x)Ru−1(x) = Ru(x)

where deg(1+S(x)) > deg(R1(x)), deg(Ri(x)) > deg(Ri+1(x)) (i = 1, · · · , u−1), deg(Ru−1(x)) ≥ t,
and deg(Ru(x)) < t. By substituting first u− 1 identities into the last identity, we obtain the key
equation

Λ(x)(1 + S(x))− Γ(x)x2t+1 = Ω(x)

where Ru(x) = Ω(x).
In case that the syndrome polynomial is defined as S(x) = S1 +S2x+ +S2tx

2t−1, the Euclidean
decoder will calculate the key equation

Λ(x)S(x)− Γ(x)x2t = Ω(x)

Computational complexity: As we mentioned in the previous sections, it takes 2(n− 1)(n− k)
field operations to calculate the polynomial S(x). After S(x) is obtained, the above process stops
in u steps where u ≤ t + 1. For each identity, it requires at most O(t) steps to obtain the pair of
polynomials (Ri, Qi). Thus the total steps required by the Euclidean decoder is bounded by O(t2).

5.4 Berlekamp-Welch decoder

In previous sections, we dicussed syndrome-based decoding algorithms for Reed-Solomon codes.
In this and next sections we will discuss syndromeless decoding algorithms that do not compute
syndromes and do not use the Chien search and Forneys formula. We first introduce Berlekamp-
Welch decoding algorithm which has computational complexity O(n3). Berlekamp-Welch decoding
algorithm first appeared in the US Patent 4,633,470 (1983). The algorithm is based on the classical
definition of Reed-Solomon codes and can be easily adapted to the BCH definition of Reed-Solomon
codes. The decoding problem for the classical Reed-Solomon codes is described as follows: We have
a polynomial m(x) of degree at most k − 1 and we received a polynomial c(x) which is given by
its evaluations (r0, · · · , rn−1) on n distinct field elements. We know that m(x) = r(x) for at least
n− t points. We want to recover m(x) from r(x) efficiently.

Berlekamp-Welch decoding algorithm is based on the fundamental vanishing lemma for poly-
nomials: If m(x) is a polynomial of degree at most d and m(x) vanishes at d + 1 distinct points,
then m is the zero polynomial. Let the graph of r(x) be the set of q points:

{(x, y) ∈ GF (q) : y = r(x)} .

Let R(x, y) = Q(x)−E(x)y be a non-zero lowest-degree polynomial that vanishes on the graph of
r(x). That is, Q(x) − E(x)r(x) is the zero polynomial. In the following, we first show that E(x)
has degree at most t and Q(x) has degree at most k + t− 1.

23



Let x1, · · · , xt′ be the list of all positions that r(xi) 6= m(xi) for i = 1, · · · , t′ where t′ ≤ t. Let

E0(x) = (x− x1)(x− x2) · · · (x− xt′) and Q0(x) = m(x)E0(x).

By definition, we have deg(E0(x)) = t′ ≤ t and deg(Q0(x)) = t′+k−1 ≤ t+k−1. Next we show that
Q0(x)− E0(x)r(x) is the zero polynomial. For each x ∈ GF (q), we distinguish two cases. For the
first case, assume that m(x) = r(x). Then Q0(x) = m(x)E0(x) = r(x)E0(x). For the second case,
assume that m(x) 6= r(x). Then E0(x) = 0. Thus we have Q0(x) = m(x)E0(x) = 0 = r(x)E0(x).
This shows that there is a polynomial E(x) of degree at most t and a polynomial Q(x) of degree
at most k + t− 1 such that R(x, y) = Q(x)− E(x)y vanishes on the graph of r(x).

The arguments in the preceding paragraph show that, for the minimal degree polynomial
R(x, y) = Q(x) − E(x)y, both Q(x) and m(x)E(x) are polynomials of degree at most k + t − 1.
Thus Q(x)−m(x)E(x) has degree at most k+ t−1. For each x such that m(x)−r(x) = 0, we have
Q(x)−m(x)E(x) = 0. Since m(x)− r(x) vanishes on at least n− t positions and n− t > k+ t− 1,
the polynomial R(x,m(x)) = Q(x)−m(x)E(x) must be the zero polynomial.

The equation Q(x)− E(x)r(x) = 0 is called the key equation for the decoding algorithm. The
arguments in the preceding paragraphs show that for any solutions Q(x) of degree at most k+ t−1

and E(x) of degree at most t, Q(x)−m(x)E(x) is the zero polynomial. That is, m(x) = Q(x)
E(x) . This

implies that, after solving the key equation, we can calculate the message polynomial m(x). Let
(m(a0), · · · ,m(an−1)) be the transmitted code and (r0, · · · , rn−1) be the received vector. Define
two polynomials with unknown coefficients:

Q(x) = u0 + u1x+ · · ·+ uk+t−1x
k+t−1

E(x) = v0 + v1x+ · · ·+ vtx
t

Using the identities
Q(ai) = ri · E(ai) (i = 0, · · · , n− 1)

to build a linear equation system of n equations in n+ 1 unknowns u0, · · · , uk+t−1, v0, · · · , vt. Find
a non-zero solution of this equation system and obtain the polynomial Q(x) and E(x). Then

m(x) = Q(x)
E(x) .

Computational complexity: The Berlekamp-Welch decoding process solves an equation system
of n equations in n+ 1 unknowns. Thus the computational complexity is O(n3).

5.5 List decoder

Based on Berlekamp-Welch decoding algorithm, Sudan [16] designed an algorithm to decode Reed-

Solomon codes by correcting up to n − 1 −
⌊√

2n(k − 1)
⌋
≥ n−k

2 errors. Guruswami and Sudan

[10] improved Sudan’s algorithm to correct up to tGS(n, k) = n − 1 −
⌊√

n(k − 1)
⌋

errors. List-

decoding techniques have been used by authors such as Bernstein, Lange, and Peters [5] to improve
the security of McEliece encryption schemes. In this section, we present Guruswami-Sudan’s (GS)
algorithm with Kötter’s iterative interpolation [11] and Roth-Ruckenstein’s polynomial factorization
[15].

For a message polynomial m(x) = m0 +m1x+ · · ·+mk−1x
k−1, the codeword for m(x) consists

of its evaluations (m(α0), · · · ,m(αn−1)) on n distinct field elements α0, · · · , αn−1, which is received
as (β0, · · · , βn−1). The GS decoder algorithm is parameterized with a non-negative interpolation
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multiplicity (order) ω ≥ 1. For each ω, there is an associated decoding radius

tω(n, k) = n− 1−


max

K :

b K
k−1c∑
i=0

(K − i(k − 1)) ≤ n
(
ω + 1

2

)
ω


where we have

t0(n, k) =

⌊
n− k

2

⌋
≤ t1(n, k) ≤ t2(n, k) ≤ · · · ≤ tω0(n, k) = tω0+1(n, k) = · · · = tGS(n, k).

For a received codeword (β0, · · · , βn−1) and an interpolation multiplicity (order) ω ≥ 1, the GS
decoder GS(ω) finds a list of Lω(n, k) polynomials p1(x), · · · , pLω(n,k)(x) such that one of these
polynomials pi(x) satisfies the condition

|{j : pi(αj) 6= βj}| ≤ tω(n, k)

where

Lω(n, k) =

√2n
(
ω+1
2

)
k − 1

+

(
k + 1

2(k − 1)

)2
− ( k + 1

2(k − 1)

)
.

For a polynomial Q(x, y), we say that Q(x, y) has a zero of multiplicity (order) ω at (0, 0) if
Q(x, y) contains no term of total degree less than ω. Similarly, we say that Q(x, y) has a zero of
multiplicity (order) ω at (α, β) if Q(x+α, y+β) contains no term of total degree less than ω. Note
that

Q(x+ α, y + β) =
∑
i,j

ai,j(x+ α)i(y + β)j

=
∑
i,j

ai,j

(∑
r

(
i

r

)
xrαi−r

)(∑
s

(
j

s

)
ysβj−s

)
=
∑
r,s

xrys
∑
i,j

(
ai,j

(
i

r

)(
j

s

)
αi−rβj−s

)

Let Q[r,s](α, β) =
∑
i,j

(
ai,j

(
i

r

)(
j

s

)
αi−rβj−s

)
be the Hasse derivative. Then Q(x, y) has a zero of

multiplicity (order) ω at (α, β) if and only if Q[r,s](α, β) = 0 for all 0 ≤ r + s < ω.
The Guruswami-Sudan’s (GS) decoding algorithm first constructs a bivariate polynomialQ(x, y)

such that Q(x, y) has a zero of order ω at each of given pairs (αi, βi). This could be done by
constructing a linear equation system with Q(x, y)’s coeffifients as unknowns. For Q(x, y) to satisfy
the requried property, it is sufficient to have Q[r,s](αi, βi) = 0 for all i = 0, · · · , n− 1 and r+ s < ω.
That is, we need to solve a linear equation system of O(nω2) equations at the cost O(n3ω6) steps.
Specifically, the decoding algorithm GS(ω) consists of the following two steps.

1. Constructs a nonzero two-variable polynomial

Q(x, y) =

n(ω+1
2 )∑

i=0

aiφi(x, y)
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where φ0(x, y) < φ0(x, y) < · · · , is a list of all monomials xiyj ordered by the (1, k − 1)-
lexicographic order. That is, xi1yj1 < xi2yj2 if and only if “i1 + (k− 1)j1 < i2 + (k− 1)j2” or
“i1 + (k − 1)j1 = i2 + (k − 1)j2 and j1 < j2”. The constructed polynomial Q(x, y) satisfies
the property that it has a zero of order ω at each of the n points (αi, βi) for i = 1, · · · , n.

2. Factorize the polynomial Q(x, y) to get at most Lω univariate polynomials:

L = {p(x) : y − p(x)|Q(x, y)} .

Among these Lω polynomials, one is the transmitted message polynomial m(x).

Note that Q(x, y) has the following properties:

1. Q(x, y) has at most n
(
ω+1
2

)
terms.

2. The (1, k − 1) degree of Q(x, y) is strictly less than
√

2(k − 1)n
(
ω+1
2

)
.

3. The y-degree of Q(x, y) is at most Lω(n, k).

4. The x-degree of Q(x, y) is at most
√

2(k − 1)n
(
ω+1
2

)
.

Instead of solving a linear equation system for the construction of Q(x, y), Kötter proposed an
iterative interpolation algorithm to construct the polynomial Q(x, y). In Kötter’s algorithm, one
first defines candidate polynomials Qj(x, y) = yj for j = 0, · · · , Lω. Then one recursively revises
Qj(x, y) for each of the pairs (αi, βi) such that Qj,[r,s](αi, βi) = 0 for all r+ s < ω. In case that two
of the candidate polynomials Qj0(x, y) and Qj1(x, y) do not satisfy this condition for given r and
s, one revises them as follows:

• Let Qj1(x, y) = Qj0,[r,s](αi, βi)Qj1(x, y)−Qj1,[r,s](αi, βi)Qj0(x, y).

• Let Qj0(x, y) = Qj0,[r,s](αi, βi)Q̃j0(x, y) − Q̃j0,[r,s](αi, βi)Qj0(x, y) where Q̃j0(x, y) = (x −
αi)Qj0(x, y).

Based on the fact that Hasse derivative is bilinear, it follows that, after the above revision, we have
both Qj0,[r,s](αi, βi) = 0 and Qj1,[r,s](αi, βi) = 0. Kötter’s algorithm runs in time O(nLωω

2Qsize) =
O(n2ω4Lω) where Qsize is the number of terms within Q(x, y).
Input: (α0, β0), · · · , (αn−1, βn−1), ω, Lω.
Output: Q(x, y) that has a zero of order ω at (αi, βi) for all i = 0, · · · , n− 1.
Algorithm Steps:

1. Let Qj(x, y) = yj for j = 0, · · · , Lω.1

2. For i = 0 to n− 1, do the following:

• For r = 0, · · · , ω − 1 do:

– for s = 0, · · · , ω − r − 1 do:

∗ Compute Hasse derivative Qj,[r,s](αi, βi) =
∑

u,v

(
u
r

)(
v
s

)
au,vα

u−r
i βv−si at the point

(αi, βi) for j = 0, · · · , Lω, where Qj(x, y) =
∑

u,v au,vx
uyv.

1For implementation, one may use a sparse

(
1 +

√
2(k − 1)n

(
ω+1
2

))
× (1 + Lω(n, k)) matrix to denote Qj(x, y).
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∗ Let J = {j : Qj,[r,s](αi, βi) 6= 0}. We need to adjust these Qj(x, y) so that they
have a zero of order ω at (αi, βi).

∗ If J 6= ∅, do the following

· Let j0 be the least index in J such that Qj0(x, y) < Qj(x, y) for all j ∈ J with
the (1, k − 1)-lexicographic order.

· For j ∈ J with j 6= j0, let

Qj(x, y) = Qj0,[r,s](αi, βi)Qj(x, y)−Qj,[r,s](αi, βi)Qj0(x, y).

· Let

Qj0(x, y) = Qj0,[r,s](αi, βi)Q̃j0(x, y)− Q̃j0,[r,s](αi, βi)Qj0(x, y)

= Qj0,[r,s](αi, βi)xQj0(x, y)− Q̂j0,[r,s](αi, βi)Qj0(x, y)

where Q̃j0(x, y) = (x− αi)Qj0(x, y) and Q̂j0(x, y) = xQj0(x, y).

3. Let Q(x, y) = min{Qj(x, y) : j} with respect to the (1, k − 1)-lexicographic order of leading
monomials.

The y-roots f(x) = f0 + f1x + · · · + fk−1x
k−1 of Q(x, y) could be determined by recursively

finding the coefficients f0, · · · , fk−1. Note that

(y − f0 − f1x− · · · − fk−1xk−1)R(x, y) = Q(x, y) (24)

for some R(x, y). Thus (y − f0)R(0, y) = Q(0, y). That is, f0 is a root of Q(0, y). By substituting
y = xy + f0 into (24) and then dividing xi1 in both sides such that xi1+1 - Q(x, y), one obtains(

y − f1 − f2x · · · − fk−1xk−2
) R(xy + f0, y)

xi1
=
Q(xy + f0, y)

xi1
(25)

Thus one has (y − f1)R1(f0, y) = Q1(0, y) where R1(x, y) = R(xy+f0,y)
xi1

and Q1(x, y) = Q(xy+f0,y)
xi1

.
That is, f1 is a root of Q1(0, y). Continuing this process, one obtains Roth-Ruckenstein factorization
algorithm.
Input: Q(x, y), k − 1.
Output: all f(x) of degree at most k − 1 such that (y − f(x))|Q(x, y).
Algorithm Steps:

1. Let π[0] = NULL, deg(0) = −1, Q0(x, y) = Q(x, y), t = 1, and u = 0.

2. Run the depth-first search DFS(u) where DFS(u) is defined as:

• If Qu(x, 0) = 0, output fu(x) = fudeg(u)x
deg(u) + fu0deg(u0)

xdeg(u0) + fu1deg(u1)
xdeg(u1) + · · ·

where u0 is the parent of u, u1 is the parent of u0, and so on.

• If Qu(x, 0) 6= 0 and deg(u) < k − 1 then do the following:

– For each root α of Qu(0, y) do:

∗ Let v = t, t = t+ 1;

∗ π[v] = u,deg(v) = deg(u) + 1, fvdeg v = α,

∗ Qv(x, y) = Qu(x,y)
xi

such that xi|Qu(x, y) but xi+1 - Qu(x, y).

∗ Do DFS[v].

27



In the above algorithm, we have the following notations:

• π[u] is the parent of u

• deg(u) is the degree of u. That is, the distance from root minus 1.

• fudeg(u) is the polynomial coefficient at xdeg(u).

In the above Roth-Ruckenstein algorithm, we need to compute all roots of Qu(0, y). This could
be done using any of the root-finding algorithms discussed in preceding sections. For example, one
may use exhaustive search, Chien’s search, Berlekamp Trace Algorithm (BTA), or equal-degree
factorization by Cantor and Zassenhaus. In the above Roth-Ruckenstein algorithm, we also need
to compute Q(x, xy + α) from Q(x, y) =

∑
i,j ai,jx

iyj . Note that

Q(x, xy + α) =
∑
r,j

ar,jx
r(xy + α)j

=
∑
r,j

ar,jx
r

(∑
s

(
j

s

)
xsysαj−s

)

=
∑
s

∑
r,j

ar,j

(
j

s

)
αj−sxr+sys


=
∑
r,s

xr+sys∑
j

ar,j

(
j

s

)
αj−s


=
∑
r,s

Qr,s(α)xr+sys

where

Qr,s(y) =
∑
j≥s

(
j

s

)
ar,jy

j−s.

Several more efficient interpolation/factorization algorithms for list decoding have been pro-
posed in the last decades, for example, [1, 3, 8, 14, 17, 21]. Our experiments show that they are
still quite slow for RLCE encryption scheme. Thus the advantages of reducing key sizes by using
list-decoding may be limited for RLCE schemes.

5.6 Experimental results

Table 7 gives experimental results on decoding Reed-Solomon codes for various parameters cor-
responding RLCE schemes. The implementation was run on a MacBook Pro with masOS Sierra
version 10.12.5 with 2.9GHz Intel Core i7 Processor. The reported time is the required milliseconds
for decoding a received codeword over GF (2m) (an average of 10,000 trials).

For the list-decoding based RLCE encryption scheme, we tested Reed-Solomon codes with
(n, k, t, ω, Lω,m) = (520, 380, 73, 9, 10, 10)). It takes 1865 seconds (that is, approximately 31 min-
utes) to decode a received code.
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Table 7: Milliseconds for decoding Reed-Solomon codes over GF (2m)

(n, k, t,m) BM-decoder Euclidean decoder

(532, 376, 78, 10) 1.8763225 2.6413376

(630, 470, 80, 10) 1.9261904 2.6511796

(846, 618, 114, 10) 3.0183825 3.6363407

(1000, 764, 118, 10) 3.1226213 4.0247824

(1160, 700, 230, 11) 10.3142787 13.3073421

(1360, 800, 280, 11) 12.4488992 16.3140049

6 Conclusion

This paper compares different algorithms for implementing the RLCE encryption scheme. The
experiments show that for all of the RLCE encryption scheme parameters (corresponding to AES-
128, AES-192, and AES-256), Chien’s search algorithm should be used in the root-finding process
of the error locator polynomials. For list-decoding based RLCE schemes, the root-finding process
for small degree polynomials should use BTA algorithm for polynomial degrees smaller than 5 and
Chien’s search for polynomial degrees above 5. For polynomial multiplications, one should use
optimized classical polynomial multiplicaton algorithm for polynomials of degree 115 and less. For
polynoials of degree 115 and above, one should use Karatsuba algorithm. For matrix multiplica-
tions, one should use optimized classical matrix multiplicaiton algorithm for matrices of dimension
750 or less. For matrices of dimension 750 or above, one should use Strassen’s algorithm. For the
underlying Reed-Solomon decoding process, Berlekamp-Massey outperforms Euclidean decoding
process.
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