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Abstract. Polynomial-time safe and unsafe approximations for intractable sets were introduced
by Meyer and Paterson [Technical Report TM-126, Laboratory for Computer Science, MIT, Cam-
bridge, MA, 1979] and Yesha [SIAM J. Comput., 12 (1983), pp. 411–425], respectively. The question
of which sets have optimal safe and unsafe approximations has been investigated extensively. Duris
and Rolim [Lecture Notes in Comput. Sci. 841, Springer-Verlag, Berlin, New York, 1994, pp. 38–51]
and Ambos-Spies [Proc. 22nd ICALP, Springer-Verlag, Berlin, New York, 1995, pp. 384–392] showed
that the existence of optimal polynomial-time approximations for the safe and unsafe cases is inde-
pendent. Using the law of the iterated logarithm for p-random sequences (which has been recently
proven in [Proc. 11th Conf. Computational Complexity, IEEE Computer Society Press, Piscataway,
NJ, 1996, pp. 180–189]), we extend this observation by showing that both the class of polynomial-time
∆-levelable sets and the class of sets which have optimal polynomial-time unsafe approximations have
p-measure 0. Hence typical sets in E (in the sense of p-measure) do not have optimal polynomial-time
unsafe approximations. We will also establish the relationship between resource bounded genericity
concepts and the polynomial-time safe and unsafe approximation concepts.
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1. Introduction. The notion of polynomial-time safe approximations was intro-
duced by Meyer and Paterson in [13] (see also [8]). A safe approximation algorithm
for a set A is a polynomial-time algorithm M that on each input x outputs either
1 (accept), 0 (reject), or ? (I do not know) such that all inputs accepted by M are
members of A and no member of A is rejected by M . An approximation algorithm is
optimal if no other polynomial-time algorithm correctly decides infinitely many more
inputs, that is to say, outputs infinitely many more correct 1s or 0s. In Orponen,
Russo, and Schöning [14], the existence of optimal approximations was phrased in
terms of P-levelability: a recursive set A is P-levelable if for any deterministic Tur-
ing machine M accepting A and for any polynomial p there is another machine M ′

accepting A and a polynomial p′ such that for infinitely many elements x of A, M
does not accept x within p(|x|) steps while M ′ accepts x within p′(|x|) steps. It is
easy to show that A has an optimal polynomial-time safe approximation if and only
if neither A nor Ā is P-levelable.

The notion of polynomial-time unsafe approximations was introduced by Yesha
in [19]: an unsafe approximation algorithm for a set A is just a standard polynomial-
time bounded deterministic Turing machine M with outputs 1 and 0. Note that,
different from the polynomial-time safe approximations, here we are allowed to make
errors, and we study the amount of inputs on which M are correct. Duris and Rolim
[6] further investigated unsafe approximations and introduced a levelability concept,
∆-levelability, which implies the nonexistence of optimal polynomial-time unsafe ap-
proximations. They showed that complete sets for E are ∆-levelable and there exists
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an intractable set in E which has an optimal safe approximation but no optimal unsafe
approximation. But they did not succeed in producing an intractable set with opti-
mal unsafe approximations. Ambos-Spies [1] defined a concept of weak ∆-levelability
and showed that there exists an intractable set in E which is not weakly ∆-levelable
(hence it has an optimal unsafe approximation).

Like resource-bounded randomness concepts, different kinds of resource-bounded
genericity concepts were introduced by Ambos-Spies [2], Ambos-Spies, Fleischhack,
and Huwig [3], Fenner [7], and Lutz [9]. It has been proved that resource-bounded
generic sets are useful in providing a coherent picture of complexity classes. These
sets embody the method of diagonalization construction; that is, requirements which
can always be satisfied by finite extensions are automatically satisfied by generic sets.

It was shown in Ambos-Spies, Neis, and Terwijn [4] that the generic sets of Ambos-
Spies are P-immune, and that the class of sets which have optimal safe approximations
is large in the sense of resource-bounded Ambos-Spies category. Mayordomo [11]
has shown that the class of P-immune sets is neither meager nor comeager both in
the sense of resource-bounded Lutz category and in the sense of resource-bounded
Fenner category. We extend this result by showing that the class of sets which have
optimal safe approximations is neither meager nor comeager both in the sense of
resource-bounded Lutz category and in the sense of resource-bounded Fenner category.
Moreover, we will show the following relations between unsafe approximations and
resource-bounded categories.

1. The class of weakly ∆-levelable sets is neither meager nor comeager in the
sense of resource-bounded Ambos-Spies category [4].

2. The class of weakly ∆-levelable sets is comeager (is therefore large) in the
sense of resource-bounded general Ambos-Spies [2], Fenner [7], and Lutz [9]
categories.

3. The class of ∆-levelable sets is neither meager nor comeager in the sense of
resource-bounded general Ambos-Spies [2], Fenner [7], and Lutz [9] categories.

In the last section, we will show the relationship between polynomial-time approx-
imations and p-measure. Mayordomo [12] has shown that the class of P-bi-immune
sets has p-measure 1. It follows that the class of sets which have optimal polynomial-
time safe approximations has p-measure 1. Using the law of the iterated logarithm
for p-random sequences which we have proved in Wang [16, 17], we will show that the
following hold.

1. The class of ∆-levelable sets has p-measure 0.
2. The class of sets which have optimal polynomial-time unsafe approximations

have p-measure 0. That is, the class of weakly ∆-levelable sets has p-measure
1.

3. p-Random sets are weakly ∆-levelable but not ∆-levelable.

Hence typical sets in the sense of resource-bounded measure do not have optimal
polynomial-time unsafe approximations.

It should be noted that the above results show that the class of weakly ∆-levelable
sets is large both in the sense of the different notions of resource-bounded category
and in the sense of resource-bounded measure. That is to say, typical sets in E2 (in
the sense of resource-bounded category or in the sense of resource-bounded measure)
are weakly ∆-levelable.

In contrast to the results in this paper, we have recently shown (in [18]) the
following results.

1. There is a p-stochastic set A ∈ E2 which is ∆-levelable.
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2. There is a p-stochastic set A ∈ E2 which has an optimal unsafe approxima-
tion.

2. Definitions. N and Q(Q+) are the set of natural numbers and the set of
(nonnegative) rational numbers, respectively. Σ = {0, 1} is the binary alphabet, Σ∗

is the set of (finite) binary strings, Σn is the set of binary strings of length n, and Σ∞

is the set of infinite binary sequences. The length of a string x is denoted by |x|. <
is the length-lexicographical ordering on Σ∗, and zn (n ≥ 0) is the nth string under
this ordering. λ is the empty string. For strings x, y ∈ Σ∗, xy is the concatenation of
x and y, x v y denotes that x is an initial segment of y. For a sequence x ∈ Σ∗ ∪Σ∞

and an integer number n ≥ −1, x[0..n] denotes the initial segment of length n+1 of x
(x[0..n] = x if |x| ≤ n+ 1) and x[i] denotes the ith bit of x, i.e., x[0..n] = x[0] · · ·x[n].
Lowercase letters . . . , k, l,m, n, . . . , x, y, z from the middle and the end of the alphabet
will denote numbers and strings, respectively. The letter b is reserved for elements of
Σ, and lowercase Greek letters ξ, η, . . . denote infinite sequences from Σ∞.

A subset of Σ∗ is called a language, a problem, or simply a set. Capital letters
are used to denote subsets of Σ∗ and boldface capital letters are used to denote
subsets of Σ∞. The cardinality of a language A is denoted by ‖A‖. We identify a
language A with its characteristic function, i.e., x ∈ A if and only if A(x) = 1. The
characteristic sequence of a language A is the infinite sequence A(z0)A(z1)A(z2) · · ·.
We freely identify a language with its characteristic sequence and the class of all
languages with the set Σ∞. For a language A ⊆ Σ∗ and a string zn ∈ Σ∗, A |̀ zn =
A(z0) · · ·A(zn−1) ∈ Σ∗. For languages A and B, Ā = Σ∗ − A is the complement of
A, A∆B = (A−B) ∪ (B −A) is the symmetric difference of A and B; A ⊆ B (resp.,
A ⊂ B) denotes that A is a subset of B (resp., A ⊆ B and B 6⊆ A). For a number n,
A=n = {x ∈ A : |x| = n} and A≤n = {x ∈ A : |x| ≤ n}.

We fix a standard polynomial-time computable and invertible pairing function
λx, y〈x, y〉 on Σ∗ such that, for every string x, there is a real α(x) > 0 satisfying

‖Σ[x] ∩ Σn‖ ≥ α(x) · 2n for almost all n,

where Σ[x] = {〈x, y〉 : y ∈ Σ∗} and Σ[≤x] = {〈x′, y〉 : x′ ≤ x & y ∈ Σ∗}. We will use
P, E, and E2 to denote the complexity classes DTIME(poly), DTIME(2linear), and
DTIME(2poly), respectively. Finally, we fix a recursive enumeration {Pe : e ≥ 0} of
P such that Pe(x) can be computed in O(2|x|+e) steps (uniformly in e and x).

We define a finite function to be a partial function from Σ∗ to Σ whose domain
is finite. For a finite function σ and a string x ∈ Σ∗, we write σ(x) ↓ if x ∈ dom(σ),
and σ(x) ↑ otherwise. For two finite functions σ, τ , we say σ and τ are compatible if
σ(x) = τ(x) for all x ∈ dom(σ)∩dom(τ). The concatenation στ of two finite functions
σ and τ is defined as στ = σ ∪ {(znσ+i+1, b) : zi ∈ dom(τ) & τ(zi) = b}, where
nσ = max{n : zn ∈ dom(σ)} and nσ = −1 for σ = λ. For a set A and a string x, we
identify the characteristic string A |̀x with the finite function {(y,A(y)) : y < x}. For
a finite function σ and a set A, σ is extended by A if for all x ∈ dom(σ), σ(x) = A(x).

3. Genericity versus polynomial-time safe approximations. In this sec-
tion, we summarize some known results on the relationship between the different
notions of resource-bounded genericity and the notion of polynomial-time safe ap-
proximations.

We first introduce some concepts of resource-bounded genericity.
Definition 3.1. A partial function f from Σ∗ to {σ : σ is a finite function } is

dense along a set A if there are infinitely many strings x such that f(A |̀x) is defined.



GENERICITY, RANDOMNESS, AND APPROXIMATIONS 397

A set A meets f if, for some x, the finite function (A |̀x)f(A |̀x) is extended by A.
Otherwise, A avoids f .

Definition 3.2. A class C of sets is nowhere dense via f if f is dense along all
sets in C and for every set A ∈ C, A avoids f .

Definition 3.3. Let F be a class of (partial) functions from Σ∗ to {σ : σ is a
finite function}. A class C of sets is F-meager if there exists a function f ∈ F such
that C= ∪i∈NCi and Ci is nowhere dense via fi(x) = f(〈i, x〉). A class C of sets is
F-comeager if C̄ is F-meager.

Definition 3.4. A set G is F-generic if G is an element of all F-comeager
classes.

Lemma 3.5 (see [2, 7, 9]). A set G is F-generic if and only if G meets all functions
f ∈ F which are dense along G.

For a class F of functions, each function f ∈ F can be considered as a finitary
property P of sets. If f(A |̀x) is defined, then all sets extending (A |̀x)f(A |̀x) have
the property P. So a set A has the property P if and only if A meets f . f is dense
along A if and only if in a construction of A along the ordering <, where at stage
s of the construction we decide whether or not the string zs belongs to A, there are
infinitely many stages s such that by appropriately defining A(zs) we can ensure that
A has the property P (that is to say, for some string x, (A |̀x)f(A |̀x) is extended by
A).

For different function classes F, we have different notions of F-genericity. In
this paper, we will concentrate on the following four kinds of function classes which
have been investigated by Ambos-Spies [2], Amos-Spies, Neis, and Terwijn [4], Fenner
[7], and Lutz [9], respectively. F1 is the class of polynomial-time computable par-
tial functions from Σ∗ to Σ; F2 is the class of polynomial-time computable partial
functions from Σ∗ to {σ : σ is a finite function}; F3 is the class of polynomial-time
computable total functions from Σ∗ to {σ : σ is a finite function}; and F4 is the class
of polynomial-time computable total functions from Σ∗ to Σ∗.

Definition 3.6.

1. (See Ambos-Spies, Neis, and Terwijn [4].) A set G is A-generic if G is F1-
generic.

2. (See Ambos-Spies [2].) A set G is general A-generic if G is F2-generic.
3. (See Fenner [7].) A set G is F-generic if G is F3-generic.
4. (See Lutz [9].) A set G is L-generic if G is F4-generic.

Obviously, we have the following implications.

Theorem 3.7.

1. If a set G is general A-generic, then G is A-generic, F-generic, and L-generic.
2. If a set G is F-generic, then G is L-generic.

Proof. The proof is straightforward.

In this paper, we will also study the following nk-time (k > 1) bounded genericity
concepts. A set G is Ambos-Spies nk-generic (resp., general Ambos-Spies nk-generic,
Fenner nk-generic, Lutz nk-generic) if and only if G meets all nk-time computable
functions f ∈ F1 (resp., F2, F3, F4) which are dense along G.

Theorem 3.8 (see Ambos-Spies [2]). A class C of sets is meager in the sense
of Ambos-Spies category (resp., general Ambos-Spies category, Fenner category, Lutz
Category) if and only if there exists a number k ∈ N such that there is no Ambos-
Spies nk-generic (resp., general Ambos-Spies nk-generic, Lutz nk-generic, Fenner
nk-generic) set in C.

As an example, we show that Ambos-Spies n-generic sets are P-immune.
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Theorem 3.9 (see Ambos-Spies, Neis, Terwijn [4]). Let G be an Ambos-Spies
n-generic set. Then G is P-immune.

Proof. For a contradiction assume that A ∈ P is an infinite subset of G. Then
the function f : Σ∗ → Σ defined by

f(x) =

{
0 z|x| ∈ A,
↑ z|x| /∈ A

is computable in time n and is dense along G. So, by the Ambos-Spies n-genericity
of G, G meets f . By the definition of f , this implies that there exists some string
zi ∈ A such that zi /∈ G, a contradiction.

It has been shown (see Mayordomo [12]) that neither F-genericity nor L-genericity
implies P-immunity or non-P-immunity.

A partial set A is defined by a partial characteristic function f : Σ∗ → Σ. A partial
set A is polynomial-time computable if dom(A) ∈ P and its partial characteristic
function is computable in polynomial time.

Definition 3.10 (see Meyer and Paterson [13]). A polynomial-time safe ap-
proximation of a set A is a polynomial-time computable partial set Q which is con-
sistent with A, that is to say, for every string x ∈ dom(Q), A(x) = Q(x). The
approximation Q is optimal if, for every polynomial-time safe approximation Q′ of A,
dom(Q′)− dom(Q) is finite.

Definition 3.11 (see Orponen, Russo, and Schöning [14]). A set A is P-levelable
if, for any subset B ∈ P of A, there is another subset B′ ∈ P of A such that ‖B′−B‖ =
∞.

Lemma 3.12 (see Orponen, Russo, and Schöning [14]). A set A possesses an
optimal polynomial-time safe approximation if and only if neither A nor Ā is P-
levelable.

Proof. The proof is straightforward.
Lemma 3.13. If a set A is P-immune, then A is not P-levelable.
Proof. The proof is straightforward.
Theorem 3.14 (see Ambos-Spies [2]). Let G be an Ambos-Spies n-generic set.

Then neither G nor Ḡ is P-levelable. That is to say, G has an optimal polynomial-
time safe approximation.

Proof. This follows from Theorem 3.9.
Theorem 3.14 shows that the class of P-levelable sets is “small” in the sense of

resource-bounded (general) Ambos-Spies category.
Corollary 3.15. The class of P-levelable sets is meager in the sense of resource-

bounded (general) Ambos-Spies category.
Now we show that the class of P-levelable sets is neither meager nor comeager in

the sense of resource-bounded Fenner category and Lutz category.
Theorem 3.16.
1. There exists a set G in E2 which is both F-generic and P-levelable.
2. There exists a set G in E2 which is F-generic but not P-levelable.

Proof. 1. Let δ(0) = 0, δ(n+1) = 22δ(n)

, I1 = {x : δ(2n) ≤ |x| < δ(2n+1), n ∈ N},
I2 = Σ∗ − I1, and {fi : i ∈ N} be an enumeration of F3 such that fi(x) can be

computed uniformly in time 2logk(|x|+i) for some k ∈ N .
In the following, we construct a set G in stages which is both F-generic and

P-levelable. In the construction we will ensure that

G ∩ Σ[e] ∩ I1 =∗ Σ[e] ∩ I1
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for e ≥ 0. Hence G∩Σ[e] ∩ I1 ∈ P for e ≥ 0. In order to ensure that G is P-levelable,
it suffices to satisfy for all e ≥ 0 the following requirements:

Le : Pe ⊆ G ∩ I1 ⇒ Pe ⊆∗ Σ[≤e] ∩ I1.
To show that the requirements Le(e ≥ 0) ensure that G is P-levelable (fix a subset

C ∈ P of G) we have to define a subset C ′ ∈ P of G such that C ′ −C is infinite. Fix
e such that Pe = C ∩ I1. Then, by the requirement Le, C ∩ I1 ⊆∗ Σ[≤e] ∩ I1. So, for
C ′ = G∩Σ[e+1] ∩ I1, C ′ ∈ P and C ′ is infinite. Since C ′ ∩C = ∅, C ′ has the required
property.

The strategy for meeting a requirement Le is as follows: if there is a string
x ∈ (I1∩Pe)−Σ[≤e], then we let G(x) = 0 to refute the hypothesis of the requirement
Le (so Le is trivially met). To ensure that G is F-generic, it suffices to meet for all
e ≥ 0 the following requirements:

Ge: There exists a string x such that G extends (G |̀x)fe(G |̀x).

Because the set I1 is used to satisfy Le, we will use I2 to satisfy Ge. The strategy
for meeting a requirement Ge is as follows: for some string x ∈ I2, let G extend
(G |̀x)fe(G |̀x).

Define a priority ordering of the requirements by letting R2n = Gn and R2n+1 =
Ln. Now we give the construction of G formally.

Stage s.

If G(zs) has been defined before stage s, then go to stage s+ 1.

A requirement Le requires attention if

1. e < s.
2. zs ∈ Pe ∩ Σ[>e] ∩ I1.
3. For all y < zs, if y ∈ Pe then y ∈ G ∩ I1.

A requirement Ge requires attention if e < s, Ge has not received attention yet,
and x ∈ I2 for all zs ≤ x ≤ zt where zt is the greatest element in dom((G |̀ zs)fe(G |̀ zs)).

Fix the minimal n such that Rn requires attention. If there is no such n, then
let G(zs) = 1. Otherwise, we say that Rn receives attention. Moreover, if Rn = Le
then let G(zs) = 0. If Rn = Ge then let G |̀ zt+1 = fill1((G |̀ zs)fe(G |̀ zs), t), where
zt is the greatest element in dom((G |̀ zs)fe(G |̀ zs)) and for a finite function σ and a
number k, fill1(σ, k) = σ ∪ {(x, 1) : x ≤ zk & x /∈ dom(σ)}.

This completes the construction of G.

It is easy to verify that the set G constructed above is both P-levelable and
F-generic; the details are omitted here.

2. For a general A-generic set G, by Theorem 3.9, G is P-immune. By Theorem
3.7, G is F-generic. Hence, G is F-generic but not P-levelable.

Corollary 3.17. The class of P-levelable sets is neither meager nor comeager
in the sense of resource-bounded Fenner category and Lutz category.

Proof. This follows from Theorem 3.16.

4. Genericity versus polynomial-time unsafe approximations.

Definition 4.1 (see Duris and Rolim [6] and Yesha [19]). A polynomial-time
unsafe approximation of a set A is a set B ∈ P. The set A∆B is called the error set
of the approximation. Let f be an unbounded function on the natural numbers. A set
A is ∆-levelable with density f if, for any set B ∈ P, there is another set B′ ∈ P
such that

‖(A∆B) |̀ zn‖ − ‖(A∆B′) |̀ zn‖ ≥ f(n)
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for almost all n ∈ N . A set A is ∆-levelable if A is ∆-levelable with density f such
that limn→∞ f(n) =∞.

Note that, in Definition 4.1, the density function f is independent of the choice
of B ∈ P.

Definition 4.2 (see Ambos-Spies [1]). A polynomial-time unsafe approximation
B of a set A is optimal if, for any approximation B′ ∈ P of A,

∃k ∈ N ∀n ∈ N (‖(A∆B) |̀ zn‖ < ‖(A∆B′) |̀ zn‖+ k).

A set A is weakly ∆-levelable if, for any polynomial-time unsafe approximation B of
A, there is another polynomial-time unsafe approximation B′ of A such that

∀k ∈ N ∃n ∈ N (‖(A∆B) |̀ zn‖ > ‖(A∆B′) |̀ zn‖+ k).

It should be noted that our above definitions are a little different from the original
definitions of Ambos-Spies [1], Duris and Rolim [6], and Yesha [19]. In the original def-
initions, they considered the errors on strings up to certain length (i.e., ‖(A∆B)≤n‖)
instead of errors on strings up to zn (i.e., ‖(A∆B) |̀ zn‖). But it is easy to check that
all our results except Theorem 5.14 in this paper hold for the original definitions also.

Lemma 4.3 (see Ambos-Spies [1]).
1. A set A is weakly ∆-levelable if and only if A does not have an optimal

polynomial time unsafe approximation.
2. If a set A is ∆-levelable then it is weakly ∆-levelable.

Lemma 4.4. Let A,B be two sets such that A is ∆-levelable with linear density
and A∆B is sparse. Then B is ∆-levelable with linear density.

Proof. Let p be the polynomial such that, for all n, ‖(A∆B)≤n‖ ≤ p(n), and
assume that A is ∆-levelable with density αn (α > 0). Then there is a real number
β > 0 such that, for large enough n, αn− 2p(1 + [logn]) > βn. We will show that B
is ∆-levelable with density βn.

Now, given any set C ∈ P, by ∆-levelability of A, choose D ∈ P such that

‖(A∆C) |̀ zn‖ > ‖(A∆D) |̀ zn‖+ αn

for almost all n. Then

‖(B∆C) |̀ zn‖ ≥ ‖(A∆C) |̀ zn‖ − p(1 + [logn])

> ‖(A∆D) |̀ zn‖+ αn− p(1 + [logn])

≥ ‖(B∆D) |̀ zn‖+ αn− 2p(1 + [logn])

> ‖(B∆D) |̀ zn‖+ βn

for almost all n. Hence, B is ∆-levelable with density βn.
Theorem 4.5.
1. There exists a set G in E2 which is both A-generic and ∆-levelable.
2. There exists a set G in E2 which is A-generic but not weakly ∆-levelable.

Proof. 1. Duris and Rolim [6] constructed a set A in E which is ∆-levelable with
linear density and, in [4], Ambos-Spies, Neis, and Terwijn showed that, for any set
B ∈ E, there is an A-generic set B′ in E2 such that B∆B′ is sparse. So, for any set A
which is ∆-levelable with linear density, there is an A-generic set G in E2 such that
A∆G is sparse. It follows from Lemma 4.4 that G is ∆-levelable with linear density.
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2. Ambos-Spies [1, Theorem 3.3] constructed a P-bi-immune set in E which is
not weakly ∆-levelable. In his proof, he used the requirements

BI2e : Pe ⊆ G⇒ Pe is finite,

BI2e+1 : Pe ⊆ Ḡ⇒ Pe is finite,

to ensure that the constructed set G is P-bi-immune. In order to guarantee that G is
not weakly ∆-levelable, he used the requirements

R : ∀e ∈ N ∀n ∈ N (‖(G∆B) |̀ zn‖ ≤ ‖(G∆Pe) |̀ zn‖+ e+ 1)

to ensure that B = ∪i≥0Σ[2i] will be an optimal unsafe approximation of G. If we
change the requirements BI2e and BI2e+1 to the requirements

Re : if fe ∈ F1 is dense along G, then G meets fe,

then a routine modification of the finite injury argument in the proof of Ambos-Spies
[1, Theorem 3.3] can be used to construct an A-generic set G in E2 which is not
weakly ∆-levelable. The details are omitted here.

Corollary 4.6. The class of (weakly) ∆-levelable sets is neither meager nor
comeager in the sense of resource-bounded Ambos-Spies category.

Corollary 4.6 shows that the class of weakly ∆-levelable sets is neither large nor
small in the sense of resource-bounded Ambos-Spies category. However, as we will
show next, it is large in the sense of resource-bounded general Ambos-Spies category,
resource-bounded Fenner category, and resource-bounded Lutz category.

Theorem 4.7. Let G be a Lutz n3-generic set. Then G is weakly ∆-levelable.
Proof. Let B ∈ P. We show that B̄ witnesses that the unsafe approximation B

of G is not optimal. For any string x, define f(x) = y, where |y| = |x|2 and y[j] = 0
if and only if z|x|+j ∈ B. Obviously, f is computable in time n3. Since G is Lutz
n3-generic, G meets f infinitely often. Hence, for any k and n0, there exists n > n0

such that n2 − 2n > k and, for all strings x with zn ≤ x < zn2 , x ∈ G if and only if
x ∈ B̄. Hence

‖(G∆B) |̀ zn2‖ ≥ n2 − n

> n+ k

≥ ‖(G∆B̄) |̀ zn2‖+ k,

which implies that G is weakly ∆-levelable.
Corollary 4.8. The class of weakly ∆-levelable sets is comeager in the sense

of resource-bounded Lutz, Fenner, and general Ambos-Spies categories.
Proof. This follows from Theorems 3.7, 3.8, and 4.7.
Now we show that the class of ∆-levelable sets is neither meager nor comeager in

the sense of all these resource-bounded categories we have discussed above.
Theorem 4.9. There exists a set G in E2 which is both general A-generic and

∆-levelable.
Proof. Let δ(0) = 0, δ(n + 1) = 22δ(n)

. For each set Pe ∈ P, let Pg(e) be defined
in such a way that

Pg(e)(x) =

{
1− Pe(x) if x = 0δ(<e,n>) for some n ∈ N,
Pe(x) otherwise.

In the following we construct a general A-generic set G which is ∆-levelable by
keeping Pg(e) to witness that the unsafe approximation Pe of G is not optimal. Let
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{fi : i ∈ N} be an enumeration of all functions in F2 such that fi(x) can be computed

uniformly in time 2logk(|x|+i) for some k ∈ N .
The set G is constructed in stages. To ensure that G is general A-generic, it

suffices to meet for all e ∈ N the following requirements:

Ge : if fe is dense along G, then G meets fe.

To ensure that G is ∆-levelable, it suffices to meet for all e, k ∈ N the following
requirements, as shown at the end of the proof:

L〈e,k〉 : ∃n1 ∈ N ∀n > n1 (‖(G∆Pe) |̀ zn‖ > ‖(G∆Pg(e)) |̀ zn‖+ k).

The strategy for meeting a requirement Ge is as follows: at stage s, if Ge has
not been satisfied yet and fe(G |̀ zs) is defined, then let G extend (G |̀ zs)fe(G |̀ zs).
But this action may injure the satisfaction of some requirements L〈i,k〉 and Gm. The
conflict is solved by delaying the action until it will not injure the satisfaction of the
requirements L〈i,k〉 and Gm which have higher priority than Ge.

The strategy for meeting a requirement L〈e,k〉 is as follows: at stage s, if L〈e,k〉
has not been satisfied yet and Pe(zs) 6= Pg(e)(zs), then let G(zs) = Pg(e)(zs). When
a requirement Ge becomes satisfied at some stage, it is satisfied forever, so L〈e,k〉
can only be injured finitely often and then it will have a chance to become satisfied
forever.

Stage s.
In this stage, we define the value of G(zs).
A requirement Gn requires attention if
1. n < s.
2. Gn has not been satisfied yet.
3. There exists t ≤ s such that

A. fn(G |̀ zt) is defined.
B. G |̀ zs is consistent with (G |̀ zt)fn(G |̀ zt).
C. For all e, k ∈ N such that 〈e, k〉 < n, there is at most one 〈e,m〉 ∈ N

such that 0δ(〈e,m〉) ∈ dom((G |̀ zt)fn(G |̀ zt)).
D. For all e, k ∈ N such that 〈e, k〉 < n,

‖(G∆Pe) |̀ zs‖ − ‖(G∆Pg(e)) |̀ zs‖ > k + n.(1)

Fix the minimal m such that Gm requires attention, and fix the minimal t in the
above item 3 corresponding to the requirement Gm. If there is no such m, then let
G(zs) = 1 − Pe(zs) if zs = 0δ(〈e,n〉) for some e, n ∈ N , and let G(zs) = 0 otherwise.
Otherwise we say that Gm receives attention. Moreover, let

G(zs) =


((G |̀ zt)fm(G |̀ zt))(zs) if zs ∈ dom((G |̀ zt)fm(G |̀ zt)),
1− Pe(zs) if zs /∈ dom((G |̀ zt)fm(G |̀ zt)) & zs = 0δ(〈e,n〉)

for some e, n,
0 otherwise.

This completes the construction.
We show that all requirements are met by proving a sequence of claims.
Claim 1. Every requirement Gn requires attention at most finitely often.
Proof. The proof is by induction. Fix n and assume that the claim is correct for

all numbers less than n. Then there is a stage s0 such that no requirement Gm with
m < n requires attention after stage s0. So Gn receives attention at any stage s > s0
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at which it requires attention. Hence it is immediate from the construction that Gn
requires attention at most finitely often.

Claim 2. Given n0 ∈ N , if no requirement Gn(n < n0) requires attention after
stage s0 and Gn0 requires attention at stage s0, then for all 〈e, k〉 < n0 and s > s0,

‖(G∆Pe) |̀ zs‖ − ‖(G∆Pg(e)) |̀ zs‖ > k + n0 − 1.

Proof. The proof is straightforward from the construction.
Claim 3. Every requirement Gn is met.
Proof. For a contradiction, fix the minimal n such that Gn is not met. Then fn

is dense along G. We have to show that Gn requires attention infinitely often which
is contrary to Claim 1. Since ‖Pe∆Pg(e)‖ = ∞ for all e ∈ N , by the construction
and Claim 2, there will be a stage s0 such that at all stages s > s0, (1) holds for all
e, k ∈ N such that 〈e, k〉 < n. Hence Gn requires attention at each stage s > s0 at
which fn(G |̀ zs) is defined.

Claim 4. Every requirement L〈e,k〉 is met.
Proof. This follows from Claims 2 and 3.
Now we show that G is both A-generic and ∆-levelable. G is A-generic since all

requirements Gn are met. For 〈e, k〉 ∈ N , let n〈e,k〉 be the least number s0 such that
for all s > s0,

‖(G∆Pe) |̀ zs‖ > ‖(G∆Pg(e)) |̀ zs‖+ k

and let f(n) be the biggest k such that

∀e ≤ k (n ≥ n〈e,k〉).
Then limn→∞ f(n) =∞ and, for all e ∈ N ,

‖(G∆Pe) |̀ zn‖ ≥ ‖(G∆Pg(e)) |̀ zn‖+ f(n) a.e.

That is to say, G is ∆-levelable with density f .
Theorem 4.10. There exists a set G in E2 which is general A-generic but not

∆-levelable.
Proof. As in the previous proof, a set G is constructed in stages. To ensure that

G is general A-generic, it suffices to meet for all e ∈ N the following requirements:

Ge : if fe is dense along G, then G meets fe.

Fix a set B ∈ P. Then the requirements

NL〈e,k〉 : Pe∆B infinite ⇒ ∃n (‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ ≥ k)

will ensure that B witnesses the failure of ∆-levelability of G.
To meet the requirements Ge, we use the strategy in Theorem 4.9. The strategy

for meeting a requirement NL〈e,k〉 is as follows: at stage s such that Pe(zs) 6= B(zs)
and ‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ < k for all n < s, let G(zs) = B(zs). If Pe 6=∗ B,
this action can be repeated over and over again. Hence ‖G∆Pe‖ is growing more
quickly than ‖G∆B‖, and eventually the requirement NL〈e,k〉 is met at some suffi-
ciently large stage.

Define a priority ordering of the requirements by lettingR2n = Gn andR2〈e,k〉+1 =
NL〈e,k〉. We now describe the construction of G formally.

Stage s.
In this stage, we define the value of G(zs).
A requirement NL〈e,k〉 requires attention if 〈e, k〉 < s and
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1. Pe(zs) 6= B(zs).
2. ‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ < k for all n < s.

A requirement Gn requires attention if
1. n < s.
2. Gn has not been satisfied yet.
3. There exists t ≤ s such that

A. fn(G |̀ zt) is defined.
B. G |̀ zs is consistent with (G |̀ zt)fn(G |̀ zt).
C. There is no e, k ∈ N such that

(1). 〈e, k〉 < n.
(2). ∀u < s (‖(G∆Pe) |̀ zu‖ − ‖(G∆B) |̀ zu‖ < k).
(3). There exists y ∈ dom((G |̀ zt)fn(G |̀ zt)) − dom(G |̀ zs) such that

Pe(y) 6= B(y).
Fix the minimal m such that Rm requires attention. If there is no such m, let

G(zs) = B(zs). Otherwise we say that Rm receives attention. Moreover, if Rm =
NL〈e,k〉 then let G(zs) = B(zs). If Rm = Gn then fix the least t in the above
item 3 corresponding to the requirement Gm. Let G(zs) = ((G |̀ zt)fm(G |̀ zt))(zs) if
zs ∈ dom((G |̀ zt)fm(G |̀ zt)) and let G(zs) = B(zs) otherwise.

This completes the construction of G.
It suffices to show that all requirements are met. Note that, by definition of

requiring attention, Rm is met if and only if Rm requires attention at most finitely
often. So, for a contradiction, fix the minimal m such that Rm requires attention
infinitely often. By minimality of m, fix a stage s0 such that no requirement Rm′ with
m′ < m requires attention after stage s0. Then Rm receives attention at any stage
s > s0 at which Rm requires attention. Now, we first assume that Rm = Gn. Then
at some stage s > s0, Gn receives attention and becomes satisfied forever. Finally
assume that Rm = NL〈e,k〉. Then B∆Pe is infinite and, at all stages s > s0 such that
B(zs) 6= Pe(zs), the requirement NL〈e,k〉 receives attention; hence G(zs) = B(zs).
Since, for all other stages s with s > s0, B(zs) = Pe(zs), G∆Pe grows more rapidly
than G∆B; hence

lim
n

(‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖) =∞

and NL〈e,k〉 is met contrary to assumption.
Corollary 4.11. The class of ∆-levelable sets is neither meager nor comeager

in the sense of resource-bounded (general) Ambos-Spies, Lutz, and Fenner categories.
Proof. The proof follows from Theorems 3.7, 4.9, and 4.10.

5. Resource-bounded randomness versus polynomial-time approxima-
tions. We first introduce a fragment of Lutz’s effective measure theory which will be
sufficient for our investigation.

Definition 5.1. A martingale is a function F : Σ∗ → R+ such that, for all
x ∈ Σ∗,

F (x) =
F (x1) + F (x0)

2
.

A martingale F succeeds on a sequence ξ ∈ Σ∞ if lim supn F (ξ[0..n−1]) =∞. S∞[F ]
denotes the set of sequences on which the martingale F succeeds.

Definition 5.2 (see Lutz [10]). A set C of infinite sequences has p-measure 0
(µp(C) = 0) if there is a polynomial-time computable martingale F : Σ∗ → Q+ which
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succeeds on every sequence in C. The set C has p-measure 1 (µp(C) = 1) if µp(C̄) = 0
for the complement C̄ = {ξ ∈ Σ∞ : ξ /∈ C} of C.

Definition 5.3 (see Lutz [10]). A sequence ξ is nk-random if, for every nk-time
computable martingale F , lim supn F (ξ[0..n − 1]) < ∞; that is to say, F does not
succeed on ξ. A sequence ξ is p-random if ξ is nk-random for all k ∈ N .

The following theorem is straightforward from the definition.
Theorem 5.4. A set C of infinite sequences has p-measure 0 if and only if there

exists a number k ∈ N such that there is no nk-random sequences in C.
Proof. See, e.g., [16].
The relation between p-measure and the class of P-levelable sets is characterized

by the following theorem.
Theorem 5.5 (see Mayordomo [11]). The class of P-bi-immune sets has p-

measure 1.
Corollary 5.6. The class of P-levelable sets has p-measure 0.
Corollary 5.7. The class of sets which possesses optimal polynomial-time safe

approximations has p-measure 1.
Corollary 5.8. For each p-random set A, A has an optimal polynomial-time

safe approximation.
Now we turn our attention to the relations between the p-randomness concept

and the concept of polynomial-time unsafe approximations. In our following proof,
we will use the law of the iterated logarithm for p-random sequences.

Definition 5.9. A sequence ξ ∈ Σ∞ satisfies the law of the iterated logarithm if

lim sup
n→∞

2
∑n−1
i=0 ξ[i]− n√
2n ln lnn

= 1

and

lim inf
n→∞

2
∑n−1
i=0 ξ[i]− n√
2n ln lnn

= −1.

Theorem 5.10 (see Wang [17]). There exists a number k ∈ N such that every
nk-random sequence satisfies the law of the iterated logarithm.

For the sake of convenience, we will identify a set with its characteristic sequence.
The symmetric difference of two sets can be characterized by the parity function on
sequences.

Definition 5.11.
1. The parity function ⊕ : Σ× Σ→ Σ on bits is defined by

b1 ⊕ b2 =

{
0 if b1 = b2,
1 otherwise,

where b1, b2 ∈ Σ.
2. The parity function ⊕ : Σ∞×Σ∞ → Σ∞ on sequences is defined by (ξ⊕η)[n] =
ξ[n]⊕ η[n].

3. The parity function ⊕ : Σ∗×{f : f is a partial function from Σ∗ to Σ} → Σ∗

on strings and functions is defined by x⊕ f = b0 · · · b|x|−1, where bi = x[i]⊕
f(x[0..i− 1]) if f(x[0..i− 1]) is defined and bi = λ otherwise.

4. The parity function ⊕ : Σ∞ × {f : f is a partial function from Σ∗ to Σ} →
Σ∗ ∪ Σ∞ on sequences and functions is defined by ξ ⊕ f = b0b1 · · · where
bi = ξ[i]⊕ f(ξ[0..i− 1]) if f(ξ[0..i− 1]) is defined and bi = λ otherwise.
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The intuitive meaning of ξ ⊕ f is as follows: Given a sequence ξ and a number
n ∈ N such that f(ξ[0..n − 1]) is defined, we use f to predict the value of ξ[n] from
the first n bits ξ[0..n − 1]. If the prediction is successful, then output 0, else output
1. And ξ ⊕ f is the output sequence.

We first explain a useful technique which is similar to the invariance property of
p-random sequences.

Lemma 5.12. Let ξ ∈ Σ∞ be nk-random and f : Σ∗ → Σ be a partial function
computable in time nk such that ξ ⊕ f is an infinite sequence. Then ξ ⊕ f is nk−1-
random.

Proof. For a contradiction assume that ξ⊕f is not nk−1-random and let F : Σ∗ →
Q+ be an nk−1-martingale that succeeds on ξ ⊕ f . Define F ′ : Σ∗ → Q+ by letting
F ′(x) = F (x⊕ f) for all x ∈ Σ∗. It is a routine to check that F ′ is an nk-martingale.
Moreover, since F succeeds on ξ ⊕ f , F ′ succeeds on ξ, which is a contradiction with
the hypothesis that ξ is nk-random.

Lemma 5.13. Let k be the number in Theorem 5.10, and let A,B,C ⊆ Σ∗ be
three sets such that the following conditions hold.

1. B,C ∈ P.
2. ‖B∆C‖ =∞.
3. There exists c ∈ N such that, for almost all n,

‖(A∆C) |̀ zn‖ − ‖(A∆B) |̀ zn‖ ≥ −c.(2)

Then A is not nk+1-random.

Proof. Let α, β, and γ be the characteristic sequences of A,B, and C, respectively.

By Lemma 5.12, it suffices to define an n2-time computable partial function f :
Σ∗ → Σ such that α ⊕ f is an infinite sequence which is not nk-random. Define the
function f by

f(x) =

{
β[|x|] if β[|x|] 6= γ[|x|],
undefined if β[|x|] = γ[|x|].

Then f is n2-time computable and, since ‖B∆C‖ =∞, α⊕ f is an infinite sequence.
In order to show that α ⊕ f is not nk-random, we show that α ⊕ f does not satisfy
the law of the iterated logarithm.

We first show that, for all n ∈ N+, the following equation holds:

n−1∑
i=0

(α⊕ γ)[i]−
n−1∑
i=0

(α⊕ β)[i] = ln − 2

ln−1∑
i=0

(α⊕ f)[i],(3)

where ln = |α[0..n− 1]⊕ f |.
Let

a(n) = ‖{i < n : α[i] 6= γ[i] = β[i]}‖,

b(n) = ‖{i < n : α[i] 6= γ[i] 6= β[i]}‖,

c(n) = ‖{i < n : α[i] = γ[i] 6= β[i]}‖,

d(n) = ‖{i < n : α[i] = γ[i] = β[i]}‖.
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Then ∑n−1
i=0 (α⊕ γ)[i] = a(n) + b(n),∑n−1
i=0 (α⊕ β)[i] = a(n) + c(n),

ln = b(n) + c(n),∑ln−1
i=0 (α⊕ f)[i] = c(n).

Obviously, this implies (3).
The condition (2) is equivalent to

n−1∑
i=0

(α⊕ γ)[i]−
n−1∑
i=0

(α⊕ β)[i] ≥ −c.

So, by (3),

ln − 2

ln−1∑
i=0

(α⊕ f)[i] ≥ −c(4)

for almost all n, where ln = |α[0..n− 1]⊕ f |. By (4),

lim inf
n→∞

n− 2
∑n−1
i=0 (α⊕ f)[i]√

2n ln lnn
≥ 0.

Hence, by Theorem 5.10, α⊕ f is not nk-random. This completes the proof.
Now we are ready to prove our main theorems of this section.
Theorem 5.14. The class of ∆-levelable sets has p-measure 0.
Proof. Let A be a ∆-levelable set. Then there is a function f(n) ≥ 0 satisfying

limn→∞ f(n) =∞ and polynomial-time computable sets B,C such that for all n,

‖(A∆C) |̀ zn‖ − ‖(A∆B) |̀ zn‖ ≥ f(n).

By Lemma 5.13, A is not nk+1-random, where k is the number in Theorem 5.10.
So the theorem follows from Theorem 5.4.

Theorem 5.15. The class of sets which have optimal polynomial-time unsafe
approximations has p-measure 0.

Proof. If A has an optimal polynomial-time unsafe approximation, then there is
a polynomial-time computable set B and a number c ∈ N such that, for all n,

‖(A∆B) |̀ zn‖ − ‖(A∆B̄) |̀ zn‖ < c;

i.e.,

‖(A∆B̄) |̀ zn‖ − ‖(A∆B) |̀ zn‖ > −c.
By Lemma 5.13, A is not nk+1-random, where k is the number in Theorem 5.10.

So the theorem follows from Theorem 5.4.
Corollary 5.16. The class of sets which are weakly ∆-levelable but not ∆-

levelable has p-measure 1.
Corollary 5.17. Every p-random set is weakly ∆-levelable but not ∆-levelable.
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