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Abstract

The following is a survey of resource bounded randomness concepts and their relations to each
other. Further, we introduce several new resource bounded randomness concepts corresponding
to the classical randomness concepts, and show that the notion of polynomial time bounded
Ko randomness is independent of the notions of polynomial time bounded Lutz, Schnorr and
Kurtz randomness. Lutz has conjectured that, for a given time or space bound, the corresponding
resource bounded Lutz randomness is a proper re�nement of resource bounded Schnorr random-
ness. This conjecture is answered for the case of polynomial time bound. Moreover, we will
show that polynomial time bounded Schnorr randomness is a proper re�nement of polynomial
time bounded Kurtz randomness. In contrast to this result, we show that the notions of poly-
nomial time bounded Lutz, Schnorr and Kurtz randomness coincide in the case of recursive
sets, thus it su�ces to study the notion of resource bounded Lutz randomness in the context
of complexity theory. The stochastic properties of resource bounded random sequences will be
discussed in detail. Schnorr has already shown that the law of large numbers holds for p-random
sequences. We will show that another important law in probability theory, the law of the iter-
ated logarithm, holds for p-random sequences too. Hence almost all sets in the exponential time
complexity class are “hard” from the viewpoint of statistics. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Random sequences were �rst introduced by von Mises [17] as a foundation for
probability theory. Von Mises thought that random sequences were a type of disordered
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sequences, called “Kollektivs”. The two features characterizing a Kollektiv are: the ex-
istence of limiting relative frequencies within the sequence and the invariance of these
limits under the operation of an “admissible place selection”. Here an admissible place
selection is a procedure for selecting a subsequence of a given sequence � in such a way
that the decision to select a term �[n] does not depend on the value of �[n]. But von
Mises’ de�nition of an “admissible place selection” is not rigorous according to modern
mathematics. After von Mises introduced the concept of “Kollektivs”, the �rst question
raised was whether this concept is consistent. Wald [21] answered this question a�rma-
tively by showing that, for each countable set of “admissible place selection” rules, the
corresponding set of “Kollektivs” has Lebesgue measure 1. The second question raised
was whether all “Kollektivs” satisfy the standard statistical laws. Ville [20] showed
that this was not possible by constructing a counterexample in 1939. He showed that,
for each countable set of “admissible place selection” rules, there exists a “Kollek-
tiv” which does not satisfy the law of the iterated logarithm. Ville’s example defeated
von Mises’ plan to develop probability theory based on “Kollektivs”. “Admissible
place selection” rules were further developed by Tornier, Wald, Church, Kolmogorov,
Loveland and others. This approach of von Mises to de�ne random sequences is now
known as the “stochastic approach”.
A completely di�erent approach to the de�nition of random sequences was pro-

posed by Kolmogorov and Chaitin independently, and was further developed by Levin,
Schnorr and others (see, e.g., [19]). In this approach, a notion of chaoticness is used
when de�ning random sequences: the entropy of a �nite string x is de�ned to be the
length of the minimal string y from which x can be generated e�ectively. Then an
in�nite sequence is chaotic if all of its initial segments have the maximal possible
entropy (modulo some additive constant).
Finally, Martin–L�of [14] developed a third, quantitative (measure-theoretic) approach

to the notion of random sequences. This approach is free from those di�culties con-
nected with the frequency approach of von Mises. The idea underlying this approach
is to identify the notion of randomness with the notion of typicalness. A sequence is
typical if it is in every large set of sequences, that is to say, if it is not in any small
set of sequences. Of course, if we take small sets as the Lebesgue measure 0 sets,
then no typical sequence exists. The solution to this problem given by Martin–L�of is
to de�ne the small sets to be certain constructive null sets.
Schnorr [18] used the martingale concept to give a uniform description of various

notions of randomness. He used this concept to characterize Martin–L�of’s randomness.
However, he criticized Martin–L�of’s concept as being too strong and proposed a less
restrictive concept as an adequate formalization of a random sequence.
In this paper we will study applications of randomness concepts in complexity theory.

For computational complexity classes, several de�nitions of pseudorandom sequences
have been proposed. Blum and Micali [5], and Yao [26] gave a relatively weak def-
inition of resource bounded random sequences. Schnorr [18] and Ko [10] introduced
resource bounded versions of the notions of Martin–L�of and Kolmogorov random-
ness. More recently, Lutz [12, 13] pursued these ideas and systematically developed a
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resource bounded measure theory. In particular, he introduced a feasible measure con-
cept, for which he and others have shown that it is a natural tool for the quantitative
analysis of the class E. For example, Mayordomo [15] and Juedes and Lutz [8] have
shown that both the class of P-bi-immune sets and the class of p-incompressible sets
have measure 1 in E.
In Section 3, we will introduce various notions of resource bounded randomness in

terms of typicalness, and we investigate their relations to each other. We will show
that:
(1) For polynomial time bounds, the notion of Lutz randomness is stronger than the

notion of Schnorr randomness and the notion of Schnorr randomness is stronger
than the notion of Kurtz randomness. The former was conjectured to be true by
Lutz [13]. We will show, however, that if one considers only recursive sets, then
these randomness concepts coincide.

(2) For polynomial time bounds, the notion of Ko randomness is independent of the
notions of Lutz randomness, Schnorr randomness and Kurtz randomness.

In Section 4, we will study the stochastic properties of p-random sequences. The
law of large numbers and the law of the iterated logarithm, which require that all
random sequences should have some stochastic properties (cf. von Mises’ de�nition
of a randomness concept), play a central role in the study of probability theory (see,
e.g., [6]) and in the study of classical randomness concepts (see e.g., [14, 18, 20]).
Schnorr [18] showed that the �rst law holds for p-random sequences. In this paper
we will show that the second law holds for p-random sequences too. In fact, we can
show that all the standard laws of probability theory which depend only on the 0–1
distributions within the sequences hold for p-random sequences. However, the tedious
work of veri�cation is omitted in this paper. The two laws mentioned above give a
quantitative characterization of the density of p-random sets. It is well known that all
p-random sets have symmetric density. By the law of large numbers and by the law
of the iterated logarithm for p-random sequences, it follows that all p-random sets
have stochastic distributions on their elements, hence the density of most intractable
sets is just “one-half ”. When combined with the invariance property of p-random
sequences (see [22, 24]), these laws are also useful in proving that some complexity
classes have p-measure 0. Note that the invariance property of p-random sequences
says that if one selects a subsequence from a p-random sequence using a polynomial
time bounded selection function then the selected subsequence is also p-random.

2. Notation

Let N; Q(Q+) and R(R+) denote the set of natural numbers, the set of (nonnegative)
rational numbers and the set of (nonnegative) real numbers, respectively. For a real
number �∈R; [�] denotes the greatest integer less than or equal to �. �= {0; 1} is the
binary alphabet, �∗ is the set of (�nite) binary strings, �n is the set of binary strings
of length n, and �∞ is the set of in�nite binary sequences. The length of a string x
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is denoted by |x|. ¡ is the length-lexicographical ordering on �∗, and zn (n¿0) is
the nth string under this ordering. � is the empty string. For strings x; y∈�∗; xy
is the concatenation of x and y; xvy denotes that x is an initial segment of y.
For a sequence x∈�∗ ∪�∞ and an integer number n¿−1; x[0::n] denotes the initial
segment of length n+1 of x (x[0::n] = x if |x|6n+1) while x[n] denotes the nth bit of
x, i.e., x[0::n] = x[0] : : : x[n]. Lowercase letters : : : ; k; l; m; n; : : : ; x; y; z from the middle
and the end of the alphabet will denote numbers and strings, respectively. The letter
b is reserved for elements of �, and lowercase Greek letters �; �; : : : denote in�nite
sequences from �∞.
A subset of �∗ is called a language, a problem, or simply a set. Capital letters are

used to denote subsets of �∗ and boldface capital letters are used to denote subsets
of �∞. The cardinality of a language A is denoted by ‖A‖. We identify a language
A with its characteristic function, i.e., x∈A if and only if A(x)= 1. The characteristic
sequence of a language A is the in�nite sequence A(z0)A(z1)A(z2) : : : We freely identify
a language with its characteristic sequence and the class of all languages with the set
�∞. For a language A⊆�∗ and a string x∈�∗; A � x denotes the �nite initial segment
of A below x, i.e., A � x= {y :y ¡ x & y∈A}. For languages A and B; �A =�∗ − A
is the complement of A; A�B=(A−B)∪ (B−A) is the symmetric di�erence of A and
B; A⊆B (resp., A⊂B) denotes that A is a subset of B (resp., A⊆B and B*A. For
a number n, A=n= {x∈A : |x|= n} and A6n= {x∈A : |x|6n}.
If X is a set of strings (i.e., a language) and C is a set of in�nite sequences (i.e.,

a class of languages), then X · C denotes the set {w� :w∈X; �∈C}. For each string
w; Cw = {w} · �∞ is called the basic open set de�ned by w.
For a class C of languages, Prob[C] denotes the probability that A∈C when A is

chosen by a random experiment in which an independent toss of a fair coin is used to
decide whether a string is in A. This probability is de�ned whenever C is measurable
under the usual product measure on �∞.
We �x a standard polynomial time computable and invertible pairing function �x; y

〈x; y〉 on �∗. For a set U , let U [k] = {x : 〈k; x〉 ∈U}. We will use P; E, and E2
to denote the complexity classes DTIME(poly); DTIME(2linear), and DTIME(2poly),
respectively. Finally, we �x a recursive enumeration {Pe : e¿0} of P such that Pe(x)
can be computed in O(2|x|+e) steps (uniformly in e and x). We will abuse our notation
by using the same notation for classes of sets and classes of functions (P, etc.).

3. Resource bounded typicalness

In this section, we will introduce various notions of resource bounded randomness in
terms of typicalness, and will investigate their relations to each other. In particular, we
will show that the notions of resource bounded Lutz, Schnorr and Kurtz randomness
coincide in the case of recursive sets. Hence, it su�ces to consider the notion of
resource bounded Lutz randomness in the context of complexity classes.
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3.1. Resource bounded Lutz, Schnorr and Kurtz randomness

First we introduce the notions of resource bounded Lutz, Schnorr and Kurtz random-
ness; these notions are obtained from the corresponding classical notions by putting
resource bounds on them. In the rest of the paper, unless otherwise stated, C denotes
some given class of functions.

De�nition 1 (Ville [20]). A martingale is a function F :�∗ → R+ such that, for all
x∈�∗,

F(x) =
F(x1) + F(x0)

2
:

A martingale F succeeds on a sequence �∈�∞ if lim supn F(�[0::n−1])=∞. NULLF
denotes the set of sequences on which the martingale F succeeds.

De�nition 2 (Schnorr [18] and Lutz [13]). A Lutz C-test is a martingale F ∈C. An
in�nite sequence � does not withstand the Lutz C-test F if F succeeds on �. A
sequence � is Lutz C-random if it withstands all Lutz C-tests.

Let C-L-NULL be the set of sequences which do not withstand some Lutz C-test,
and let C-L-RAND=�∞−C-L-NULL be the set of Lutz C-random sequences.

De�nition 3. A Schnorr (C1;C2)-test is a pair (F; h) of functions such that F ∈C1
is a martingale and h∈C2 is an unbounded, nondecreasing function from N to N .
An in�nite sequence � does not withstand the Schnorr (C1;C2)-test (F; h) if
lim supn(F(�[0::n − 1]) − h(n))¿0, i.e., if F(�[0::n − 1])¿h(n) i.o. A sequence �
is Schnorr (C1;C2)-random if it withstands all Schnorr (C1;C2)-tests.

Let (C1;C2)-S-NULL be the set of sequences which do not withstand some Schnorr
(C1;C2)-test, and let (C1;C2)-S-RAND=�∞− (C1;C2)-S-NULL be the set of Schnorr
(C1;C2)-random sequences.

De�nition 4. A Kurtz (C1;C2)-test is a pair (F; h) of functions such that F ∈C1 is a
martingale and h∈C2 is an unbounded, nondecreasing function from N to N . An in�nite
sequence � does not withstand the Kurtz (C1;C2)-test (F; h) if lim inf n(F(�[0::n−1])−
h(n))¿0, i.e., if F(�[0::n− 1])¿h(n)) a.e. A sequence � is Kurtz (C1;C2)-random if
it withstands all Kurtz (C1;C2)-tests.

Let (C1;C2)-W-NULL be the set of sequences which do not withstand some Kurtz
(C1;C2)-test, and let (C1;C2)-W-RAND=�∞−(C1;C2)-W-NULL be the set of Kurtz
(C1;C2)-random sequences.
The following relations among resource bounded Lutz, Schnorr and Kurtz random-

ness are immediate by de�nition.



38 Y. Wang / Theoretical Computer Science 237 (2000) 33–55

Lemma 5. For any function classes C1 and C2;

C1-L-RAND⊆(C1;C2)-S-RAND⊆(C1;C2)-W-RAND
Moreover;

C1-L-RAND = (C1; all)-S-RAND

where all is the class of all functions.

Proof. It follows from the de�nitions.

Lemma 6. For any function classes C1; C2; C′
1 and C′

2 such that C1⊆C′
1 and C2⊆C′

2 ;

(C′
1;C

′
2)-S-RAND⊆(C1;C2)-S-RAND

and

(C′
1;C

′
2)-W-RAND⊆(C1;C2)-W-RAND:

Proof. It follows from the de�nitions.

Next we will give separation results for these concepts, where we restrict our results
to the polynomial time case.

Theorem 7 (Schnorr [18, Satz 16.2]). Let f1; f2 ∈P be two functions such that f1=f2
converges to 0 monotonically. Then (P; OL(f1))-S-RAND⊂(P; OL(f2))-S-RAND;
where OL(fi) = {cfi : c∈N}.

Proof. Schnorr [18, Satz 16.2] proved that

(REC; OL(f1))-S-RAND⊂(REC; OL(f2))-S-RAND
where REC is the class of recursive functions. It is easily checked that his proof works
for the function class P too.

We showed in Wang [22] that REC-L-RAND⊂ (REC,REC)-S-RAND by con-
structing a martingale F and a sequence � such that F succeeds on � and �∈ (REC,
REC)-S-RAND. In fact, the martingale F constructed there is computable in time n3,
whence we obtain the following theorem.

Theorem 8. Let C be a class of recursive functions such that DTIME(n3)⊆C. Then
C-L-RAND⊂ (C;REC)-S-RAND⊆ (C;C)-S-RAND.

Theorem 9 (Schnorr [18] and Kurtz [11]). (P;P)-S-RAND⊂(P;P)-W-RAND.
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Proof. By Lemma 5, (P;P)-S-RAND⊆ (P;P)-W-RAND. It was observed by Kurtz
[11] that there exists a Kurtz random sequence � which does not satisfy the law of
large numbers, whereas Schnorr showed that (P;P)-random sequences satisfy the law
of large numbers. Whence the theorem is proved.

The above theorems show that, in many important cases, the resource bounded Lutz
randomness is stronger than the resource bounded Schnorr randomness which is again
stronger than the resource bounded Kurtz randomness.

3.2. Resource bounded measure

In the rest of the paper, we will use the following notation.
(1) Let nk -L-RAND, nk -S-RAND and nk -W-RAND denote DTIME(nk)-L-RAND,

(DTIME(nk);Ck)-S-RAND and (DTIME(nk);Ck)-W-RAND, respectively, where
Ck is the class of nk -time computable (with respect to the unary representation of
numbers), unbounded, nondecreasing functions from N to N .

(2) A martingale F is an nk -martingale if it is computable within a time bound in
O(nk).

(3) We will say that a sequence � is Lutz p-random, if it is nk -random for all k ∈N .
In this section we will introduce a fragment of Lutz’s e�ective measure theory which

will be su�cient for our investigation.

De�nition 10 (Lutz [13]). A class C of sets has p-measure 0 (�p(C)= 0) if there is
a polynomial time computable martingale F which succeeds on every set in C. The
class C has p-measure 1 (�p(C)= 1) if �p( �C)= 0 for the complement �C= {A⊆�∗:
A =∈C} of C.

It should be noted that Lutz [13] introduced his p-measure in terms of approximable
martingales. However, the following lemma shows that it is equivalent to the above
de�nition.

De�nition 11 (Lutz [13]). A function F is p-approximable if there exists a polyno-
mial time computable function h(0n; x) such that |F(x) − h(0n; x)|62−n for all n∈N
and x∈�∗.

For the reason of convenience, we will use h(n; x) to denote h(0n; x) in the rest of
the paper unless otherwise stated.

Lemma 12 (Ambos-Spies et al. [3], Juedes and Lutz [9], and Mayordomo [15]). For
each p-approximable martingale F; there exists a polynomial time computable mar-
tingale F ′ such that F ′(x)¿F(x) for all x∈�∗.

The following theorem gives a characterization of p-measure 0 sets in terms of Lutz
nk -randomness concept.
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Theorem 13 (Ambos-Spies et al. [3]). Let C be a class of languages. Then C has
p-measure 0 if and only if there exists a number k ∈N such that there is no Lutz
nk -random set in C.

It was proved by Ambos-Spies et al. [3] that, for each k ∈N , there exist Lutz
nk -random sets in E. Hence we have the following theorem.

Theorem 14 (Lutz [13]). E does not have p-measure 0.

It has been shown that p-measure (whence Lutz nk -randomness concept) is a natural
tool for the quantitative analysis of the class E. We can also introduce p-measure in
terms of Schnorr and Kurtz nk -randomness concepts. In the next section, we will show
that, in the context of complexity classes, the p-measures based on Schnorr and Kurtz
randomness concepts coincide with the above p-measure based on Lutz randomness
concept.

3.3. Resource bounded randomness and computational complexity

In this section we will show that a recursive set is polynomial time Lutz random if
and only if it is polynomial time Schnorr random, and if and only if it is polynomial
time Kurtz random.
In order to show that the notions of polynomial time bounded Lutz, Schnorr and

Kurtz randomness coincide in the case of recursive sets, we need the following lemma
which is essentially due to Allender and Strauss [1]. We will state and prove the lemma
in a di�erent fashion.

Lemma 15 (Allender and Strauss [1]). Let F be an nk -martingale. Then there exists
and nk+1-martingale F ′ and an nk+1-time computable function u :�∗ → N such that:
(1) For all x v y; u(x)6u(y).
(2) For all x; F ′(x)¿u(x).
(3) For any sequence �∈�∞; if lim supn F(�[0::n−1])=∞; then limn u(�[0::n−1])

=∞.

Proof. We construct u and F ′ in stages, where at stage s we de�ne F ′(x) and u(x)
for all strings of length s. W.l.o.g., we may assume that F(�)= 1.
Stage 0. Let F ′(�)=F(�)= 1 and let u(�)=F(�)− 1=0.
Stage s + 1. Fix a string x of length s and, for b∈�, let l(xb)=F(xb)=F(x) if

F(x) 6=0 and let l(xb)= 0 otherwise. For the de�nition of F ′(xb) and u(xb), we dis-
tinguish the following two cases.
Case 1. u(x) + 1¿F ′(x). Let F ′(xb)= u(x) + (F ′(x)− u(x))l(xb) and u(xb)= u(x).
Case 2. u(x) + 1¡F ′(x). Let F ′(xb)= u(x) + 1 + (F ′(x) − u(x) − 1)l(xb) and

u(xb)= u(x) + 1.
End of construction.
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We show that the above constructed functions F ′ and u have the required properties
by establishing a series of claims.

Claim 1. F ′ is an nk+1-martingale.

Proof of Claim 1. By the construction, F ′ is nk+1-computable. It is easily checked
that F ′ has the martingale property.

Claim 2. For all x v y; u(x)6u(y).

Proof of Claim 2. It follows from the construction.

Claim 3. For all x∈�∗; F ′(x)¿u(x).

Proof of Claim 3. The claim can be proven using a simple induction.

Claim 4. Given two strings x; y∈�∗; if u(x)¡F ′(x)6u(x)+1 and F ′(xy′)6u(x)+1
for all y′ v y; then

F ′(xy)=
F(xy)
F(x)

· (F ′(x)− u(x)) + u(x):

Proof of Claim 4. If y∈�, then the claim follows from the construction. We can
assume that

F ′(xy)=
F(xy)
F(x)

· (F ′(x)− u(x)) + u(x)

and F ′(xy)6u(x) + 1. Then, by the construction, u(xy)= u(x) and

F ′(xyb) = u(xy) + (F ′(xy)− u(xy))l(xyb)
= u(xy) + (F ′(xy)− u(xy))F(xyb)

F(xy)

= u(x) +
(
F(xy)
F(x)

· (F ′(x)− u(x)) + u(x)− u(x)
)
· F(xyb)
F(xy)

= u(x) +
F(xyb)
F(x)

· (F ′(x)− u(x))

where b = 0; 1.

Claim 5. For a sequence �∈�∞; if lim supn F(�[0::n− 1])=∞; then limn u(�[0::n−
1])=∞.

Proof of Claim 5. We prove by induction that, for each k ∈N , there exists n∈N such
that u(�[0::n− 1])¿k.

By the construction, u(�)¿0.
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We can assume that k + 1¿F ′(�[0::n1 − 1])¿u(�[0::n1 − 1]) = k for some n1 ∈N .
Then, by Claim 4,

F ′(�[0::n− 1]) = F(�[0::n− 1])
F(�[0::n1 − 1]) · (F

′(�[0::n1 − 1])− u(�[0::n1 − 1]))
+ u(�[0::n1 − 1])

for n¿n1 until F ′(�[0::n−1])¿u(�[0::n1−1])+1= k+1. Because lim supn F(�[0::n−
1])=∞, there exists n2¿n1 such that

F(�[0::n2 − 1])¿ F(�[0::n1 − 1])
F ′(�[0::n1 − 1])− u(�[0::n1 − 1]) :

Hence, there exists n36n2 such that F ′(�[0::n3 − 1])¿u(�[0::n1 − 1]) + 1= k + 1 and
u(�[0::n3])¿k + 1.

Theorem 16. Let k¿2 and let � be an in�nite recursive sequence which is Kurtz
nk -random. Then � is Lutz nk−1-random.

Proof. For a contradiction assume that � is not Lutz nk−1-random. Let M be a Turing
machine computing the sequence �, and let F be an nk−1-martingale which succeeds on
�. Let F ′ and u be the nk -martingale and the nk -time computable function corresponding
to F according to Lemma 15. De�ne a function h as follows.

Stage 0. Let h(0)= 0.
Stage s + 1. Use at most s + 1 steps to search for a string x v �[0:: s] (using the

Turing machine M) such that u(x)¿h(|x|) + 1= h(s) + 1. If such an x is found, then
let h(s+ 1)= h(s) + 1. Otherwise let h(s+ 1) = h(s). Go to Stage s+ 2.
End of construction.

It is straightforward to check that h is an n2-time computable (with respect to the
unary representation of numbers), unbounded, nondecreasing function and F ′(�[0::n−
1])¿h(n) a.e. Hence � is not Kurtz nk -random contrary to assumption.

Corollary 17. For any recursive sequence �; � is Lutz p-random if and only if � is
Schnorr p-random; if and only if � is Kurtz p-random. That is to say;

P-L-RAND ∩ REC=(P;P)-S-RAND ∩ REC=(P;P)-W-RAND ∩ REC:
Corollary 17 shows that if su�ces to study resource bounded Lutz randomness in

the context of complexity classes. In the rest of the paper, unless otherwise stated, we
will study resource bounded Lutz randomness and omit the pre�x name of person.

3.4. Resource bounded Ko randomness

In the previous sections, we have studied the resource bounded randomness con-
cepts based on martingales. In this section, we will discuss the resource bounded Ko
randomness concept which is based on the constructive null covers.
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De�nition 18 (Ko [10]). A Ko (C1;C2)-test is a pair (U; g) where U ∈C1 is a subset
of �∗ (notice that we identify a set with its characteristic function) and g ∈ C2 is an
unbounded, nondecreasing function from N to N such that the following conditions
hold.
(1) U [0] =�∗.
(2) U [k+1]⊆U [k].
(3) Prob[U [k] · �∞]62−k .
A sequence � does not withstand a Ko (C1;C2)-test (U; g) if max{m : �[0::n − 1]

∈U [m]}¿g(n) i.o. A sequence � is Ko (C1;C2)-random if it withstands all Ko (C1;C2)-
tests.

Let (C1;C2)-K-NULL be the set of sequences that do not withstand some Ko
(C1;C2)-test, and let (C1;C2)-K-RAND=�∞ − (C1;C2)-K-NULL be the set of Ko
(C1;C2)-random sequences.
In the following theorems, we will show that the notion of polynomial time bounded

Ko randomness is independent of the notions of polynomial time bounded Schnorr, Lutz
and Kurtz randomness.
First we introduce the notion of Kolmogorov complexity. A self-delimiting Turing

machine is a Turing machine whose domain is pre�x free. Given a universal self-
delimiting Turing machine U , the Kolmogorov complexity of a string x is de�ned as
KM (x)= min{|y| :U (y) = x}. An in�nite sequence � is called Martin–L�of random if
there is a constant c such that KM (�[0::n− 1])¿n− c for all n∈N .

Lemma 19 (Ko [10, Corollary 3:9]). Let � be an in�nite sequence such that KM 22n

(�[0::n − 1])¿n − [4 log n] a.e.; where KM 22n(x) is the 22n-time bounded monotonic
Kolmorogov complexity of x. Then �∈ (P; log)-K-RAND.

Lemma 20. (P; log)-K-RAND* (P; log)-W-RAND.

Proof. Let �1 be a Martin–L�of random sequence. De�ne a sequence � by

�[n] =



�1[n] if n61;

0 if n = 2i for some i¿0;

�1[n− [log n]] otherwise:

Then

KM 22n(�[0::n− 1])¿KM (�[0::n− 1])
¿KM (�1[0::n− [log n]− 1])− c1
¿ n− [log n]− c
¿ n− [4 log n] a:e:

Hence, by Lemma 19, � ∈ (P; log)-K-RAND.
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It remains to show that � =∈ (P; log)-W-RAND. De�ne a martingale F by

F(�) = 1;

F(xb) =
{
2(1− b)F(x) if |x|=2i for some i¿0;
F(x) otherwise;

where b=0; 1. Then F(�[0::n−1])¿n=2 for all n ∈ N . Whence � =∈ (P; log)-W-RAND.

As a corollary of the proof of Lemma 20, we have the following result.

Corollary 21. There exists a Ko (P; log)-random set which is not P-immune.

Remark. Using Meyer and McCreight’s weighted priority diagonalization, Ko [10]
showed some stronger results about resource bounded Kolmogorov complexity, which
can be used to produce a sequence in the double exponential time complexity class
(w.r.t. the length of the initial segment of the sequence) which is an element of (P; log)-
K-RAND ∩ (P; log)-W-NULL.

Lemma 22. Let A∈E2. Then A =∈ (P; log)-K-RAND.

Proof. Assume that A∈DTIME(2nk ), and let � be the characteristic sequence of A.
Then �[0::n− 1] can be computed in n1+(log n)k62n steps for almost all n.
Let U [i] = {�[0::i − 1]x : �[0::i − 1] can be computed in i + |x| steps}. Then U ∈P

and the following conditions hold.
(1) U [i+1]⊆U [i].
(2) Prob[U [i] · �∞] = 2−i.
(3) For almost all n, �[0::n − 1]∈U [[log n]], that is to say, max{m : �[0::n − 1]∈U [M ]}

¿[log n] for almost all n.
Hence � =∈ (P; log)-K-RAND.

Lemma 23. P-L-RAND* (P; log)-K-RAND.

Proof. Lutz [13] has shown that there is a p-random set A in DTIME(2n
2
). Whence

the lemma follows from Lemma 22.

By Lemmas 20 and 23, we get the following independence results.

Theorem 24. (1) P-L-RAND and (P; log)-K-RAND are independent.
(2) (P; log)-S-RAND and (P; log)-K-RAND are independent.
(3) (P; log)-W-RAND and (P; log)-K-RAND are independent.
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4. The law of the iterated logarithm for p-random sequences

In this section we will study the stochastic properties of p-random sequences. We
will show that the law of the iterated logarithm holds for p-random sequences. Note
that Schnorr has already shown that the law of large numbers holds for p-random
sequences.

De�nition 25. An in�nite sequence �∈�∞ satis�es the law of large numbers if

lim
n

∑n−1
i=0 �[i]
n

=
1
2
:

Theorem 26 (Schnorr [18]). Let �∈�∞ be an n2-random sequence. Then � satis�es
the law of large numbers.

For a nonempty string x∈�∗, let

S(x) =
|x|−1∑
i=0

x[i]

denote the number of 1’s in x; and let

S∗(x) =
2 · S(x)− |x|√|x|

denote the reduced number of 1’s in x. Note that S∗(x) amounts to measuring the
deviations of S(x) from |x|=2 in units of 1

2

√|x|. In probability theory, S(x) is called
the number of successes and S∗(x) is called the reduced number of successes.
The law of large numbers says that, for an n2-random sequences �, the limit of

S(�[0::n−1])=n is 1
2 . But it says nothing about the reduced deviation S

∗(�[0::n−1]). It
is intuitively clear that, for a random sequence �; S∗(�[0::n− 1]) will sooner or later
take on arbitrary large values. Moderate values of S∗(�[0::n − 1]) are most probable,
but the maxima will slowly increase. How fast? Can we give an optimal upper bound
for the 
uctuations of S∗(�[0::n − 1])? The law of the iterated logarithm, which was
�rst discovered by Khintchine for the classical cases, gives a satisfactory answer for
the above questions.

De�nition 27. A sequence �∈�∞ satis�es the law of the iterated logarithm if

lim sup
n→∞

2
∑n−1

i=0 �[i]− n√
2n ln ln n

= 1

and

lim inf
n→∞

2
∑n−1

i=0 �[i]− n√
2n ln ln n

= −1:

In this section, we will prove that the law of the iterated logarithm holds for
p-random sequences also.
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There are various applications of the law of the iterated logarithm. For example,
in [22, 24], we used this law to prove that both the class of P-�-levelable sets and
the class of sets which have optimal polynomial time unsafe approximations have
p-measure 0, hence p-random sets are not �-levelable. That is to say, for every
p-random set A∈E2 and for every polynomial time computable set B, there is an-
other polynomial time computable set B′ such that

∀k ∈ N ∃n ∈ N (‖(A�B) � zn‖¿ ‖(A�B′) � zn‖+ k):

In other words, no polynomial time computable set can approximate a p-random set
optimally.
We will now introduce some technical tools for the proof of the law of the iterated

logarithm.
In the traditional proof of the law of the iterated logarithm for random sequences,

the �rst and the second Borel–Cantelli lemmas are used. Lutz [12] has proved the
�rst Borel–Cantelli lemma for p-measure. Roughly speaking, let Fi (i = 0; 1; : : :) be a
sequence of uniformly polynomial time computable density functions (the de�nition will
be given below). If Fi(�)62−i for all i, then we can de�ne a martingale F =

∑∞
i=0 Fi

which is p-approximable by h(n; x)=
∑n

i=0 Fi(x) such that, for each sequence �∈�∞;
if � is covered by in�nitely many Fi, then F succeeds on �.
But in the proof of the law of the iterated logarithm, we can only de�ne a se-

quence of density functions Fi (i=1; 2; : : :) such that Fi(�)6i−� where �¿1. And
h(n; x)=

∑n
i=1 Fi(x) is not a p-approximation of F =

∑∞
i=1 Fi. Hence, we cannot use

Lutz-Borel–Cantelli lemma to prove this law directly. In our next proof, the main
objective, roughly speaking, is to use p-approximations of h(n; x)=

∑n
i=1 Fi(x) +∫∞

n+1 dm=(m− 1)� to de�ne a p-approximation of F =∑∞
i=1 Fi.

De�nition 28 (Lutz [12]). A function F :�∗ →R+ is a density function if, for all
x∈�∗,

F(x)¿
F(x0) + F(x1)

2
:

Note that the density functions de�ned in the De�nition 28 is classically known as
supermartingales.

Lemma 29. Given a polynomial time computable function F(i; x) and a nondecreasing;
time constructible function u :N→N satisfying

2F(i; x)¿F(i; x0) + F(i; x1)

for all i and all |x|¿u(i); the set ⋃∞
i=0NULLFi has p-measure 0; where NULLFi =

{�∈�∞ : lim supn F(i; �[0::n− 1])=∞}.

Remark. If we only require that F be p-approximable, then Lemma 29 still holds.
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Proof. By the p-union lemma of Lutz [13], it su�ces to show that there exists a
polynomial time computable function F ′(i; x) such that F ′

i (x)=F
′(i; x) is a density

function for each i and
∞⋃
i=0
NULLFi ⊆

∞⋃
i=0
NULLF′

i
: (1)

Let v be a function de�ned by the recursion

v(1) = u(1);

v(k + 1) = max{k + 1; u(k + 1); v(k)}+ 1:
We de�ne the function F ′ as follows. If i 6=2v(k) for any k ∈N , then let F ′(i; x)= 0
for all x∈�∗. If i = 2v(k) for some k ∈N , then F ′(i; x) is de�ned by

F ′(i; x) =

{∑
|y|=u(k)−|x| 2

|x|−u(k)F(k; xy) if |x|¡ u(k);
F(k; x) if |x|¿u(k):

It is obvious that, for every k; F ′
k (x)=F

′(k; x) is a density function and

NULLFi ⊆NULLF′
2v(k)
:

Hence (1) holds.

In our next proof, we will use the following variant of DeMoivre–Laplace limit
theorem.

Theorem 30 (Feller [6; p: 144]). Let u :N→R+ be a function satisfying

1
2

√
ln ln n6u(n)62

√
ln ln n

for all n. Then there exists a constant c0 which is independent of u such that; for all
u(n)¿c0.

u−2e−u
2=26Prob[{� ∈ �∞: S∗(�[0::n− 1])¿ u(n)}]6e−u2=2:

We will also use the following lemma from Feller [6, p. 158].

Lemma 31 (Feller [6; p: 158]). Let u :N→R+ be a function. Then there exists a
constant c1 which is independent of both u and n such that if

C = {� ∈ �∞: S(�[0::k − 1])− 1
2k ¿ u(n) for some k6n};

then

Prob[C]6
1
c1
Prob[{� ∈ �∞: S(�[0::n− 1])− 1

2n ¿ u(n)}]:

Now we are ready to prove our main theorem of this section.
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Theorem 32. Let

U =
{
� ∈ �∞ : lim sup

n→∞
S∗(�[0::n− 1])√

2 ln ln n
= 1
}
:

Then U has p-measure 1. This means that if we let Yk (k¿1) be the set of in�nite
sequences such that

S(�[0::n− 1])¿ 1
2n+

(
1 +

1
k

)√
1
2n ln ln n

for in�nitely many n; and let Xk (k¿1) be the set of in�nite sequences such that

S(�[0::n− 1])¿ 1
2n+

(
1− 1

k

)√
1
2n ln ln n

for �nitely many n; then

�∞ −U =
( ∞⋃
k=1
Xk

)
∪
( ∞⋃
k=1
Yk

)

has p-measure 0.

For reasons of symmetry, the above theorem implies that the following set has
p-measure 1:

V =
{
� ∈ �∞: lim inf

n→∞
S∗(�[0::n− 1])√

2 ln ln n
= −1

}
:

Proof (Outline). The proof goes on as follows. First, we will show uniformly that
every Yk has p-measure 0, that is to say, Y=

⋃∞
k=1Yk has p-measure 0. Then we

will use this result to show that X =
⋃∞
k=1Xk has p-measure 0. In order to show that

Yk has p-measure 0, we de�ne a sequence n0; n1; : : : of natural numbers. For each ni,
we de�ne a martingale Fk(i; x) in such a way that, for all m ¿ l ¿ ni, Fk(i; x[0::l])=
Fk(i; x[0::m]). That is to say, Fk(i; x) is de�ned to check the 0–1 distributions on strings
in �ni+1−1. If a string x∈�ni seems to be an initial segment of some sequences in Yk ;
Fk(i; x) is then given a large value; Otherwise, Fk(i; x) is given a small value. Lastly,
Fk(x) =

∑∞
i=0 Fk(i; x) succeeds on every sequence in Yk . All we need to do is to

choose ni and to de�ne Fk(i; x) appropriately so that our proving process is uniformly
polynomial time computable and Fk(x) succeeds on all sequences in Yk .

Proof of Theorem 32. First we show that Y =
⋃∞
k=1Yk has p-measure 0.

Let �=1+ 1=k; � = 1+ 1=3k and ni = [�i] + 1 (i = 1; 2; : : :). Then 1¡�¡
√
�. Let

Ykj = {� ∈ �∞: S(�[0::n− 1])− 1
2n ¿ �

√
1
2ni ln ln ni for some ni6n ¡ ni+1}

and

Y′
k = {� ∈ �∞: � ∈ Yk;i for in�nitely many i}:

Then Yk ⊆Y′
k . So it su�ces to show that Y

′=
⋃∞
k=1 Y

′
k has p-measure 0.
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Let

Fi(k; x) = Prob[Yk;i|Cx];
where Prob[Yk; i|Cx] is the conditional probability of Yk; i under the condition Cx, and
let

F(k; x) =
∞∑
i=0
Fi(k; x):

It is straightforward that, for each k ∈N; Fk(x)=F(k; x) is a martingale and, for each
�∈Y′

k ; Fk(x)=F(k; x) succeeds on �.
By the remark of Lemma 29, it su�ces to construct a p-approximable function G

and a time constructible function v :N→N such that, for all k ∈N and for all |x|¿v(k),
2G(k; x)¿G(k; x0) + G(k; x1);

G(k; x)¿F(k; x):

Let

G(k; x) =
∑

i6[4 ln |x|= ln �]
Prob[Yk;i|Cx] +

∑
i¿[4 ln |x|= ln �]

∫ i+1

i

dn
c((n− 1) ln �)�

where c is a constant which will be given below.

Claim 1. G(k; x) is p-approximable (w.r.t. k + |x|).

Proof of Claim 1. In the expression of G, the second clause

∑
i¿[4 ln |x|= ln �]

∫ i+1

i

dn
c · ((n− 1) ln �)� =

1
c(ln �)�(�− 1)

([
4 ln |x|
ln �

])1−�

is p-approximable (w.r.t. k + |x|).
If i6[4 ln |x|=ln �], then ni6|x|4 + 1. Hence, the values of Prob[Yk; i|Cx] in the �rst

clause of G(k; x) can be computed using binomial coe�cients of base less than ni+16�·
(|x|4+1). That is to say, the �rst clause of G(k; x) can be computed in time polynomial
in k + |x|.

Claim 2. Let c0 be the constant in Theorem 30; c1 be the constant in Lemma 31;
c= c1=3¿0 and u1(k)= [6e2c

2
0k2]. Then the following conditions hold for all k.

(1) For all i¿u1(k);

Prob[Yk;i]6
∫ i+1

i

dn
c((n− 1) ln �)� :

(2) For all i¿max{u1(k); [4 ln |x|=ln �]};

Prob[Yk;i|Cx]6
∫ i+1

i

dn
c((n− 1) ln �)� :
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Proof of Claim 2. (1) By Lemma 31,

Prob[Yk;i]6
1
c1
Prob[{� ∈ �∞: S(�[0::ni+1 − 1])− 1

2ni+1 ¿ �
√

1
2ni ln ln ni}]

=
1
c1
Prob

[{
� ∈ �∞: S∗(�[0::ni+1 − 1])¿ �

√
2
ni
ni+1

ln ln ni

}]
:

By a simple computation, it can be shown that if i¿6k2 then ni�2=ni+1¿�. Hence, for
i¿6k2,

Prob[Yk;i]6c−11 Prob[{� ∈ �∞: S∗(�[0::ni+1 − 1])¿
√
2� ln ln ni}]:

If i¿6ec
2
0k2, then

√
2� ln ln ni¿c0. By the DeMoivre–Laplace limit theorem

(Theorem 30) we get, therefore, for i¿u1(k)= [6ec
2
0k2],

Prob[Yk;i]6 c−11 e
−� ln ln ni

=
1

c1(ln ni)�

¡
1

c(i ln �)�

¡
∫ i+1

i

dn
c((n− 1)ln �)� :

(2) First we notice the following fact: for x∈�6ni ,
Prob[Yk;i|C0|x| ]6 Prob[Yk;i|Cx]

6 Prob[Yk;i|C1|x| ]
= Prob[Yk;i;|x||C0|x| ];

where

Yk;i;j = {� ∈ �∞: S(�[0::n− 1])− 1
2n+ j

¿ �
√

1
2ni ln ln ni for some n; ni6n ¡ ni+1}

for i; j ∈ N .
It is easily checked that if i¿u1(k)= [6e2c

2
0k2] then ni�2=ni+1¿� and

√
2� ln ln ni −

|x|=√ni+1¿c0. Hence, in the same way as in (1), we can show that
Prob[Yk;i|Cx] = 2|x|Prob[Yk;i ∩ Cx]

6 2|x|Prob[Yk;i;|x| ∩ C0|x| ]
6

∑
y∈�|x|

Prob[Yk;i;|x| ∩ Cy]

= Prob[Yk;i;|x|]

6 c−11 Prob[{� ∈ �∞: S(�[0::ni+1 − 1])− 1
2ni+1 + |x|

¿ �
√

1
2ni ln ln ni}]
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= c−11 Prob

[{
� ∈ �∞: S∗(�[0::ni+1 − 1])

¿ �
√
2
ni
ni+1

ln ln ni − 2|x|√
ni+1

}]

6 c−11 Prob

[{
� ∈ �∞: S∗(�[0::ni+1 − 1])

¿
√
2� ln ln ni − 2|x|√

ni+1

}]

6 c−11 e
−� ln ln ni+(2|x|=√ni+1)

√
2� ln ln ni

6 c−11 e
(2 4
√
ni+1

√
2� ln ln ni=

√
ni+1)e−� ln ln ni

(
by i ¿

[
4 ln |x|
ln �

])
6 3c−11 e

−� ln ln ni

=
3

c1(ln ni)�

6
3

c1(i ln �)�

=
1

c(i ln �)�

6
∫ i+1

i

dn
c((n− 1) ln �)� :

Claim 3. Let v(k)¿�u1(k)=4 be a time constructible function. Then, for all k ∈N and
for all |x|¿v(k);

2G(k; x)¿G(k; x0) + G(k; x1);

G(k; x)¿ F(k; x):

Proof of Claim 3. If [4 ln |x0|=ln �] = [4 ln |x|=ln �]; then from the de�nition of G;

2G(k; x)=G(k; x0) + G(k; x1);

For |x|¿v(k), if m= [4 ln |x0|=ln �] = [4 ln |x|=ln �] + 1, then m¿u1(k). So, by
Claim 2 and by the de�nition of G, we have

2G(k; x)− G(k; x0)− G(k; x1) =
∫ m+1

m

2dn
c · ((n− 1) ln �)� − Prob[Yk;m|Cx0]

−Prob[Yk;m|Cx1]¿0:
By Claim 2, for all |x|¿v(k) (i.e., [4 ln |x|=ln �]¿u1(k)), we have

G(k; x)− F(k; x) = ∑
i¿[4 ln |x|= ln �]

(∫ i+1

i

dn
c · ((n− 1) ln �)� − Prob[Yk;i|Cx]

)
¿0:
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All these claims complete the proof that
⋃
k Yk has p-measure 0.

Next we show that X=
⋃∞
k=6 Xk has p-measure 0. Note that X1; : : : ;X5 are all

included in X6.
Let � = 1− (1=k) (k ¿ 5); � = k4; 
 = 1− (1=k3) and ni = �i (i = 1; 2; : : :). Then

� − 1
�

¿ 
 ¿ �:

Let

Di(�) = S(�[0::ni − 1])− S(�[0::ni−1 − 1])
and

Xk;i = {� ∈ �∞: Di(�)− 1
2 (ni − ni−1)¿ 


√
1
2ni ln ln ni}:

We �rst show that if i ¿ ec
2
0 (where c0 is the constant in Theorem 30), then Prob[Xk; i]

¿i−1.

Prob[Xk;i] = Prob
[{
� ∈ �∞:

2Di(�)− (ni − ni−1)√
ni − ni−1 ¿ 


√
2

ni
ni − ni−1 ln ln ni

}]
:

Here ni=(ni − ni−1) = �=(� − 1)¡
−1. Hence

Prob[Xk;i]¿Prob
[{
� ∈ �∞:

2Di(�)− (ni − ni−1)√
ni − ni−1 ¿

√
2
 ln ln ni

}]
:

If i¿ec
2
0 ; then

√
2
 ln ln ni¿c0. So, by the DeMoivre–Laplace limit theorem

(Theorem 30), for i¿ec
2
0 ,

Prob[Xk;i]¿
1

2
 ln ln ni
e−
 ln ln ni =

1
2
(ln ln ni)(ln ni)


:

Since ni= �i and 
¡1; there is a time constructible function u2(k)¿ec
2
0 such that if

i¿u2(k) then Prob[Xk; i]¿i−1.
Let

Zk;0 = {� ∈ �∞: � 6∈ Xk;i for all i};
and let F be a density function de�ned as follows. For all x ∈ �ni and y ∈ �ni+1 with
x v y; let

F(k; 0; y) =



0 if y · �∞ ⊆Xk;i+1;
i + 1
i
F(k; 0; x) if y · �∞ * Xk;i+1:

For all other z ∈ �∗ with x v z v y, let

F(k; 0; z) =
F(k; 0; z0) + F(k; 0; z1)

2
:
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Using binomial coe�cients, we can compute F(k; 0; x) in time polynomial in k + |x|
and, for all k ∈ N and |x|¿�ec

2
0 ,

2F(k; 0; x)¿F(k; 0; x0) + F(k; 0; x1):

And, for all � ∈ Zk;0,

F(k; 0; �[0::ni − 1]) = 2
1
· 3
2
· · · i
i − 1 = i:

Hence, by Lemma 29, Zk;0 has p-measure 0.
Next, divide the class Xk; i (i=1; 2; : : :) into two subclasses X

(1;1)
k; i and X(1;2)k; i such

that both
∑

i Prob [X
(1;1)
k; i ] =∞ and

∑
i Prob [X

(1;2)
k; i ] =∞. Let

Zk;1 = {� ∈ �∞: � =∈X(1;1)k; i for all i}∪ {�∈�∞: � =∈X(1;2)k;2 for all i}:
In the same way as showing that Zk;0 has p-measure 0, we can de�ne a density function
F(k; 1; x) to show that Zk;1 has p-measure 0.
Applying, in turn, this statement to the classes X(1;1)k; i and X(1;2)k; i , we can de�ne

p-measure 0 sets Zk;3 and Zk;4, and so on. Let

Z =
⋃
k

⋃
i
Zk; i :

Then Z is a p-union of p-measure 0 sets Zk; i (k; i∈N ). Hence, by Lemma 29, Z has
p-measure 0.
Let

X′
k = {�∈�∞: �∈Xk; i for �nitely many i}:

Then X′ =
⋃∞
k=6 X

′
k ⊆Z, hence X′ has p-measure 0.

The last step of the proof is to show that, in the de�nition of Xk; i, the term
S(�([0::ni−1 − 1]) can be neglected. From the part (1) of this theorem, we know
that Y has p-measure 0, hence Y∪X′ has p-measure 0. For each �∈�∞ − (Y∪X′),
we can �nd a large enough n0 so that, for all i¿n0,

|S(�[0::ni−1 − 1])− 1
2ni−1|¡2

√
1
2ni−1 ln ln ni−1:

By the choice of 
,

1− 
¡
(

− �
2

)2
:

So

4ni−1 = 4
ni
�
¡ni(
− �)2:

Hence

S(�[0::ni−1 − 1])− 1
2ni−1¿− (
− �)

√
1
2ni ln ln ni: (2)
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Because � =∈X′; �∈Xk; i for in�nitely many i, i.e.,

Di(�)− 1
2 (ni − ni−1)¿ 


√
1
2ni ln ln ni i:o: (3)

Adding (2) to (3), we obtain that, for each sequence �∈�∞ − (X′ ∪ Y), there are
in�nitely many n such that

S(�[0::n− 1])¿ 1
2n+ �

√
1
2n ln ln n:

So �∞ − (X′ ∪ Y)⊆�∞ − X, i.e., X⊆X′ ∪ Y. Hence X has p-measure 0.

Corollary 33. There exists a number k ∈N such that every nk -random sequence sat-
is�es the law of the iterated logarithm.
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