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Abstract. Polynomial time unsafe approximations for intractable sets were in-
troduced by Meyer and Paterson [9] and Yesha [19], respectively. The question of
which sets have optimal unsafe approximations has been investigated extensively;
see, e.g., [1], [5], [15], and [17]. Recently, Wang [15], [17] showed that polynomial
time random sets are neither optimally unsafe approximablaHevelable. In this

paper we show that: (1) There exists a polynomial time stochastic set in the exponen-
tial time complexity class which has an optimal unsafe approximation. (2) There
exists a polynomial time stochastic set in the exponential time complexity class
which is A-levelable. The above two results answer a question asked by Ambos-
Spies and Lutz [2]: What kind of natural complexity property can be characterized
by p-randomness but not bg-stochasticity? Our above results also extend Ville's
[13] historical result. The proof of our first result shows that, for Ville’s stochastic
sequence, we can find an optimal prediction functicsuch that we will never lose

our own money betting according fo(except the money we have earned), that is to
say, if at the beginning we have only $1 and we always bet $1 that the next selected
bitis 1, then we always have enough money to bet on the next bit. Our second result
shows that there is a stochastic sequence for which there is a betting stratedy

that we will never lose our own money betting accordingf t¢except the money

we have earned), but there is no such optimal betting strategy. That is to say, for any
such betting strategy, we can find another betting strategy which could be used to
make money more quickly.

* A preliminary version of this paper has appeared irRteceedings of RANDOM7, Springer-Verlag,
New York.
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1. Introduction

Random sequences were firstintroduced by von Mises [10] as a foundation for probability
theory. Von Mises considered a random sequence to be a type of disordered sequences,
called “Kollektivs.” The two features characterizing a Kollektiv are: the existence of
limiting relative frequencies within the sequence and the invariance of these limits under
the operation of an “admissible place selection rule.” Here an admissible place selection
rule is a procedure for selecting a subsequence of a given segéiéncich a way

that the decision to select a l§ifn] does not depend on the value gn]. However,

von Mises’ definition of an “admissible place selection rule” is not rigorous according to
modern mathematics. After von Mises introduced the concept of “Kollektivs,” the first
guestion raised was whether this concept is consistent. Wald [14] answered this question
affirmatively by showing that, for each countable set of admissible place selection rules,
the corresponding set of “Kollektivs” has Lebesgue measure 1. The second question
raised was whether all “Kollektivs” satisfy the standard statistical laws. For a negative
answer to this question, Ville [13] constructed a counterexample in 1939. He showed
that, for each countable set of admissible place selection rules, there exists a “Kollektiv”
which does not satisfy the law of the iterated logarithm. The example of Ville defeated the
plan of von Mises to develop probability theory based on “Kollektivs,” that is to say, to
give an axiomatization of probability theory with “random sequences” (i.e., “Kollektivs”)

as a primitive term. Later, admissible place selection rules were further developed by
Tornier, Wald, Church, Kolmogorov, Loveland, and others. This approach of von Mises
to define random sequences is now known as the “stochastic approach.”

A completely different approach to the definition of random sequences was proposed
by Martin-L6f [8]. He developed a quantitative (measure-theoretic) approach to the
notion of random sequences. This approach is free from those difficulties connected
with the frequency approach of von Mises. Later, Schnorr [11] used the martingale
concept to give a uniform description of various notions of randomness. In particular, he
gave a characterization of MartireE’s randomness concept in these terms.

Using the martingale concept, Schnorr [11] introduced resource-bounded random-
ness concepts, and later Lutz [7] introduced a kind of resource-bounded measure theory.
Resource-bounded versions of stochasticity concepts were also introduced by several
authors, e.g., Wilber [18], Ko [6], and Ambos-Spies et al. [3].

The notion of unsafe approximations was introduced by Yesha in [19]: an unsafe
approximation algorithm for a sé is just a standard polynomial time bounded deter-
ministic Turing machiné with outputs 1 and 0. Duris and Rolim [5] further investigated
unsafe approximations and introduced a levelability concegevelability, which im-
plies the nonexistence of optimal polynomial time unsafe approximations. They showed
that complete sets fdE are A-levelable and there exists an intractable sef which
has an optimal safe approximation but no optimal unsafe approximation. However, they
did not succeed in producing an intractable set with optimal unsafe approximations.
Ambos-Spies [1] defined a concept of weakevelability and showed that there exists
an intractable set it which is not weaklyA-levelable (hence it has an optimal un-
safe approximation). In [15], [16], and [17], Wang extended Ambos-Spies’s results by
showing that both the class of-levelable sets and the class of sets which have optimal
polynomial time unsafe approximations hagemeasure 0. Wang's results show that
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A-levelable sets and optimally approximable sets could nqt-bendom. However, in
this paper, we show the following results:

e There is ap-stochastic set ik, which has an optimal unsafe approximation.
e There is ap-stochastic set ik, which is A-levelable.

Note that our above results extend Ville’s [13] historical result. Ville'’s result says
that: for every countable set of admissible place selection rules, we can construct a
stochastic sequenéavhich has more ones than zeros in its initial segments. As we show
in Theorem 4.10, for this stochastic sequebagcthe prediction functionf (x) = 1 will
be the optimal prediction strategy since, for every other prediction fungtitrere is a
k € Nsuchthaf{i < n: g(£[0..i—1]) = £[i]}|| < |I{i < n: f(£[0..i—1]) = &[i]}+k
for alImost alln € N. Our second result (Lemma 4.11 and Theorem 4.12) says that: for
every countable set of admissible place selection rules, we can construct a stochastic
sequencé such that there is no optimal prediction strategy for this sequence. That is
to say, for every prediction functiofi, there is another prediction functignand an
unbounded nondecreasing functiom) such that|{i < n: g(£[0..i — 1]) = &[i]}|| >
I{i <n: fE[0..i —1]) = &[i]}]] + r(n) for almost alln € N. We prove our results
for the resource-bounded case only, but all of these results hold for the classical case
also.

The outline of the paper is as follows. In Section 3 we review the relations between
the concept of resource-bounded randomness and the concept of polynomial time unsafe
approximations. In Section 4 we establish the relations between the concept of resource-
bounded stochasticity and the concept of polynomial time unsafe approximations.

2. Definitions

Let N andQ(Q™") denote the set of natural numbers and the set of (nonnegative) rational
numbers, respectivellz = {0, 1} is the binary alphabeb,* is the set of (finite) binary
strings, X" is the set of binary strings of length and x> is the set of infinite binary
sequences. The length of a strirds denoted byix|. < is the length-lexicographical
ordering onx* andz, (n > 0) is thenth string under this ordering.is the empty string.
For stringsx, y € £*, xyis the concatenation ofandy. For a sequence e ¥*U £
and an integer number> —1, x[0..n] denotes the initial segment of lengtht- 1 of x
(x[0..n] = xif |X| < n+ 1) andx[i] denotes théth bit of x, i.e.,x[0..n] = x[0] - - - x[n].
Lowercase letters.., k, I, m,n, ..., X, y, zfrom the middle and the end of the alphabet
denote numbers and strings, respectively. The lbtiereserved for elements &f, and
lowercase Greek lettets n, . . . denote infinite sequences fronte.

A subset ofZ* is called a language or simply a set. Capital letters are used to
denote subsets af* and boldface capital letters are used to denote subseis<of
The cardinality of a languagA is denoted by A||. We identify a languag@ with its
characteristic function, i.ex € Aiff A(x) = 1. The characteristic sequengg of a
languageA is the infinite sequencga = A(Zy) A(z1) A(zp) - - -. We freely identify a
language with its characteristic sequence and the class of all languages withXhe set
For a languagé\ C * and a stringz, € £*, A[z, denotes the finite initial segment of
Abelowz,, i.e., Alz, = {X: X < z,&x € A}. For language#\ andB, A = =* — Ais
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the complement oA, andAAB = (A — B) U (B — A) is the symmetric difference of
AandB.

We fix a standard polynomial time computable and invertible pairing function
AX, Y(X, y) on £*. We useP, E, andE; to denote the complexity classB3 IME(poly),
DTIME(2'"ea") andDTIME(2P?Y), respectively. Finally, we fix a recursive enumeration
{Ps: e > 0} of P such thatPs(x) can be computed i®(2*+8) steps (uniformly ine
andx).

We close this section by introducing a fragment of Lutz’s effective measure theory
which will be sufficient for our investigation.

Definition 2.1. A martingaleis a functionF: ©* — Q™ such that, for alk € X*,

F(x1) + F(x0)

FX) = >

A martingaleF succeedsn a setA € X* if lim sup, F(A[z,) = oo.

Definition 2.2[7]. A classC of sets hagp-measuré (1, (C) = 0) if there is a poly-
nomial time computable martingale: ©* — Q" which succeeds on every set in
C. The classC has p-measurel (1,(C) = 1) if up(c_:) = 0 for the complement
C={AcCx* A¢C}ofC.

Definition 2.3[11]. A setA is n®-randomif, for everynX-time computable martingale
F, F does not succeed oh. A setA is p-randomif A is nk-random for alk € N.

The following theorem is useful in the study pfmeasure theory.

Theorem 2.4. A classC of sets has pneasure 0f and only if there exists a number
k € N such that there is nofarandom set irC.

Proof. See, e.g., [15]. |

3. Resource-Bounded Randomness versus Polynomial Time Unsafe
Approximations

For completeness, in this section we review the results in [15] and [17] which show
the relations between the resource-bounded randomness concept and polynomial time
unsafe approximation concepts.

Definition 3.1[5], [19]. A polynomial time unsafe approximatiarf a setA is a set
B € P. The setAAB is called theerror set of the approximation. Left be a function
defined on the natural numbers such that lim,sup f (n) = co. A setAis A-levelable
with density fif, for any setB € P, there is another s&' € P such that

I(AAB) [Zyl — I(AAB) [zo]l = f(n) )
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for almost alln € N. A set A is A-levelableif A is A-levelable with densityf for
somef.

Definition 3.2[1]. A polynomial time unsafe approximatioB of a setA is optimal
if, for any approximatiorC € P of A,

dke N, VneN, |(AAB)[z] < |[(AAC)[zy|| + k. (2)

A set AisweaklyA-levelableif, for any polynomial time unsafe approximati@of A,
there is another polynomial time unsafe approxima@omof A such that

vke N, dneN, [(AAB)[zll > [(AAB) [z + k. (3)

It should be noted that our above definitions are a little different from the original
definitions of Ambos-Spies [1], Duris and Rolim [5], and Yesha [19]. In the original
definitions, they considered the errors on strings up to a certain lengthj (Fe\B)="||)
instead of errors on strings up g (i.e., | (AAB) [ zy|)).

Lemma 3.3[1].

1. Aset Aisweakly-levelable if and only if A does not have an optimal polynomial
time unsafe approximation
2. If a set A isA-levelable then it is weaklyA-levelable

In[15]and [17], we have established the following relations betweepttamdomness
concept and unsafe approximation concepts.

Theorem 3.4[15], [17]. The class ofA-levelable sets has p-meas@re

Theorem 3.5[15], [17]. The class of sets which have optimal polynomial time unsafe
approximations has p-measude

Corollary 3.6 [15], [17]. The class of sets which are wealdylevelable but notA-
levelable has p-measufe

Corollary 3.7 [15], [17]. Every p-random setis weaklylevelable but not-levelable

4. Resource-Bounded Stochasticity versus Polynomial Time Unsafe
Approximations

As we have mentioned in the Introduction, the first notion of randomness was proposed
by von Mises [10]. He called a sequence random if every subsequence obtained by an
admissible selection rule satisfies the law of large numbers. A formalization of this notion,
based on formal computability, was given by Church [4] in 1940. Following Kolmogorov
(see [12]) we call randomness in the sense of von Mises and Church stochasticity.
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For a formal definition of Church’s stochasticity concept, we first formalize the
notion of a selection rule.

Definition 4.1. A selection function fis a partial recursive functiorf: ©* — X.
A selection functionf is dense along Af f(xa[0..n — 1]) is defined for alln and
f (xa[0..n — 1]) = 1 for infinitely manyn.

By interpretingA as the infinite 0—1-sequengg, a selection functiorf selects the
subsequencga[no] xalnil xa[nz] - - - of xa Whereng < n; < n; < - .- are the numbers
n such thatf (xa[0..n — 1]) = 1. In particular,f selects an infinite subsequenrtef
xa iff f is dense along\. So Church’s stochasticity concept can be defined as follows.

Definition 4.2. An infinite sequencé € X satisfies the law of large numbers if the
following condition holds:

Y&l 1
m="1 =3

Definition 4.3[4]. A set A is stochasticif, for every selection functionf which is
dense alondA, f selects an infinite subsequengéof x) which satisfies the law of
large numbers.

For the resource-bounded version of Church stochasticity, Ambos-Spies et al. [3]
introduced the followingi¥-stochasticity notion.

Definition 4.4[3]. An nk-selection functions a total selection functiorf such that
f € DTIME(nX). A set A is nk-stochastidf, for every nX-selection functionf which
is dense alond, f selects an infinite subsequericéof xa) which satisfies the law of
large numbers.

These concepts can also be characterized in terms of prediction functions. A predic-
tion function f is a procedure which, given a finite initial segment of a 0—1-sequence,
predicts the value of the next member of the sequence. We will show thatAiset
stochastic iff, for every partial prediction function which makes infinitely many predic-
tions alongA, the numbers of the correct and incorrect predictions are asymptotically
the same.

Definition 4.5[3]. A prediction function fis a partial functionf: X* — X. An
nk-prediction function fis a prediction functionf such thatf e DTIME(n¥) and
domain( f) € DTIME(n¥). A prediction functionf is dense along A f (x[0..n —1])
is defined for infinitely many. A meetqavoidg f at z, if f(xa[0..n — 1]) is defined
and f (xa[0..n—1]) = xa[n] (f (xa[0..n—1]) = 1— xa[n]). A meets f balancediy

i < F a0 = 1) = xaliD _ 1
"< fGwl - 2

4)
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Theorem 4.6[3]. For any set Athe following are equivalent

1. Ais rf-stochastiq p-stochastiy:
2. A meets balancedly every-prediction(p-prediction) function which is dense
along A

The following theorem is straightforward.
Theorem 4.7[3]. If a set A is ff-random then it is rf-stochastic

We first show that neitheA-levelability nor optimal approximability impliep-
stochasticity.

Theorem 4.8.

1. There is a non-p-stochastic set BHa which has an optimal unsafe approxi-
mation
2. There is a non-p-stochastic set BEa which isA-levelable

Proof. 1.LetA € E;be asetwhich has an optimal unsafe approximation (the existence
of suchA has been shown by Ambos-Spies [1]), andHet {zon, Zoni1 : Zn € A}. Then
B has an optimal unsafe approximation and the prediction fundtidefined by

O x[x| = 1] if |X|is odd
o) = {T otherwise

withesses thaB is not p-stochastic.
2. The proof is the same as that of 1. O

Before we prove our main theorems, we prove the following lemma which presents
the basic idea underlying Ville’s construction.

Lemma 4.9. Let f,, f; be two rf-selection functionsThen there is a set A i, such
that

I{i <n: fo(xal0..i —1]) = 1= xali]}l
> i <n: fu(xal0.i =1]) =1=1— xali]}l

foralln € N and be X.

Proof. The construction oA\ is as follows.

Let&p0 = &01 = §10 = 1,1 = 110101010----- € ™. Fori € N, assume that
xal0..i —1] has already been defined (i, by) = (fo(xa[0..i —1]), fi(xa[O0..i —1])),
then letxa[i] be the first bit in the sequenég, i, that has not been used.
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For the above constructed si&tevery initial segment of the sequence selected by
fo (1) from xa is a “mixture” of the initial segments afi o andé&1 1 (60,1 andéy 1).
Hence it satisfies the requirements of the lemma. O

Theorem 4.10. There is a p-stochastic set AE; satisfying the following properties

1. For every p-selection function f which is dense alongh#&re is an unbounded
nondecreasing function(n) such that

i <n: f(xal0..i —1]) = 1= xali]}l
> i <n: f(xal0.0i =1 =1=1— xalil} +r(n) )
for almost all ne N.

2. A has an optimal unsafe approximation

Proof. Let fg, fy, ... be an enumeration of afi-selection functions. The construction
of A is a modification of the construction in Lemma 4.9. The detailed construction is as
follows.

Letn; = 22 for all j € N, and let§, = 1110101010----- e X for all
w € X* Fori € N, assume thaya[0..i — 1] has already been defined. Let=
fo(xal0..i —1]) f1(xa[0..i —1]) - - - fi_1(xA[0..i —1]) and letj be the least integer such
that we have used less thapbits fromé&,jo_jj. Then letya[i] be the first bit ingy_j;
that we have not used.

The basic idea underlying the above construction is the same as that underlying
the construction in Lemma 4.9. However, here there are countably many selection rules
whence each bit of the constructed sequence is characterized by an infinite binary se-
quencedgby - - - - - (bj = 1if f; selects this bit). In other words, each bit is characterized
by an infinite path in a binary tree. Nevertheless, we only use an initial segment of this
path. More precisely, at each stage of our construction one of the vertices of the binary
tree is calledactive To find out the active vertex we start from the root and follow the
path until we find a vertexp_;; which was active less thaw times.

We show that the above constructed Aesatisfies our requirements by establishing
two claims.

Claim 1. Let f be a p-selection functiorThen the subsequence selected by the
selection function f satisfies the law of large numbers and there is an unbounded non-
decreasing function(n) satisfying(5).

Proof. Letbgby------ be the infinite subsequence obtained by the application of the
selection functionf = f,. We consider an arbitrary initial segmemgb; - - - b; of the
sequencégby - - - - - and the vertices (strings) of the binary tree corresponding to these

bits. Letx be one of the longest strings among these strings (vertices) corresponding
to the bits inbgby - - - by. Without loss of generality, we may assume thats> 2020 +
... 4 222" > n 4+ 1. First we give a lower bound dfas a function ofx|. If the string
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x on the tre€eT is active, then the string’ = (x without the last bit) onT has been
active Z2XI-2 times. Thenth bit of x’ is equal to 1 (we assume thiad| > n + 1),
hence all the bits correspondingxoare selected by . So the length + 1 of bgby - - - by
is at least XD, Now bgb; - - - by can be divided into two groups. For the bits in
one group the corresponding strings (vertices) have length atrmts¢ total number
of such bits is bounded by°2® + ... + 272" so we may ignore them. For other
bits the corresponding strings (vertices) have length greaterrttard thenth bit is
equal to 1. So the total number of such kind of strings (vertices) used does not exceed
(1+2+-- -+ 2%y < 2X+2 The difference between the number of zeros and the number
of ones in each sequence corresponding to each string (vertex) is at most 3. Thus the
difference between the number of ones and the number of zelbiin- - by does not
exceed 32¥1+2, Hence the frequency of oneshigb, - - - by is close to ¥2 (the difference
is less than(3 - 21X1+2) /(221x1=2)) and tends to zero).

It remains to show the existence of an unbounded nondecreasing funétipn
satisfying (5). This is straightforward because each base sequence in our construction is
111010 ----- . O

Claim 2. B = X* is an optimal unsafe approximation of Ahat is to sayfor every
set Ce P such that| CAB|| = oo, (2) holds

Proof. Define ap-selection functionf by letting

1 if C(Zm) =0,

f(x) = .
0 otherwise.

Then, by (5),
[(AAC) [zp]l — [I(AAB) [zl
= [{i <n: f(xal0..i = 1)) = 1= xalil}l
— i <n: f(xal0..1 =1)) =1=1— xali]}l
>0

for almost alln € N. Hence (2) holds. |

Before proving the second main theorem of our paper, we first prove a preliminary
lemma.

Lemma 4.11. Let By, Bo1, B1.o, B1.1, B2.o, B21, . .. be a sequence of mutually dis-
jointsets which has a universal characteristic functio&isuch that J; . Uy 1 Bib =
¥*. Then there is a p-stochastic seteAE, satisfying the following properties

1. Foreachie N,letaj o= bobiby------ , Where

b — A(Zj) if Zj € Bi,Oa
N D) if z ¢ Bio.
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If |oi o] is infinite then there is an unbounded nondecreasing functigm) such
that[{j < n: aio[j] =0} = II{] < n: @iolj] = L} +rio(n) for almost all

ne N.

2. Foreachie N, letaj 1 = bobibp------ , Where
b — A(Zj) if Zj € Bi,ls
N Y if Zj ¢ Bi1.

If |oi 1] is infinite then there is an unbounded nondecreasing functigm) such
that[{j < n: aia[j] =1} = I{] < n: @i1[j] = O} +ri 1(n) for almost all
ne N.

Proof. Let fo, f1,... be an enumeration of aff-selection functions. The proof is a
nested combination of infinitely many copies of the construction in the proof of The-
orem 4.10. That is to say, for eadh, we constructy; ,, in the same way as in the
construction ofA in the proof of Theorem 4.10. The formal construction is given below.

Letn; = 2% forall j € N, and let

&, =10101010----- € x®,
£y,j1 = 1110101010 - - - - € x>,
gw.j,o = 00010101010 ---- = EOO’

forallw € X*andj € N.Fori € N, assume thgta[0..i — 1] has already been defined.
Now we show how to definga[i]. Let j, b be the unique numbers such tzai B; p.
If the condition

e for all k < j such thatfy(xa[0..i — 1]) = 1, there is a stage < i such that
fk(xal0..u — 1]) = 1 andxa[u] was constructed fror§,, mp or &, for some
lw| > 3]

holds, then we construgta[i] according to process 2 following, otherwise construct
xa[i] according to process 1.

1. Letx = fo(xa[0..i —1]) f1(xa[0..i —1]) - -- fi_1(xa[0..i — 1]) and lets be the
least integer such that we have used less thdaits fromé&,o_s. Then letyali]
be the first bit ink,o_g that we have not used.

2. Letx = fo(xa[0..i — 1)) fa(xa[0..1i — 1] --- fi_1(xa[0..i —1]) and lets be the
least integer such that we have used less thabits from & g, b. Then let
xali] be the first bit ingyo_g j.» that we have not used.

In the above construction, we have a base tree of binary strings where each vertex
corresponds to the infinite binary sequence 1010. - and foreactB; , (j € N, b € X)
we have a tree of binary strings where each vertex corresponds to the infinite binary
sequence 111010----if b = 1 and 00010160 - - -- otherwise. At each stage of our
constuction, one tree will be calledtive and one vertex on the active tree will be called
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active To find out the active tree, first we compute the unique numpdrsuch that
z € B;jp. If the condition

e for all k < j such thatfy(xa[0..i — 1]) = 1, there is a stage < i such that
fk(xal0..u — 1]) = 1 and xa[u] was constructed fror§,, mp or &, for some
lw| > 3j

holds, then the tree correspondingBp, will be active at stage, otherwise the base
tree will be active. To find out the active vertex on the active tree, it is the same as in the
proof of Theorem 4.10.
For eachj € N andb € %, there is a numbei , such that the tree corresponding
to B; p will be active at any stage> i; , whenz € B; ,. Hence, in the same way as in
the proof of Theorem 4.10, it is easily checked that properties 1 and 2 of the lemma are
satisfied.
Now it remains to show that the above constructedfsist p-stochastic. That is to
say, we need to show that each selection funcfipgelects a balanced subsequence.
Lethgb; - - - be the infinite subsequence obtained by the application of the selection
function f,,. We consider an arbitrary initial segmdgb; - - - b; of the sequencigby; - - -
and the vertices (strings) of the binary trees corresponding to these bitsbkeaine of
the longest strings among these strings (vertices) corresponding to thelalhg in- b.
Then, by the construction, the number of trees which correspond to these bits is not greater
than|x|/3. Without loss of generality, we may assume txats> 2020 4 ... 4 21220 >
n + 1. First we give a lower bound afas a function ofx|. If the stringx on the tree
T is used as active, then the string= (x without the last bit) onT is used as active
for 230XI-2 times. Thenth bit of X’ is equal to 1 (we assume thad > n + 1), hence
all the bits corresponding t®" are selected byf,. So the lengtht + 1 of bgby - - - by
is at least ¥XI=2_ Now bgby - - - by can be divided into two groups. For some of them
the corresponding strings (vertices) have length at moshe total number of such
bits is bounded by2°2° + ... 4 2M2%") . |x|/3, so we may ignore them. For other
bits the corresponding strings (vertices) have length greaterrttaard thenth bit is
equal to 1. So the total number of such kind of strings (vertices) used does not exceed
142+ .-+ 2%y .|x|/3 < 22X, The difference between the number of zeros and
the number of ones in each sequence corresponding to each string (vertex) is at most 3.
Thus the difference between the number of ones and the number of zdxs in- by
does not exceed 22X, Hence the frequency of oneskhgb - - - by is close to 12 (the
difference is less tha(B - 22X!) /(23(1X1-2)) and tends to zero). O

Now we are ready to prove our other main theorem.

Theorem 4.12. There is a p-stochastic set Aty which isA-levelable

Proof. Let Py, Py, P>, ... be an enumeration of all setskh Fori € N andb € X,

let Bip = {z;,j: ] € NandPi(z;,j)) = 1 — b}. Let A € E, be thep-stochastic set in
Lemma 4.11 corresponding to the sequeBgg, Bo 1, B1o, B1.1, B2o, B21, ... Of sets.
We have to show thak is A-levelable. For each infinite s&, define a polynomial time
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Table 1. The relations among randomness, stochasticity, and approximations.

p-Random p-Stochastic A-Levelable WeaklyA-levelable Optimally approximable

A Yes Yes No Yes No
B No Yes Yes Yes No
C No Yes No No Yes
D No No Yes Yes No
E No No No No Yes

computable seP’ by letting

1-P(z) if n={i,j) forsome jeN,

P'(z,) =
| (z0) P (z) otherwise

It suffices to show that (1) holds witR and P/ in place of B and B’, respectively.
Let o o ande; 1 be defined as in Lemma 4.11. Then at least one of them is an infinite
sequence. Without loss of generality, we may assumedats infinite ande; 1 is
finite. By Lemma 4.11, there is an unbounded nondecreasing funggom) such that
I{i <n:aioljl =0} = I{j <n:aiolj]l =1} +rio(n)foralmostalin € N. Hence

ICAAP) [ Zoll = I(AAP) [ zn|
= {J <miaioljl=0MH —I{] <n: aiolj]l =1} —leial

> ri,0(N1) — |ei 1]

for almost alln € N, wheren; = ||{j < n: j = (i, k) forsomek € N andP;(z) =
1}||. That is to say, (1) holds witR, P/, andr; o(n1) — |« 1| in place ofB, B’, and f (n),
respectively. O

Our results in this paper show thptrandomness implies weak-levelability, but
it implies neitherA-levelability nor optimal approximability. Howevep-stochasticity
is independent of weak-levelability, A-levelability, and optimal approximability.

As a summary, we list all these relations among randomness, stochasticity, and
approximations. There are sefs B, C, D, E ¢ X* which satisfy the properties in
Table 1.

Acknowledgments

| am grateful to Professor Richard Beigel for some comments on an early version of this paper. | would
also like to thank Professor Harald Ganzinger who supported my stay at Max-Planck-Instinfofimatik
(Saarbucken, Germany) where part of this work was done.



Randomness, Stochasticity, and Approximations 529

References

[1] K.Ambos-Spies. On optimal polynomial time approximatidhdevelability vs.A-levelability. InProc.
22nd ICALP, Lecture Notes in Computer Science, 944, pages 384-392. Springer-Verlag, Berlin, 1995.

[2] K. Ambos-Spies and J. Lutz. The Workshop on Randomness and Information, Dagstuhl, July 15-19,
1996.

[3] K. Ambos-Spies, E. Mayordomo, Y. Wang, and X. Zheng. Resource-bounded balanced genericity,
stochasticity and weak randomnessPioc. 13h STACSLecture Notes in Computer Science, 1046,
pages 63-74. Springer-Verlag, Berlin, 1996.

[4] A. Church. On the concept of a random sequeel. Amer Math. Soc, 45:130-135, 1940.

[5] P. Duris and J. D. P. RolinE-complete sets do not have optimal polynomial time approximations.
In Proc. 1%h MFCS Lecture Notes in Computer Science, 841, pages 38-51. Springer-Verlag, Berlin,
1994.

[6] K. Ko. On the notion of infinite pseudorandom sequen@ésoret Comput Sci, 48:9-33, 1986.

[7] J.H. Lutz. Almost everywhere high nonuniform complexityComput System Sci44:220-258, 1992.

[8] P. Martin-L&f. The definition of random sequencésform. and Contro) 9:602—-619, 1966.

[9] A. R. Meyer and M. S. Paterson. With what frequency are apparently intractable problems difficult?
Technical Report TM-126, Laboratory for Computer Science, MIT, 1979.

[10] R.von Mises. Grundlagen der Wahrscheinlichkeitsrechnitagh. Z., 5:52-99, 1919.

[11] C. P. Schnorrzufalligkeit und WahrscheinlichkeiEine algorithmische Bedindung der Wahrschein-
lichkeitstheorie Lecture Notes in Mathematics, 218. Springer-Verlag, Berlin, 1971.

[12] V. A. Uspenskii, A. L. Semenov, and A. Kh. Shen. Can an individual sequence of zeros and ones be
random7Russian MathSurveys45:121-189, 1990.

[13] J. Ville. Etude Critique de la Notion de CollectiBauthiers-Villars, Paris, 1939.

[14] A. Wald. Sur la notion de collectif dans le calcul des probasli€. R. Acad Sci Paris, 202:180-183,
1936.

[15] Y.Wang. Randomness and Complexity. Ph.D. thesis, Heidelberg, 1996.

[16] Y. Wang. The law of the iterated logarithm fprrandom sequences. Rroc. 11th Conf on Computa-
tional Complexityformerly Conf. on Structure in Complexity Theory), pages 180-189. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

[17] Y. Wang. Genericity, randomness, and polynomial time approximatiidgv J Comput 28(2):394—
408, 1999.

[18] R. Wilber. Randomness and the density of hard problemBrdn. 24th SympFOCS pages 335-342.
IEEE Computer Society Press, Los Alamitos, CA, 1983.

[19] Y. Yesha. On certain polynomial-time truth-table reducibilities of complete sets to sparselAdts]

Comput, 12:411-425, 1983.

Received Mayt997,and in final form Septembé998.



