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Abstract. Polynomial time unsafe approximations for intractable sets were in-
troduced by Meyer and Paterson [9] and Yesha [19], respectively. The question of
which sets have optimal unsafe approximations has been investigated extensively;
see, e.g., [1], [5], [15], and [17]. Recently, Wang [15], [17] showed that polynomial
time random sets are neither optimally unsafe approximable nor1-levelable. In this
paper we show that: (1) There exists a polynomial time stochastic set in the exponen-
tial time complexity class which has an optimal unsafe approximation. (2) There
exists a polynomial time stochastic set in the exponential time complexity class
which is1-levelable. The above two results answer a question asked by Ambos-
Spies and Lutz [2]: What kind of natural complexity property can be characterized
by p-randomness but not byp-stochasticity? Our above results also extend Ville’s
[13] historical result. The proof of our first result shows that, for Ville’s stochastic
sequence, we can find an optimal prediction functionf such that we will never lose
our own money betting according tof (except the money we have earned), that is to
say, if at the beginning we have only $1 and we always bet $1 that the next selected
bit is 1, then we always have enough money to bet on the next bit. Our second result
shows that there is a stochastic sequence for which there is a betting strategyf such
that we will never lose our own money betting according tof (except the money
we have earned), but there is no such optimal betting strategy. That is to say, for any
such betting strategy, we can find another betting strategy which could be used to
make money more quickly.

∗ A preliminary version of this paper has appeared in theProceedings of RANDOM’97, Springer-Verlag,
New York.
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1. Introduction

Random sequences were first introduced by von Mises [10] as a foundation for probability
theory. Von Mises considered a random sequence to be a type of disordered sequences,
called “Kollektivs.” The two features characterizing a Kollektiv are: the existence of
limiting relative frequencies within the sequence and the invariance of these limits under
the operation of an “admissible place selection rule.” Here an admissible place selection
rule is a procedure for selecting a subsequence of a given sequenceξ in such a way
that the decision to select a bitξ [n] does not depend on the value ofξ [n]. However,
von Mises’ definition of an “admissible place selection rule” is not rigorous according to
modern mathematics. After von Mises introduced the concept of “Kollektivs,” the first
question raised was whether this concept is consistent. Wald [14] answered this question
affirmatively by showing that, for each countable set of admissible place selection rules,
the corresponding set of “Kollektivs” has Lebesgue measure 1. The second question
raised was whether all “Kollektivs” satisfy the standard statistical laws. For a negative
answer to this question, Ville [13] constructed a counterexample in 1939. He showed
that, for each countable set of admissible place selection rules, there exists a “Kollektiv”
which does not satisfy the law of the iterated logarithm. The example of Ville defeated the
plan of von Mises to develop probability theory based on “Kollektivs,” that is to say, to
give an axiomatization of probability theory with “random sequences” (i.e., “Kollektivs”)
as a primitive term. Later, admissible place selection rules were further developed by
Tornier, Wald, Church, Kolmogorov, Loveland, and others. This approach of von Mises
to define random sequences is now known as the “stochastic approach.”

A completely different approach to the definition of random sequences was proposed
by Martin-Löf [8]. He developed a quantitative (measure-theoretic) approach to the
notion of random sequences. This approach is free from those difficulties connected
with the frequency approach of von Mises. Later, Schnorr [11] used the martingale
concept to give a uniform description of various notions of randomness. In particular, he
gave a characterization of Martin-L¨of’s randomness concept in these terms.

Using the martingale concept, Schnorr [11] introduced resource-bounded random-
ness concepts, and later Lutz [7] introduced a kind of resource-bounded measure theory.
Resource-bounded versions of stochasticity concepts were also introduced by several
authors, e.g., Wilber [18], Ko [6], and Ambos-Spies et al. [3].

The notion of unsafe approximations was introduced by Yesha in [19]: an unsafe
approximation algorithm for a setA is just a standard polynomial time bounded deter-
ministic Turing machineM with outputs 1 and 0. Duris and Rolim [5] further investigated
unsafe approximations and introduced a levelability concept,1-levelability, which im-
plies the nonexistence of optimal polynomial time unsafe approximations. They showed
that complete sets forE are1-levelable and there exists an intractable set inE which
has an optimal safe approximation but no optimal unsafe approximation. However, they
did not succeed in producing an intractable set with optimal unsafe approximations.
Ambos-Spies [1] defined a concept of weak1-levelability and showed that there exists
an intractable set inE which is not weakly1-levelable (hence it has an optimal un-
safe approximation). In [15], [16], and [17], Wang extended Ambos-Spies’s results by
showing that both the class of1-levelable sets and the class of sets which have optimal
polynomial time unsafe approximations havep-measure 0. Wang’s results show that



Randomness, Stochasticity, and Approximations 519

1-levelable sets and optimally approximable sets could not bep-random. However, in
this paper, we show the following results:

• There is ap-stochastic set inE2 which has an optimal unsafe approximation.
• There is ap-stochastic set inE2 which is1-levelable.

Note that our above results extend Ville’s [13] historical result. Ville’s result says
that: for every countable set of admissible place selection rules, we can construct a
stochastic sequenceξ which has more ones than zeros in its initial segments. As we show
in Theorem 4.10, for this stochastic sequenceξ , the prediction functionf (x) = 1 will
be the optimal prediction strategy since, for every other prediction functiong, there is a
k ∈ N such that‖{i < n: g(ξ [0..i−1]) = ξ [i ]}‖ ≤ ‖{i < n: f (ξ [0..i−1]) = ξ [i ]}‖+k
for almost alln ∈ N. Our second result (Lemma 4.11 and Theorem 4.12) says that: for
every countable set of admissible place selection rules, we can construct a stochastic
sequenceξ such that there is no optimal prediction strategy for this sequence. That is
to say, for every prediction functionf , there is another prediction functiong and an
unbounded nondecreasing functionr (n) such that‖{i < n: g(ξ [0..i − 1]) = ξ [i ]}‖ ≥
‖{i < n: f (ξ [0..i − 1]) = ξ [i ]}‖ + r (n) for almost alln ∈ N. We prove our results
for the resource-bounded case only, but all of these results hold for the classical case
also.

The outline of the paper is as follows. In Section 3 we review the relations between
the concept of resource-bounded randomness and the concept of polynomial time unsafe
approximations. In Section 4 we establish the relations between the concept of resource-
bounded stochasticity and the concept of polynomial time unsafe approximations.

2. Definitions

Let N andQ(Q+) denote the set of natural numbers and the set of (nonnegative) rational
numbers, respectively.6 = {0,1} is the binary alphabet,6∗ is the set of (finite) binary
strings,6n is the set of binary strings of lengthn, and6∞ is the set of infinite binary
sequences. The length of a stringx is denoted by|x|. < is the length-lexicographical
ordering on6∗ andzn (n ≥ 0) is thenth string under this ordering.λ is the empty string.
For stringsx, y ∈ 6∗, xy is the concatenation ofx andy. For a sequencex ∈ 6∗ ∪6∞
and an integer numbern ≥ −1, x[0..n] denotes the initial segment of lengthn+ 1 of x
(x[0..n] = x if |x| < n+1) andx[i ] denotes thei th bit of x, i.e.,x[0..n] = x[0] · · · x[n].
Lowercase letters. . . , k, l ,m,n, . . . , x, y, z from the middle and the end of the alphabet
denote numbers and strings, respectively. The letterb is reserved for elements of6, and
lowercase Greek lettersξ, η, . . . denote infinite sequences from6∞.

A subset of6∗ is called a language or simply a set. Capital letters are used to
denote subsets of6∗ and boldface capital letters are used to denote subsets of6∞.
The cardinality of a languageA is denoted by‖A‖. We identify a languageA with its
characteristic function, i.e.,x ∈ A iff A(x) = 1. The characteristic sequenceχA of a
languageA is the infinite sequenceχA = A(z0)A(z1)A(z2) · · ·. We freely identify a
language with its characteristic sequence and the class of all languages with the set6∞.
For a languageA ⊆ 6∗ and a stringzn ∈ 6∗, A |̀ zn denotes the finite initial segment of
A belowzn, i.e., A |̀ zn = {x: x < zn&x ∈ A}. For languagesA andB, Ā = 6∗ − A is
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the complement ofA, andA1B = (A− B) ∪ (B − A) is the symmetric difference of
A andB.

We fix a standard polynomial time computable and invertible pairing function
λx, y〈x, y〉 on6∗. We useP, E, andE2 to denote the complexity classesDTIME(poly),
DTIME(2linear) andDTIME(2poly), respectively. Finally, we fix a recursive enumeration
{Pe: e ≥ 0} of P such thatPe(x) can be computed inO(2|x|+e) steps (uniformly ine
andx).

We close this section by introducing a fragment of Lutz’s effective measure theory
which will be sufficient for our investigation.

Definition 2.1. A martingaleis a functionF : 6∗ → Q+ such that, for allx ∈ 6∗,

F(x) = F(x1)+ F(x0)

2
.

A martingaleF succeedson a setA ⊆ 6∗ if lim supn F(A |̀ zn) = ∞.

Definition 2.2 [7]. A classC of sets hasp-measure0 (µp(C) = 0) if there is a poly-
nomial time computable martingaleF : 6∗ → Q+ which succeeds on every set in
C. The classC has p-measure1 (µp(C) = 1) if µp(C̄) = 0 for the complement
C̄ = {A ⊆ 6∗: A /∈ C} of C.

Definition 2.3 [11]. A setA is nk-randomif, for everynk-time computable martingale
F , F does not succeed onA. A set A is p-randomif A is nk-random for allk ∈ N.

The following theorem is useful in the study ofp-measure theory.

Theorem 2.4. A classC of sets has p-measure 0if and only if there exists a number
k ∈ N such that there is no nk-random set inC.

Proof. See, e.g., [15].

3. Resource-Bounded Randomness versus Polynomial Time Unsafe
Approximations

For completeness, in this section we review the results in [15] and [17] which show
the relations between the resource-bounded randomness concept and polynomial time
unsafe approximation concepts.

Definition 3.1 [5], [19]. A polynomial time unsafe approximationof a setA is a set
B ∈ P. The setA1B is called theerror set of the approximation. Letf be a function
defined on the natural numbers such that lim supn→∞ f (n) = ∞. A setA is1-levelable
with density f if, for any setB ∈ P, there is another setB′ ∈ P such that

‖(A1B) |̀ zn‖ − ‖(A1B′) |̀ zn‖ ≥ f (n) (1)
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for almost alln ∈ N. A set A is 1-levelableif A is 1-levelable with densityf for
some f .

Definition 3.2 [1]. A polynomial time unsafe approximationB of a setA is optimal
if, for any approximationC ∈ P of A,

∃k ∈ N, ∀n ∈ N, ‖(A1B) |̀ zn‖ < ‖(A1C) |̀ zn‖ + k. (2)

A set A is weakly1-levelableif, for any polynomial time unsafe approximationB of A,
there is another polynomial time unsafe approximationB′ of A such that

∀k ∈ N, ∃n ∈ N, ‖(A1B) |̀ zn‖ > ‖(A1B′) |̀ zn‖ + k. (3)

It should be noted that our above definitions are a little different from the original
definitions of Ambos-Spies [1], Duris and Rolim [5], and Yesha [19]. In the original
definitions, they considered the errors on strings up to a certain length (i.e.,‖(A1B)≤n‖)
instead of errors on strings up tozn (i.e.,‖(A1B) |̀ zn‖).

Lemma 3.3[1].

1. A set A is weakly1-levelable if and only if A does not have an optimal polynomial
time unsafe approximation.

2. If a set A is1-levelable, then it is weakly1-levelable.

In [15] and [17], we have established the following relations between thep-randomness
concept and unsafe approximation concepts.

Theorem 3.4[15], [17]. The class of1-levelable sets has p-measure0.

Theorem 3.5[15], [17]. The class of sets which have optimal polynomial time unsafe
approximations has p-measure0.

Corollary 3.6 [15], [17]. The class of sets which are weakly1-levelable but not1-
levelable has p-measure1.

Corollary 3.7 [15], [17]. Every p-random set is weakly1-levelable but not1-levelable.

4. Resource-Bounded Stochasticity versus Polynomial Time Unsafe
Approximations

As we have mentioned in the Introduction, the first notion of randomness was proposed
by von Mises [10]. He called a sequence random if every subsequence obtained by an
admissible selection rule satisfies the law of large numbers. A formalization of this notion,
based on formal computability, was given by Church [4] in 1940. Following Kolmogorov
(see [12]) we call randomness in the sense of von Mises and Church stochasticity.
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For a formal definition of Church’s stochasticity concept, we first formalize the
notion of a selection rule.

Definition 4.1. A selection function fis a partial recursive functionf : 6∗ → 6.
A selection functionf is dense along Aif f (χA[0..n − 1]) is defined for alln and
f (χA[0..n− 1]) = 1 for infinitely manyn.

By interpretingA as the infinite 0–1-sequenceχA, a selection functionf selects the
subsequenceχA[n0]χA[n1]χA[n2] · · · of χA wheren0 < n1 < n2 < · · · are the numbers
n such thatf (χA[0..n − 1]) = 1. In particular, f selects an infinite subsequenceξ of
χA iff f is dense alongA. So Church’s stochasticity concept can be defined as follows.

Definition 4.2. An infinite sequenceξ ∈ 6∞ satisfies the law of large numbers if the
following condition holds:

lim
n

∑n
i=0 ξ [i ]

n+ 1
= 1

2
.

Definition 4.3 [4]. A set A is stochasticif, for every selection functionf which is
dense alongA, f selects an infinite subsequenceξ (of χA) which satisfies the law of
large numbers.

For the resource-bounded version of Church stochasticity, Ambos-Spies et al. [3]
introduced the followingnk-stochasticity notion.

Definition 4.4 [3]. An nk-selection functionis a total selection functionf such that
f ∈ DTIME(nk). A set A is nk-stochasticif, for every nk-selection functionf which
is dense alongA, f selects an infinite subsequenceξ (of χA) which satisfies the law of
large numbers.

These concepts can also be characterized in terms of prediction functions. A predic-
tion function f is a procedure which, given a finite initial segment of a 0–1-sequence,
predicts the value of the next member of the sequence. We will show that a setA is
stochastic iff, for every partial prediction function which makes infinitely many predic-
tions alongA, the numbers of the correct and incorrect predictions are asymptotically
the same.

Definition 4.5 [3]. A prediction function f is a partial function f : 6∗ → 6. An
nk-prediction function f is a prediction functionf such that f ∈ DTIME(nk) and
domain( f ) ∈ DTIME(nk). A prediction functionf is dense along Aif f (χA[0..n− 1])
is defined for infinitely manyn. A meets(avoids) f at zn if f (χA[0..n− 1]) is defined
and f (χA[0..n− 1]) = χA[n] ( f (χA[0..n− 1]) = 1− χA[n]). A meets f balancedlyif

lim
n

‖{i < n: f (χA[0..i − 1]) = χA[i ]}‖
‖{i < n: f (χA[0..i − 1]) ↓}‖ = 1

2
. (4)
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Theorem 4.6[3]. For any set A, the following are equivalent:

1. A is nk-stochastic(p-stochastic).
2. A meets balancedly every nk-prediction(p-prediction) function which is dense

along A.

The following theorem is straightforward.

Theorem 4.7[3]. If a set A is nk-random, then it is nk-stochastic.

We first show that neither1-levelability nor optimal approximability impliesp-
stochasticity.

Theorem 4.8.

1. There is a non-p-stochastic set B inE2 which has an optimal unsafe approxi-
mation.

2. There is a non-p-stochastic set B inE2 which is1-levelable.

Proof. 1. LetA ∈ E2 be a set which has an optimal unsafe approximation (the existence
of suchA has been shown by Ambos-Spies [1]), and letB = {z2n, z2n+1 : zn ∈ A}. Then
B has an optimal unsafe approximation and the prediction functionf defined by

f (x) =
{

x[|x| − 1] if |x| is odd,
↑ otherwise

witnesses thatB is not p-stochastic.
2. The proof is the same as that of 1.

Before we prove our main theorems, we prove the following lemma which presents
the basic idea underlying Ville’s construction.

Lemma 4.9. Let f0, f1 be two nk-selection functions. Then there is a set A inE2 such
that

‖{i < n: fb(χA[0..i − 1]) = 1= χA[i ]}‖
> ‖{i < n: fb(χA[0..i − 1]) = 1= 1− χA[i ]}‖

for all n ∈ N and b∈ 6.

Proof. The construction ofA is as follows.

Let ξ0,0 = ξ0,1 = ξ1,0 = ξ1,1 = 110101010· · · · · · ∈ 6∞. For i ∈ N, assume that
χA[0..i −1] has already been defined. If(b0,b1) = ( f0(χA[0..i −1]), f1(χA[0..i −1])),
then letχA[i ] be the first bit in the sequenceξb0,b1 that has not been used.
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For the above constructed setA, every initial segment of the sequence selected by
f0 ( f1) from χA is a “mixture” of the initial segments ofξ1,0 andξ1,1 (ξ0,1 andξ1,1).
Hence it satisfies the requirements of the lemma.

Theorem 4.10. There is a p-stochastic set A∈ E2 satisfying the following properties:

1. For every p-selection function f which is dense along A, there is an unbounded
nondecreasing function r(n) such that

‖{i < n: f (χA[0..i − 1]) = 1= χA[i ]}‖
≥ ‖{i < n: f (χA[0..i − 1]) = 1= 1− χA[i ]}‖ + r (n) (5)

for almost all n∈ N.
2. A has an optimal unsafe approximation.

Proof. Let f0, f1, . . . be an enumeration of allp-selection functions. The construction
of A is a modification of the construction in Lemma 4.9. The detailed construction is as
follows.

Let nj = 22 j for all j ∈ N, and letξw = 1110101010· · · · · · ∈ 6∞ for all
w ∈ 6∗. For i ∈ N, assume thatχA[0..i − 1] has already been defined. Letx =
f0(χA[0..i −1]) f1(χA[0..i −1]) · · · fi−1(χA[0..i −1]) and let j be the least integer such
that we have used less thannj bits fromξx[0.. j ] . Then letχA[i ] be the first bit inξx[0.. j ]

that we have not used.

The basic idea underlying the above construction is the same as that underlying
the construction in Lemma 4.9. However, here there are countably many selection rules
whence each bit of the constructed sequence is characterized by an infinite binary se-
quenceb0b1 · · · · · · (bi = 1 if fi selects this bit). In other words, each bit is characterized
by an infinite path in a binary tree. Nevertheless, we only use an initial segment of this
path. More precisely, at each stage of our construction one of the vertices of the binary
tree is calledactive. To find out the active vertex we start from the root and follow the
path until we find a vertexx[0.. j ] which was active less thannj times.

We show that the above constructed setA satisfies our requirements by establishing
two claims.

Claim 1. Let f be a p-selection function. Then the subsequence selected by the
selection function f satisfies the law of large numbers and there is an unbounded non-
decreasing function r(n) satisfying(5).

Proof. Let b0b1 · · · · · · be the infinite subsequence obtained by the application of the
selection functionf = fn. We consider an arbitrary initial segmentb0b1 · · ·bt of the
sequenceb0b1 · · · · · · and the vertices (strings) of the binary tree corresponding to these
bits. Let x be one of the longest strings among these strings (vertices) corresponding
to the bits inb0b1 · · ·bt . Without loss of generality, we may assume that|x| À 2020 +
· · · + 2n22n > n+ 1. First we give a lower bound oft as a function of|x|. If the string
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x on the treeT is active, then the stringx′ = (x without the last bit) onT has been
active 22(|x|−2) times. Thenth bit of x′ is equal to 1 (we assume that|x| > n + 1),
hence all the bits corresponding tox′ are selected byf . So the lengtht +1 of b0b1 · · ·bt

is at least 22(|x|−1). Now b0b1 · · ·bt can be divided into two groups. For the bits in
one group the corresponding strings (vertices) have length at mostn, the total number
of such bits is bounded by 2020 + · · · + 2n22n, so we may ignore them. For other
bits the corresponding strings (vertices) have length greater thann and thenth bit is
equal to 1. So the total number of such kind of strings (vertices) used does not exceed
(1+2+· · ·+2|x|) < 2|x|+2. The difference between the number of zeros and the number
of ones in each sequence corresponding to each string (vertex) is at most 3. Thus the
difference between the number of ones and the number of zeros inb0b1 · · ·bt does not
exceed 3·2|x|+2. Hence the frequency of ones inb0b1 · · ·bt is close to 1/2 (the difference
is less than(3 · 2|x|+2)/(22(|x|−2)) and tends to zero).

It remains to show the existence of an unbounded nondecreasing functionr (n)
satisfying (5). This is straightforward because each base sequence in our construction is
111010· · · · · ·.

Claim 2. B = 6∗ is an optimal unsafe approximation of A. That is to say, for every
set C∈ P such that‖C1B‖ = ∞, (2) holds.

Proof. Define ap-selection functionf by letting

f (x) =
{

1 if C(z|x|) = 0,

0 otherwise.

Then, by (5),

‖(A1C) |̀ zn‖ − ‖(A1B) |̀ zn‖
= ‖{i < n: f (χA[0..i − 1]) = 1= χA[i ]}‖
− ‖{i < n: f (χA[0..i − 1]) = 1= 1− χA[i ]}‖

> 0

for almost alln ∈ N. Hence (2) holds.

Before proving the second main theorem of our paper, we first prove a preliminary
lemma.

Lemma 4.11. Let B0,0, B0,1, B1,0, B1,1, B2,0, B2,1, . . . be a sequence of mutually dis-
joint sets which has a universal characteristic function inE such that

⋃
i∈N

⋃
b=0,1 Bi,b =

6∗. Then there is a p-stochastic set A∈ E2 satisfying the following properties.

1. For each i∈ N, let αi,0 = b0b1b2 · · · · · ·, where

bj =
{

A(zj ) if zj ∈ Bi,0,

λ if zj /∈ Bi,0.
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If |αi,0| is infinite, then there is an unbounded nondecreasing function ri,0(n) such
that ‖{ j < n: αi,0[ j ] = 0}‖ ≥ ‖{ j < n: αi,0[ j ] = 1}‖ + ri,0(n) for almost all
n ∈ N.

2. For each i∈ N, let αi,1 = b0b1b2 · · · · · ·, where

bj =
{

A(zj ) if zj ∈ Bi,1,

λ if zj /∈ Bi,1.

If |αi,1| is infinite, then there is an unbounded nondecreasing function ri,1(n) such
that ‖{ j < n: αi,1[ j ] = 1}‖ ≥ ‖{ j < n: αi,1[ j ] = 0}‖ + ri,1(n) for almost all
n ∈ N.

Proof. Let f0, f1, . . . be an enumeration of allp-selection functions. The proof is a
nested combination of infinitely many copies of the construction in the proof of The-
orem 4.10. That is to say, for eachBi,b, we constructαi,b in the same way as in the
construction ofA in the proof of Theorem 4.10. The formal construction is given below.

Let nj = 23 j for all j ∈ N, and let

ξw = 10101010· · · · · · ∈ 6∞,
ξw, j,1 = 1110101010· · · · · · ∈ 6∞,
ξw, j,0 = 00010101010· · · · · · ∈ 6∞,

for allw ∈ 6∗ and j ∈ N. Fori ∈ N, assume thatχA[0..i −1] has already been defined.
Now we show how to defineχA[i ]. Let j,b be the unique numbers such thatzi ∈ Bj,b.
If the condition

• for all k ≤ j such that fk(χA[0..i − 1]) = 1, there is a stageu < i such that
fk(χA[0..u − 1]) = 1 andχA[u] was constructed fromξw,m,b′ or ξw for some
|w| ≥ 3 j

holds, then we constructχA[i ] according to process 2 following, otherwise construct
χA[i ] according to process 1.

1. Letx = f0(χA[0..i − 1]) f1(χA[0..i − 1]) · · · fi−1(χA[0..i − 1]) and lets be the
least integer such that we have used less thanns bits fromξx[0..s] . Then letχA[i ]
be the first bit inξx[0..s] that we have not used.

2. Letx = f0(χA[0..i − 1]) f1(χA[0..i − 1]) · · · fi−1(χA[0..i − 1]) and lets be the
least integer such that we have used less thanns bits from ξx[0..s], j,b. Then let
χA[i ] be the first bit inξx[0..s], j,b that we have not used.

In the above construction, we have a base tree of binary strings where each vertex
corresponds to the infinite binary sequence 1010· · · · · · and for eachBj,b ( j ∈ N,b ∈ 6)
we have a tree of binary strings where each vertex corresponds to the infinite binary
sequence 111010· · · · · · if b = 1 and 0001010· · · · · · otherwise. At each stage of our
constuction, one tree will be calledactive, and one vertex on the active tree will be called
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active. To find out the active tree, first we compute the unique numbersj,b such that
zi ∈ Bj,b. If the condition

• for all k < j such that fk(χA[0..i − 1]) = 1, there is a stageu < i such that
fk(χA[0..u − 1]) = 1 andχA[u] was constructed fromξw,m,b′ or ξw for some
|w| ≥ 3 j

holds, then the tree corresponding toBj,b will be active at stagei , otherwise the base
tree will be active. To find out the active vertex on the active tree, it is the same as in the
proof of Theorem 4.10.

For eachj ∈ N andb ∈ 6, there is a numberi j,b such that the tree corresponding
to Bj,b will be active at any stagei > i j,b whenzi ∈ Bj,b. Hence, in the same way as in
the proof of Theorem 4.10, it is easily checked that properties 1 and 2 of the lemma are
satisfied.

Now it remains to show that the above constructed setA is p-stochastic. That is to
say, we need to show that each selection functionfn selects a balanced subsequence.

Let b0b1 · · · be the infinite subsequence obtained by the application of the selection
function fn. We consider an arbitrary initial segmentb0b1 · · ·bt of the sequenceb0b1 · · ·
and the vertices (strings) of the binary trees corresponding to these bits. Letx be one of
the longest strings among these strings (vertices) corresponding to the bits inb0b1 · · ·bt .
Then, by the construction, the number of trees which correspond to these bits is not greater
than|x|/3. Without loss of generality, we may assume that|x| À 2020+ · · · + 2n22n >

n + 1. First we give a lower bound oft as a function of|x|. If the stringx on the tree
T is used as active, then the stringx′ = (x without the last bit) onT is used as active
for 23(|x|−2) times. Thenth bit of x′ is equal to 1 (we assume that|x| > n + 1), hence
all the bits corresponding tox′ are selected byfn. So the lengtht + 1 of b0b1 · · ·bt

is at least 23(|x|−2). Now b0b1 · · ·bt can be divided into two groups. For some of them
the corresponding strings (vertices) have length at mostn, the total number of such
bits is bounded by(2020 + · · · + 2n23n) · |x|/3, so we may ignore them. For other
bits the corresponding strings (vertices) have length greater thann and thenth bit is
equal to 1. So the total number of such kind of strings (vertices) used does not exceed
(1+ 2+ · · · + 2|x|) · |x|/3 < 22|x|. The difference between the number of zeros and
the number of ones in each sequence corresponding to each string (vertex) is at most 3.
Thus the difference between the number of ones and the number of zeros inb0b1 · · ·bt

does not exceed 3· 22|x|. Hence the frequency of ones inb0b1 · · ·bt is close to 1/2 (the
difference is less than(3 · 22|x|)/(23(|x|−2)) and tends to zero).

Now we are ready to prove our other main theorem.

Theorem 4.12. There is a p-stochastic set A inE2 which is1-levelable.

Proof. Let P0, P1, P2, . . . be an enumeration of all sets inP. For i ∈ N andb ∈ 6,
let Bi,b = {z〈i, j 〉: j ∈ N andPi (z〈i, j 〉) = 1− b}. Let A ∈ E2 be thep-stochastic set in
Lemma 4.11 corresponding to the sequenceB0,0, B0,1, B1,0, B1,1, B2,0, B2,1, . . . of sets.
We have to show thatA is1-levelable. For each infinite setPi , define a polynomial time
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Table 1. The relations among randomness, stochasticity, and approximations.

p-Random p-Stochastic 1-Levelable Weakly1-levelable Optimally approximable

A Yes Yes No Yes No
B No Yes Yes Yes No
C No Yes No No Yes
D No No Yes Yes No
E No No No No Yes

computable setP′i by letting

P′i (zn) =
{

1− Pi (zn) if n = 〈i, j 〉 for some j ∈ N,

Pi (zn) otherwise.

It suffices to show that (1) holds withPi and P′i in place of B and B′, respectively.
Let αi,0 andαi,1 be defined as in Lemma 4.11. Then at least one of them is an infinite
sequence. Without loss of generality, we may assume thatαi,0 is infinite andαi,1 is
finite. By Lemma 4.11, there is an unbounded nondecreasing functionri,0(n) such that
‖{ j < n: αi,0[ j ] = 0}‖ ≥ ‖{ j < n: αi,0[ j ] = 1}‖+ ri,0(n) for almost alln ∈ N. Hence

‖(A1Pi ) |̀ zn‖ − ‖(A1P′i ) |̀ zn‖
≥ ‖{ j < n1: αi,0[ j ] = 0}‖ − ‖{ j < n1: αi,0[ j ] = 1}‖ − |αi,1|
≥ ri,0(n1)− |αi,1|

for almost alln ∈ N, wheren1 = ‖{ j < n: j = 〈i, k〉 for somek ∈ N andPi (zj ) =
1}‖. That is to say, (1) holds withPi , P′i , andri,0(n1)−|αi,1| in place ofB, B′, and f (n),
respectively.

Our results in this paper show thatp-randomness implies weak1-levelability, but
it implies neither1-levelability nor optimal approximability. However,p-stochasticity
is independent of weak1-levelability,1-levelability, and optimal approximability.

As a summary, we list all these relations among randomness, stochasticity, and
approximations. There are setsA, B,C, D, E ⊂ 6∗ which satisfy the properties in
Table 1.
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