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Abstract—LDPC codes, LT codes, and digital fountain tech-
niques have received significant attention from both academics
and industry in the past few years. By employing the underlying
ideas of efficient Belief Propagation (BP) decoding process in
LDPC and LT codes, this paper designs the BP-XOR codes and
use them to design three classes of secret sharing schemes called
BP-XOR secret sharing schemes, pseudo-BP-XOR secret sharing
schemes, and LDPC secret sharing schemes. By establishing the
equivalence between the edge-colored graph model and degree-
two BP-XOR secret sharing schemes, we are able to design novel
perfect and ideal 2-out-of-n BP-XOR secret sharing schemes.
By employing techniques from array code design, we are also
able to design other (n,k) threshold LDPC secret sharing
schemes. In the efficient (pseudo) BP-XOR/LDPC secret sharing
schemes that we will construct, only linear number of XOR
(exclusive-or) operations on binary strings are required for both
secret distribution phase and secret reconstruction phase. For a
comparison, we should note that Shamir secret sharing schemes
require O(nlogn) field operations for the secret distribution
phase and O(n?) field operations for the secret reconstruction
phase. Furthermore, our schemes achieve the optimal update
complexity for secret sharing schemes. By update complexity
for a secret sharing scheme, we mean the average number of
bits in the participant’s shares that needs to be revised when
certain bit of the master secret is changed. The extremely efficient
secret sharing schemes discussed in this paper could be used for
massive data storage in cloud environments achieving privacy
and reliability without employing encryption techniques.

Index Terms—Error correcting codes, edge colored graphs,
perfect one factorization of complete graphs, secret sharing
schemes, data search over encrypted cipher texts.

I. INTRODUCTION

The concept of threshold secret sharing schemes is one of
the most important cryptographic primitives that have been
used in many areas of cryptographic applications. Since the
concept of secret sharing schemes was introduced by Blakley
[5] and Shamir [30], there have been considerable efforts on
the study of the bounds of share sizes, information rate, the
number of participants for perfect and ideal threshold schemes,
and on efficient secret sharing schemes. By an ideal threshold
scheme, we mean a secret sharing scheme for which the size
of the shares is the same as the size of the secret.

In a simple secret sharing scheme, we have n participants.
A secret s is encoded into n shares and each participant will
receive one share. Any k& < n participants can come together
and reconstruct the secret s though no k — 1 participants could

learn any information of the secret. These schemes are known
as (n, k) threshold schemes.

One of the most important problems in secret sharing
schemes is to make both secret distribution phase and secret
reconstruction phase efficient. For the Reed-Solomon codes
based Shamir secret sharing scheme, it takes O(nlogn) field
operations for the secret distribution phase and O(n?) field
operations for the secret reconstruction phase. It should be
noted that in theory, Reed-Solomon codes could be decoded
in O(nlog® nloglogn) field operations (see, e.g., [25]). How-
ever, for small numbers of n, the quadratic time algorithms are
much faster than the fast theoretical algorithms.

Low Density Parity Checking (LDPC) codes were invented
by Robert Gallager [16] in his PhD thesis. After being in-
vented, they were largely forgotten and have been reinvented
multiple times for the next 30 years. In the last decade, LDPC
codes found their ways to many applications such as satellite
transmission of digital television, 10GBase-T Ethernet, and
WiFi 802.11n standards. Luby transform codes (LT codes) [22]
are erasure correcting codes and are instances of LDPC codes.
LT codes belong to the family of rateless digital fountain codes
which can in principle produce an infinite number of encoding
symbols.

By employing the underlying ideas of efficient Belief Prop-
agation (BP) decoding process in [22], [23], Wang [35] intro-
duced the BP-XOR codes. Based on the array coded in [35],
this paper introduces three classes of secret sharing schemes
called BP-XOR secret sharing schemes, pseudo-BP-XOR se-
cret sharing schemes, and LDPC secret sharing schemes. The
BP-XOR secret sharing schemes can be considered as LT code
based secret sharing schemes. Edge-colored graph models
were introduced by Wang and Desmedt in [36] to model
homogeneous faults in networks. We will show the equivalence
between the edge-colored graph model and degree-one-and-
two encoding symbol based BP-XOR secret sharing schemes.
Using this equivalence result, we are able to design perfect
and ideal 2-out-of-n BP-XOR secret sharing schemes. We
will also present several designs for general (n,k) LDPC
secret sharing schemes. In the (pseudo) BP-XOR/LDPC secret
sharing schemes that we will construct, only XOR (exclusive-
or) operations on binary strings are required and both the secret
distribution phase and secret reconstruction phase could be
done in linear number of XOR operations on bits (relative to
the secret size).



One of the other important problems in secret sharing
schemes is to design efficient homomorphic sharing schemes
which were first introduced by Benaloh [3]. Desmedt and
Frankel [13] proposed a black-box secret sharing scheme for
which the distribution matrix and the reconstruction vectors are
defined over the integer ring Z and are designed independently
of the group G from which the secret and the shares are
sampled. Cramer and Fehr [12] then continued the study
by showing that the optimal lower bound O(log, n) for the
expansion factor could be achieved in general Abelian groups.
Secret sharing schemes, for which the secret distribution and
reconstruction phases are based on XOR operations on binary
strings, could be converted to secret sharing schemes on
several black-box Abelian groups on binary strings. Thus our
results could be adapted to certain black-box based secret
sharing schemes.

In this paper, we will introduce the concept of update
complexity of secret sharing schemes. The update complexity
of a secret sharing scheme is defined as the average number
of bits of the shares affected by a change of a single master
secret bit. For an (n,k) threshold secret sharing scheme,
it is straightforward that the lower bound for the update
complexity is n — k + 1. In this paper, we will show that
our schemes will achieve this lower bound. It should be noted
that traditionally the efficiency of secret sharing schemes have
been extensively studied to reduce the bounds of share sizes
and reducing the computational cost in shares distribution
and secret reconstruction. However, we are not aware of
any research that addresses the update cost of secret sharing
schemes. Since our scheme is exclusive-or based, we have
achieved the optimal information theoretical bound of share
sizes (i.e., our scheme is an ideal secret sharing scheme) and
has the most efficient computational cost in shares distribution
and secret reconstruction process. The update complexity
for traditional secret sharing schemes may not be a serious
concern since secret sharing schemes are normally used for
sharing a short secret (e.g., 1000 bits). However, our scheme
is based on exclusive-or operations only. Thus it is possible
to use our secret sharing schemes to share large amount of
data in distributed cloud environments. Thus it is important to
consider the update complexity. For example, if a user stores
1GB data in cloud using our scheme and changes 1KB of the
data, then she does not need to down-load the entire shares
from all servers and reconstruct the shares (for traditional
secret sharing schemes she has to do that). In our scheme,
all she needs to do is to update at most 1KB of data on each
cloud server.

Due to the expensive cost of field operations of secret
sharing schemes such as Shamir schemes, secret sharing
schemes have traditionally been used for the distribution of
secret keys, which is then used to encrypt the actual data. Since
our schemes are based on linear numbers of XOR operations
and are extremely efficient, it is possible to share the massive
data directly using secret sharing schemes. In another word,
the data stored at different locations (e.g., cloud servers)
are shares of the original data and only XOR operations on
bits are needed for distributing massive data to the cloud
servers and for reconstructing the original data from shares

stored at different cloud servers. This may help to design
efficient protocols for certain applications of computation over
encrypted data.

It should be noted there have been several publications
on XOR based secret sharing schemes. For example, Suga
[32] introduced a ‘“2-propagation bases set” notion as a bases
set to show the existence of (2;2™)-threshold secret sharing
schemes. Based on Fujii, et al [14] and Kurihara, et al’s
scheme [19], Suga [33] proposed some new constructions of
(2,n) secret sharing schemes based on exclusive-or operations.
Lyv, et al [24] proposed an improved exclusive-or secret sharing
scheme based on Kurihara, et al’s scheme [19].

The structure of this paper is as follows. In Section II, we
briefly discuss the connection between MDS codes and secret
sharing schemes and show how to covert an MDS code to a
secret sharing scheme. Section III introduces the concepts of
LDPC based secret sharing schemes such as BP-XOR secret
sharing schemes, pseudo BP-XOR secret sharing schemes, and
LDPC secret sharing schemes. Section IV introduces perfect
and ideal (n,2) threshold BP-XOR secret sharing schemes.
Section V discusses perfect and ideal (n,k) LDPC secret
sharing schemes for k = 3,4. We briefly discuss dual codes
in Section VI and in Section VII we have some discussion on
applying our techniques to reliable and private massive data
storage in cloud. Section IX discusses constructions of general
low update complexity secret sharing scheme design using low
weight irreducible polynomials.

II. MDS CODES AND SECRET SHARING SCHEMES

For an [n, k, d] linear code, the Singleton bound claims that
d<n-—k+1. An [n,k,d] linear code is maximum distance
separable (MDS) if d =n—k+1 (see, e.g., [25]). A k out of
n threshold sharing scheme is a perfect sharing scheme if for
any secret sg, any k participants can reconstruct the sg and
any subset of £ — 1 or less participants gain no information
about sg. Let p1, - - - , pp, represent the shares distributed to the
n participants and let s be a variable over the secret sampling
space. We can restate these requirements as follows. For any
set of k indices {i1,i2, - ,ix}, we have

Prob(s = so|piy s Digs- - +Dip) =1 (1)

and

Prob(s = so|piy, Py +Din_,) = Prob(s = so). 2)

It is well known [6] that each [n,k,d] MDS code could
be converted to a perfect and ideal (n,k) threshold sharing
scheme. As an example, the polynomial defined in the fol-
lowing equation (3) is a generator polynomial g(z) for the
Reed-Solomon code over F' = GF(¢"™) where  is a primitive
element of GF(¢™).

= (=D =7) (2 =" ) 3)

=got+ g1z + -+ gn—kz

9(2)

For an information symbol polynomial f(z) = fo+ fiz+-- -+
fr_12""1, the encoding symbol polynomial c(z) = f(2)g(2).

For the above Reed-Solomon code, if we let the secret s =
fo and distribute the remaining coefficients of ¢(z) to the n—1



participants respectively, then we obtain a perfect and ideal
(n — 1, k) threshold secret sharing scheme over GF'(¢™). By
applying a technique from Karnin, Greene, and Hellman [18],
this scheme could be extended to an (n, k) threshold secret
sharing scheme if we give ¢, = fo + -+ + fr—1 to the nth
participant.

III. (PSEUDO) BP-XOR SECRET SHARING SCHEMES AND
LDPC SECRET SHARING SCHEMES

Low density array codes have been studied extensively for
burst error correction in communication systems and storage
systems (see, e.g., [9], [10], [37]). Array codes are linear
codes where information and parity data are placed in a two
dimensional matrix array. In this section, we introduce several
concepts of LDPC based secret sharing schemes. We first
introduce the concepts of array BP-XOR codes which will
then be used to define LDPC based secret sharing schemes.

Throughout the paper, we will use the message alphabet
set M = {0,1}. For fixed numbers n, k,t, and b where n >
max{k,t}, let vy, - - -, vp be variables taking values from M,
which are called information symbols. A t-erasure tolerating
[n, k] array code is a bx n matrix C = [a; j]1<i<b,1<j<n Such
that each encoding symbol «; ; € {0,1} is the exclusive-or
(XOR) of one or more information symbols from vy, - -+ , vpg
and vy, - - - , vy, could be recovered from any n —¢ columns of
the matrix. For an encoding symbol «; ; = v;; ©---Dv;, , we
call v;; (1 <j < o) a neighbor of «; ; and call o the degree
of a; j. A t-erasure tolerating [n, k| b x n array code C is said
to be maximum distance separable (MDS) if k = n —¢.

The [n,k| array code C over the alphabet M can be
considered as a linear code over the extension alphabet M? of
length n or a linear code over the alphabet M of length bn.
A bt x bn (respectively, bk x bn) binary matrix is said to be a
parity-check (respectively, generator) matrix of a b x n array
code C if it is a parity-check (respectively, generator) matrix
of C when C is considered as a length bn linear code over
the alphabet M. For example, the matrix H (respectively G)
is a parity-check (respectively, generator) matrix of the array
code C if we have Hy” = 0 (respectively, y = xG) where
Y = (@1, ,ap 1, Qny Qpn)s X = (V1,00 Upk),
and the addition is defined as the XOR on bits. An array
code C is called low density parity-check (LDPC) if its
parity-check (or equivalently, the generator) matrix contains
small number of nonzero entries. For an MDS array code,
it is straightforward to show that each row of the parity-
check (respectively, the generator) matrix must contain at least
n —t+ 1 (respectively, ¢ 4+ 1) nonzero entries (see [10] for a
proof).

The Belief Propagation decoding process (also called mes-
sage passing iterative decoding) for binary symmetric channels
(BSC) is present in Gallager [16]. The BP decoding process
for binary erasure channels (BEC) is described as follows:

(Cf. [22], [23]) If there is at least one encoding
symbol that has exactly one neighbor then the
neighbor can be recovered immediately. The value
of the recovered information symbol is XORed
into any remaining encoding symbols that have this

information symbol as a neighbor. The recovered
information symbol is removed as a neighbor of
these encoding symbols and the degree of each such
encoding symbol is decreased by one to reflect this
removal.

If we add the following additional step to each loop of the
above BP decoding process, we obtain a new decoding process
which we will call the pseudo-BP decoding process on the
BEC:

If all the neighbors of an encoding symbol o; is
a subset of the neighbor set of another encoding
symbol o, then the value of o; is XORed into all
such kind of encoding symbols o;.

By the above definition, the major difference between BP-
decoding and pseudo-BP-decoding is that in BP decoding
process, we are only allowed to add a single decoded symbol
to an encoded symbol while in pseudo-BP decoding process,
we are allowed to add an encoded symbol x to another
encoded symbol y if z is a proper subset of y. From decoding
complexity aspects, pseudo BP decoding process could be
slightly slower than BP decoding process. However, it can be
shown that there exist codes that could be pseudo-BP decoded
but could not be BP decoded. This allows us to design more
powerful codes using pseudo BP decoding process. However,
we should also note that pseudo BP decoding process is not
as powerful as the slower Gauss elimination process.

A t-erasure tolerating [n,k] array code C =
[ j]1<i<bi<j<n is called an [n,k] array BP-XOR code
(respectively, array pseudo BP-XOR code) if all information
symbols vy, - - - , vp can be recovered from any n —¢ columns
of encoding symbols using the BP-decoding process on the
BEC (respectively, the pseudo BP-decoding process on the
BEC).

A t-erasure tolerating b x n array code C is said to be
maximum distance separable (MDS) if we have £ = n —t.
The array code C over the alphabet M = {0,1}! can be
considered as a linear code over the extension alphabet M?® of
length n or a linear code over the alphabet M of length bn.
A bt x bn (respectively, bk x bn) binary matrix is said to be a
parity-check (respectively, generator) matrix of a b X n array
code C if it is a parity-check (respectively, generator) matrix
of C when C is considered as a length bn linear code over
the alphabet M. For example, the matrix H (respectively G)
is a parity-check (respectively, generator) matrix of the array
code C if we have Hy? = 0 (respectively, y = xG) where
Y = (011, 1 Op1s Ol Obm)s X = (01, , )
and the addition of two strings in M is defined as the XOR
on bits.

An array code C is called low density parity-check (LDPC)
if its parity-check (or equivalently, the generator) matrix
contains small number of nonzero entries. For an MDS array
code, it is straightforward to show that each row of the parity-
check (respectively, the generator) matrix must contain at least
n —r + 1 (respectively,  + 1) nonzero entries (see [10] for a
proof).

Now we are ready for our definition of LDPC secret sharing
schemes.



Definition 3.1: An (n, k) threshold BP-XOR (respectively,
pseudo BP-XOR or LDPC) secret sharing scheme & is an
array BP-XOR (respectively, pseudo BP-XOR or LDPC) code

10,137

o the secret so = o011]||---||op1 where || denotes string
concatenation.

o for 1 < 4 < n, the ith participant receives the share
DPi = 01,i+1|| ce |Ub,i+1

« the secret distribution process in the above two steps gen-
erates a perfect (n, k) threshold secret sharing scheme.

IV. PERFECT AND IDEAL (n,2) THRESHOLD BP-XOR
SECRET SHARING SCHEMES

In this section, we first show the equivalence of degree 2
array BP-XOR codes and edge-colored graphs. We then use
these results to design array BP-XOR codes and finally we
convert these array BP-XOR codes to efficient perfect and
ideal (n,2) threshold BP-XOR secret sharing schemes.

A. Edge-colored graphs

Wang and Desmedt [36] introduced the edge-colored graph
model for modeling homogeneous faults in networks.

Definition 4.1: (Wang and Desmedt [36]) An edge-colored
graph is a tuple G(V, E,C, f), with V the node set, F the
edge set, C' the color set, and f a map from F onto C. The
structure

Ze, ={Z:Z CEand |f(Z) < t). @)

is called a t-color adversary structure. Let A, B € V be
distinct nodes of G. A, B are called (¢ + 1)-color connected
for t > 1 if for any color set C; C C of size t, there is a path
p from A to B in G such that the edges on p do not contain
any color in Cy. An edge-colored graph G is (¢t + 1)-color
connected if and only if for any two nodes A and B in G,
they are (¢ + 1)-color connected.

Fig. 1. 3-color connected edge-colored graph G4 2
U3
U1
Us
Us
Uy v2 vy
TABLE I
TABLE REPRESENTATION OF EDGE-COLORED GRAPH G4 2
<’U1, 'U6> </U27 U7> <U37 U1> <’U47 /02>
(va,vs) | (v3,ve) | (va,v7) | (v5,01)
(v3,v4) | (va,v5) | (v5,06) | (v6,07)

As an example, Figure 1 shows a 3-color connected graph
G4,2 with 7 nodes, 12 edges, and 4 colors. The edge-colored

graphs G4 o can also be represented by the Table I where the

edges with the same color are put in the same column.
Though Wang and Desmedt [36] presented a few simple
constructions of edge-colored graphs with certain color con-
nectivity, their results are not sufficient for our study of general
array BP-XOR code design. In the following, we present a
general construction of (¢ + 1)-color connected edge-colored
graphs using perfect one-factorizations of complete graphs.
We use K, = (V,E) to denote the complete graph with
n nodes. For an even n, a one-factor of K, is a spanning
l-regular subgraph (or a perfect matching) of K,. A one-
factorization of K, (n is even) is a set of one-factors that
partition the set of edges E. A one-factorization is called
perfect (or P1F) if the union of every two distinct one-factors is
a Hamiltonian circuit. It is known (see, e.g., [26]) that perfect
one-factorizations for K1, Ky, and certain K5, do exist,
where p is a prime number. It is conjectured that P1F exist for
all Ko,. In the following Example 4.2, we show the typical
constructions of perfect one factorization for K, and Ks),.
Example 4.2: o PIF for K, ,: For an integer a, let
(a), denote the integer b € {0,---,p — 1} such that

b=a mod p. Let V = {vg,v1, -+ ,v,} and
Fy = {(vi, vp) YU
VG 4y, Viariy,) 1+ 2)p =0 (5)
and0§j17$j2 <p}

fori =0,---,p—1. Then Fy, Iy, - --
one factorization of K.
o PIF for Ky,: Let V = {vg,---

F; = {{vj,,vj,) : j1 + jo =i mod 2p} U {(v%,v%+p>}7
(6)

, Fp—1 is a perfect

, U2p—1}. For even 1, let

and for odd ¢ # p, let
F; = {{vj,,vj,) : j1 is odd, j1 — jo =i mod 2p}. (7)

Then Fy, Fy, -+, Fp_1, Fpy1, -+, Fop_g is a perfect one
factorization of K5,. Another P1F for K5, by Anderson
[11: V = {wo, w1, ,wp_1,ws, wi,--- ,w,_;}. For
0<s<p-—1,let

0G, = {(wi,wy):i+j=si#;jmod p}U
{(w},wi):i+j=p—2—s,i# jmod p}U
{(w5/27w?p7278)/2)}

where 1/2 means 21 mod p.For0<s<p-—2,
G, = {(wi,w}) i+ j=smodp}  (®

Then OGO7 OGl, s ,Oprl,IG(),IGl, tee 7IGp,2 is

a perfect factorization of Kj,,.
Theorem 4.3: Let n be an odd number such that there is
a perfect one-factorization F,--- , F, for K, ;. For each
t < n—2, there exists a (¢ + 1)-color connected edge-colored
graph G with n nodes, (t+2)(n—1)/2 edges, and t+2 colors.
Proof. Let vy, ...,v,41 be alist of nodes for K,y and V =
{v1, -+ ,un}. Let F] = F; \ {{vp41,v5) : j = 1,--- ,n},
E =F[{U---UF/,,, and color all edges in I with the color
c; for © <t + 2. Then it is straightforward to check that the
edge-colored graph (V, E) is (t+1)-color connected, |V| = n,
and |E| = (t+2)(n —1)/2. 0




Remarks on Theorem 4.3: Since only node connectivity
instead of Hamiltonian circuit is required for (¢ + 1)-color
connected graphs, we could use F instead of F; to construct
edge-colored graphs. By using F) instead of F;, we eliminate
t + 2 edges and one node in the resulting edge-colored graph.
This helps us to keep the minimum cost for connectivity.

B. MDS array BP-XOR codes from edge-colored graphs

As an example, we first describe the array BP-XOR code
corresponding to graph G4 2 in Table I. Each edge in Table I
is mapped to the XOR of the two adjacent nodes. Then choose
a fixed node (e.g., v7) and remove all occurrences of this node
(e.g., v7) to get the [4,2] 3 x 4 array BP-XOR code in Table
II.

TABLE II
BP-XOR CODE CORRESPONDING TO G472
V1 D vg Vo V3 DU | vg D vy
Vg D Vs v3 D vg V4 Vs D V1
v3Dvs | V4D Us | U5 D g Ve

In the following, we give a general construction of
array BP-XOR codes from edge-colored graphs. Let
V1,V2, -, Upk, Upk+1 D€ variables that take values from M =
{0,1}. Let G = (V,E,C, f) be a (t + 1)-color connected
edge-colored graph with V = {vy,- -+ , vpk, Vbr11 1} |E| = m,
and C = {c1,c2, -+ ,cn}. If we consider the nodes in
G = (V, E,C, f) as data block variables, edges as their parity
check blocks of the adjacent nodes, and colors on the edges as
labels for placing the parity checks into different columns of
the array codes, then the following steps construct a bx n array
BP-XOR codes, where b = max.cc{|Z|: Z C E, f(Z) = c}.

1) For 1 <i <mn, let §; be defined as

Bi = {vj, ®vj, : (vjy,v5,) € E,
f(<’l)j1,’l}j2>) = C4, and jl,jQ 7é bk + ].}U (9)
{vj : (vj,ven41) € E, f({v), Vpr41)) = ¢i}

2) If | B;| is smaller than b, duplicate elements in §; to make

it a b-element set.

3) The array BP-XOR code is specified by the b x n matrix

Co=(Bf, . B)

Next we show that the above array BP-XOR code Cg
can tolerate t-erasure columns. Assume that the missing
t columns of the code Cg correspond to the ¢-color set
C; C C of the graph G. Since the graph G is (t + 1)-
color connected, for any node v;, € V, we have a path
P = (Ubkt1, Vi), Vig, "+, Vi, Viy) Without using any colors in
Cy. Thus v;, could be recovered by the following equation

Vig = Vi, ® (Vi D Vi) B -+ B (vi; D vyy) (10)

where v;,,v;; @ vy, <0+, Vi, D vy, are all available in the
non-missing columns. In other words, the Belief Propagation
decoding process could be used to recover the entire data
blocks vy, - - , vy from the non-missing columns.

Theorem 4.4: Let n be an odd number such that there is
a perfect one-factorization Fy,--- , F, for K,;;. Then for

b= 251, there exists an (n — 2)-erasure tolerating MDS b x n
array BP-XOR code Cy y, 2.
Proof. By Theorem 4.3, there exists a (¢ + 1)-color connected
edge-colored graph G with n nodes, (¢ + 2)(n — 1)/2 edges,
and ¢ + 2 colors. By the above discussion, this (¢ + 1)-color
connected edge-colored graph G could be converted to an (n—
2)-erasure tolerating MDS b x n array BP-XOR code Cy , 2.
a

Corollary 4.5: For a given b, let n < 2b+ 1. If 2b+ 1 or
b+ 1 is a prime number, then there exists an (n — 2)-erasure
tolerating MDS b x n array BP-XOR code Cy j, 2.

C. Edge-colored graphs from array BP-XOR codes

In this section, we show that each array BP-XOR code could
be converted to a corresponding edge-colored graph.

Theorem 4.6: Let C be an b x n array BP-XOR code with
the following properties:

1) C is t-erasure tolerating;
2) C contains bk information symbols; and
3) C contains only degree one and two encoding symbols.

Then there exists a (t+1)-color connected edge-colored graph
G=(V,E,C, f) with [V| =bk + 1, |E| = bn, and |C| = n.

Proof. Let vy, --- ,vp, be the information symbols of C =
[ijleij)em b x[1,n) @and v, -+, v;, be a list of degree one
encoding symbols in C. Then the (¢4 1)-color connected edge-
colored graph G = (V, E,C, f) is defined by the following
steps:

D V=A{vi, -, Vpks Vbkt1};

2) E = Ujen,u{(vors1,vi;)} U {{vi,v5) 1 v; @ v; € Cly

3) C= {Clv"' yCnys

4) Let oy ; € C. If ay j = vy @ vy then let f((vir,vy7)) =

Cj. Otherwise if Qi = Uy, let f(<vbk+17 Ui’>) = ¢j.

Let C; be a color set of size ¢ and v; and v; be two nodes.
Since the code C is t-erasure tolerating, both v; and v;
could be recovered from encoding symbols not contained
in the columns corresponding to the colors in C}. Thus
there exists a path p (respectively, ¢) connecting vpi+1 to v;
(respectively, to v;) without using C';-colored edges. It follows
that G = (V, E,C, f) is (t + 1)-color connected. O

D. Perfect and ideal 2-out-of-n BP-XOR secret sharing
schemes with minimum update complexity

By Corollary 4.5, there are MDS b x n array BP-XOR codes
Con2 = [05;] if 206+ 1 or b+ 1 is a prime number and
n < 2b + 1. Following the discussion in Section II, we can
convert Cp , o to a perfect and ideal (n — 1,2) threshold BP-
XOR secret sharing schemes as follows.

From our discussion in the previous section, the first column
of Cp 2 corresponds to a one-factor of an edge-colored graph.
Without loss of generality, we may assume that the first
column of Cy ,, o consists of v;, Dy, Vi By, -+, Vi, DUy
For a given secret s = (sy,--- ,5s,) where s; € {0,1}!, the
dealer chooses random values for vy, -+, vy € {0, 1} and
sets v, = vy B S1, Vi, = Uiy, D Sz, <+, Vi, = Vit D Sp. The
dealer computes the code Cp 5, 2 using the P1F of the complete



graph Koy 9 and securely distributes the (¢ + 1)th column of
Cp,n,2 to the participant p;.

By the MDS property of Cp 5 2, any two participants could
use their shares to reconstruct the secret. Again by the MDS
property of Cp ,, 2 and the discussion in Section II, the above
constructed secret sharing scheme is a perfect and ideal 2-out-
of-(n — 1) threshold secret sharing scheme.

It should be noted that the above constructed secret sharing
schemes have the minimum update complexity. By the prop-
erty that each column of Cyp, 2 corresponds to a subset of a
one-factor of the edge-colored graph together with zero or one
node in the graph, each node of the edge-colored graph have
at most one occurrence in each column of Cy ,, 2. In our above
secret sharing scheme, the secret corresponds to one half of the
nodes in the edge-colored graph. Thus if one bit of the master
secret changes, we need to update at most one bit for the shares
of each participant (some participant’s shares do not need to
be updated if her shares do not contain the corresponding
node). Obviously, this is best one could achieve. In another
word, our secret sharing schemes achieve the minimum update
complexity.

E. An example of (n,2) BP-XOR secret sharing schemes

Let n be the given number of participants for a desired
perfect (n,2) BP-XOR secret sharing scheme. The dealer finds
the smallest p (or 2p) such that n < p (or n < 2p—1), where p
is an odd prime. By Example 4.2 for K, we get the perfect

one-factorization of K,1; with node set V. = {vg,---,v,}
and the ith factor F; as
{<Uia Up); (V(142),0 Vip—14i), )5+ 5 (Ve 4y U(pTﬂ+i>p>}
(11

for 0 < i < p — 1. First we remove the edge (v;,v,) from
F; and the remaining edges in F; are mapped to the XOR
of the adjacent node variables. Then remove all occurrences
of vy and we get the MDS [n,2] b X p array BP-XOR code
in Table III where b = (p — 1)/2. Assume that the secret

TABLE III
(p—1)/2 x p BP-XOR CODE

v1 B Up—1 Vp—1 D Vp—3 Up—2
V2 B Up_2 Vp—4 v1 D vp_3
Vp D Vp41 Vp—2 DUp—1 | Up—1 D Vp

s = S1---Sp where s; € {0,1}l (we can always pad the
secret to a multiple of b-bits if it is not). The dealer chooses
random values for vp11,- - ,vp—1 from {0, 1} and sets v; =
51 @ Up—1, "+, U = Sp D Up41. For i = 1,---  n, the ith
participant receives the values in the (¢4 1)th column of Table
III. It is straightforward to verify that the above scheme is a
perfect and ideal (n,2) secret sharing scheme.

V. PERFECT AND IDEAL (n, k) LDPC SECRET SHARING
SCHEMES WITH MINIMUM UPDATE COMPLEXITY FOR
k=34

The results in the previous section show that for the design
of perfect and ideal (n,3) and (n,4) LDPC secret sharing

schemes, we need to use high degree encoding symbols. In
this section, we show how to convert two array codes in the
literature to lowest density perfect and ideal (n,3) and (n,4)
LDPC secret sharing schemes.

For a prime number p, a class of low density (p — 1)/k x
(p—1) array codes were introduced in Blaum and Roth [10] as
a generalization of the code in Zaitsev, Zinov’ev, and Semakov
[15], yet the resulting codes are not necessarily MDS. Louidor
and Roth [21] showed that when 2 is primitive in [}, then the
resulting array codes are the lowest density MDS array codes
for k = 3,4. It was conjectured that there are infinitely many
primes p such that 2 is primitive in F},. Though these codes are
LDPC array codes, they are not array BP-XOR codes. Thus the
secret sharing schemes that we will obtain from these codes
are perfect and ideal LDPC secret sharing schemes. But these
codes could be converted to perfect but non-ideal (pseudo)
BP-XOR secret sharing schemes (the details will be presented
in the full version of this paper).

For the construction of array codes in [21], let p be a prime
such that 2 is primitive in F},. In the finite field F},, pick an
element o« of multiplicative order £ = 3,4 and an element 3
of multiplicative order p — 1. Let C_; = {0} and

Co = {ao,al, e ,ak_l} (12)

be the cyclic subgroup generated by a. For 1 < i < pk;l, let
C; = B'Cy be the coset of Cy. Then C_1,Cq, - - - ,C’%_l is
a partition of {0,1,---,p — 1}. For (i,) € [-1, 21 —1] x
[0,p — 2], let

D;;=(Ci+3i)p 13)

where (C; + j), denotes the set that is obtained by adding j
to the element of C; modulo p.

It should be noted that exactly one of the sets D’ 1,50 Dy ;,

. Dp%l_lj contains p — 1. For each j € [0,p — 2], let
Do, D g, ++ s Dp-1_y ; be alist of the sets Df ; such that
p—1¢Dj,.

Define the (p — 1)/k % (p — 1) array code C;, = [o; ;] by
letting o; ; be the XOR of all elements in D; ;. The authors in
[21] showed that the array code Cy (k = 3,4) is an MDS code
tolerating p — 1 — k erasure columns or | & _g_lj columns of
errors.

Using the techniques that we have used in Section
IV, the above discussed LDPC MDS array codes Cp =
[04,5)ic1,(p—1)/k),je1,p—1) could be converted to perfect and
ideal 3-out-of-(p—2) and 4-out-of-(p—2) LDPC secret sharing
schemes by assigning the value of the secret s to the variables
01,1, ,0(p—1)/k,1 in the first column in the same way as
we have done in Section IV. Based on the design of the array
codes Cy, it is straightforward to verify that if we change any
single bit in the master secret, then we only need to change
at most one bit in the shares of each participant. Indeed, since
the code Cy, has the lowest density among all MDS codes of
the same size [21], the corresponding secret sharing schemes
have the least update complexity.



VI. DUAL CODES AND PERFECT AND IDEAL (n, k) LDPC
SECRET SHARING SCHEMES FORk=n—1,n—2,n— 3

In the previous sections, we have described efficient perfect
and ideal (n,2) BP-XOR secret sharing schemes and perfect
and ideal (n, k) LDPC secret sharing schemes for k = 3,4. It
should be noted that the dual of these secret sharing schemes
are also secret sharing schemes.

For the MDS b x n array BP-XOR codes Cp 2 with 2b+ 1
or b+ 1 being prime and n < 2b 4 1 in Section IV-D, the
dual code Cfnz tolerates two erasure columns. If we use one
column to define the secret, then it will tolerate one erasure
column. Thus the array BP-XOR codes CbDn,Q will allow us
to design (n — 2)-out-of-(n — 1) perfect and ideal BP-XOR
secret sharing schemes.

For the MDS LDPC (p — 1)/k x (p — 1) array codes with
k = 3,4 in Section V, the dual codes are MDS LDPC (p —
1)/k x (p — 1) array codes that could tolerating k erasure
columns. If we use one column to define the secret, then it
will tolerate £ — 1 erasure columns. Thus the dual codes could
be used to design perfect and ideal (p — k — 1)-out-of-(p — 2)
lowest density LDPC secret sharing schemes for £ = 3,4. In
another word, we can design perfect and ideal (n—2)-out-of-n
(respectively, (n — 3)-out-of-n) LDPC secret sharing schemes
if n 4 2 is prime and 2 is primitive in F ;2.

VII. PRIVATE AND RELIABLE CLOUD STORAGE

Due to the advancement of cloud computing technologies,
there has been an increased interest for individuals and busi-
ness entities to move their data from traditional private data
center to cloud servers. Indeed, even popular storage service
providers such as Dropbox use third party cloud storage
providers such as Amazon’s Simple Storage Service (S3) for
data storage. With the wide adoption of cloud computing and
storage technologies, it is important to consider data privacy
and reliability issues for cloud storage services.

In order to achieve reliability, data should be stored in
multiple cloud storage servers with redundancy. If no privacy
is required, then we can use the MDS BP-XOR codes (respec-
tively, LDPC codes) constructed in Section IV-B (respectively,
Section V) to store data within n cloud servers and the original
data could be recovered from any 2 (respectively, 3 or 4) of
the surviving servers. This will be sufficient for most cloud
based applications.

If the user is also concerned with data privacy and does
not trust a single cloud server, the user may use the perfect
and ideal (n,2) threshold BP-XOR secret sharing schemes in
Section IV or the perfect and ideal (n,k) threshold LDPC
secret sharing schemes with £ = 3,4 in Section V to store the
data in n servers. By using these secret sharing schemes, no
single cloud server (respectively, 2 or 3 cloud servers jointly)
could learn any information of the data. These schemes are
very efficient since only linear number (in size of the data)
of XOR operations are needed for data storage and recovery.
This kind of efficiency is impossible with existing schemes
such as Shamir secret sharing schemes.

Privacy preserving data update is simple in BP-XOR or
LDPC secret sharing scheme based cloud storage. As an

example, if the 2-out-of-n secret sharing scheme based on
Table III is used, then the first column of C; ,, » corresponds
to the data file. In other words,

F =1 ®@vp-1][va ® vp—2l| - |[ve ® vbt1 (14)

where v; € {0,1}!. Now assume that the first bit of F is
flipped. This is equivalent to flipping the first bit of v,_. Thus
the data owner only needs to inform each server to flip one
bit at certain location without leaking any other information.

In Section IV-D, we converted BP-XOR codes Cp 2 to
perfect and ideal 2-out-of-(n — 1) secret sharing schemes by
letting the first column of Cy ,, 2 to represent the secret data.
Indeed, we may also use a keyed pseudo random function
‘H to generate the random bits in the secret distribution phase
and obtain secret sharing schemes with some additional useful
properties.

In the following, we use a prefix (wildcard) search example
to show how the user could carry search in cloud environments
without down-load the entire data to the local drive. A given
data file F' is divided into words (the searchable unit) of length
I. In other words, F' = sys5--- where s; € M = {0,1}!.
Without loss of generality, we may assume that F' = s --- 5
(larger files could be divided into blocks of size b and
processed separately).

In order to design a scheme that allows privacy preserving
prefix search on the shares, we use a keyed pseudo random
function H to generate the random bits during the secret
distribution phase. In Table III, the first column of Cp p 2
corresponds to a one-factor of a complete graph: vy @ v,_1,
Vo DVp—2, -, Up D Vpy1. For the data file F' = s; - - - 5, with
identifier id, the data owner sets

v, = H(key,id, 1), --- , v, = H(key,id,b) € {0,1}} (15)
where key is a secret that the data owner holds, and sets

Up—1 = U1 B 81,Vp_2 = V2 D Sz, -, Vpy1 = Up D 5p. (16)

The data owner computes the code Cp, o and stores the
(i + 1)th column of Cy 2 in the ith cloud server. Note that
in this implementation, the entire data file F' could either be
recovered from any two cloud servers or from the secret key
value and the entire data from one cloud server together with
at most one additional block of data from a second cloud
server, though any single server learns zero information about
F' (due to the perfect secret sharing property). This kind of
scheme may have various applications for cloud data storage.
For example, it may allow the application to build certain kind
of secure computation over the encrypted data (that is, the
shares at the storage servers).

Assume that the data owner wants to search whether the
data file F' contains a word with prefix s with |s| < [. For
different cloud servers, the data owner needs to create different
search queries. Assume that the query is submitted to the first
server that stores: va, U3 @ Vp—1, - -, Upt1 D Vp42. In order to
check whether s; has prefix s, it is sufficient to check whether
v1Dvyp—1 has prefix s. This is equivalent to show that the share
v3 @ vp—1 in the server has prefix vz vy @ s (here we reduce
both v3 and v; to the size |s| by only using the first |s| bits).



Since the values of v; and ws could be generated from the
secret key, the data owner will be able to generate this query.
It should be noted that neither the value of s nor the value of
the original data file is leaked during this query.

It is straightforward to convert a privacy preserving prefix
search scheme to an efficient privacy preserving keyword
search scheme. This follows from the following observation:
For a file F', one can put the keywords of F' as the prefix of F'
and obtain F/ = s;---s, where F = s5---5s, and s; begins
with the keywords of F'. Thus it is sufficient to search whether
s1 contains the keyword.

Similarly, the keyed pseudo random function techniques
could be applied to the 3-out-of-n (respectively, 4-out-of-
n) secret sharing schemes in Section V so that the original
data file could be recovered from either 3 surviving servers
(respectively, 4 surviving servers) or from the secret key and
2 surviving servers (respectively, 3 surviving servers). Note
that for these schemes, we do not need the additional data
block from the 3rd server (respectively, the 4th server).

VIII. AN EXAMPLE OF PERFECT AND IDEAL 3-OUT-11
LDPC SECRET SHARING SCHEMES

In this section, we show an example of a perfect and ideal
3-out-11 LDPC secret sharing scheme. Since 2 is primitive in
F3, we can choose p = 13, a = 3, and S = 2. Then we have

C_y = {0} Co = {1a359} G = {276’5}
02 = {4, 127 10} C3 = {Sa 75 11}

Following the process described in Section V, we have the
4 % 12 array code in Table IV. Note that for consistence with
our other notations, we replaced 0 with 12 in Table IV.

For a 3-out-of-11 secret sharing scheme, let the master
secret s = s1||s2||s3||s4 where s; € {0,1}!. Choose random
values for vy,vs,vg, U7, Vs, Vg, V10, v11 from {0,1} and let
V1 = S1, Vg = So P vy P vig, v3 = S3 P vg P vy, and
V12 = S4B vs Bvy1. Then we get the perfect and ideal LDPC
3-out-of-11 secret sharing scheme in Table V.

a7

IX. LOW DENSITY ARRAY CODES BASED ON LOW WEIGHT
IRREDUCIBLE POLYNOMIALS AND SECRET SHARING
SCHEMES WITH SMALL UPDATE COMPLEXITY

In previous sections, we used array BP-XOR codes to design
secret sharing schemes that could be used in privacy preserving
cloud data storage with optimal update complexity. For general
k, we do not know whether such kind of (n,%k) XOR secret
sharing schemes exist. Alternatively, we may design non XOR
based secret sharing schemes with small update complexity.
One such potential approach is to use low weight irreducible
polynomials.

For a binary polynomial f(x), the weight of f(x) is defined
as the number of non-zero coefficients in f(x). Low-weight
irreducible polynomials over F5 have been extensively studied
for the efficient implementation of arithmetic operations in
finite field Fym (see, e.g., [2], [17], [20], [28], [31], [34]), as
the number of operations in the reduction of the product of
two polynomials of degree m — 1 modulo an irreducible of
degree m and weight w is proportional to (w — 1)m.

Though the general question of whether an irreducible
polynomial over F5 of weight at most 5 (or any other fixed
odd weight w) exists for every value of n is an open one, the
table of low-weight binary irreducible polynomials over F in
Seroussi [29] shows that for all b < 10000, there exists at
least one irreducible trinomial 2:* + 27 + 1 or one irreducible
pentanomial z° + 27t + 292 4 273 -1 over Fy. If we represent
a trinomial with (b, 7) and a pentanomial with (b, ji, j2,j3),
the following is a list of irreducible polynomials for b < 19.

2D [ G0 @) [ 62 ] 6.1
(7,1) | (8,4,3,1) 9, 1) (10,3) (11,2)
(12,3) | (13,4,3,1) | _(14,5) | (15,1) | (16,5,3,1)
(17,3) | (18,3) | (19,5,2,1)

For a polynomial f(z) = 2® + fy_12°~' +--- + fo over
F5, let Cy be the companion matrix of f(z) over Fb.

0 0 0 fo
10 - 0 £
C; = 01 -+ 0 fo
o o0
0 0 1 fo—

By Calay-Hamilton theorem, we have f(Cy) = 0 and the
order of Cy is 2° — 1.

For given n, k, t = n—k, and b with k£ < 2b 1, choose an
irreducible polynomial f(z) of degree b and define the block
parity check matrix H,, 1+ as

I I e I I 00 -0
o c; - CF 010 0
C? ¢y - G001 0

- 2(t—1 E(t—1
ot oy oM 0 00 - 1
where [ is the b x b identity matrix. The above parity check
matrix defines an extended Reed-Solomon code based [n, k]
MDS b x n array code. It should be noted that these array
codes are generally not array BP-XOR codes. Thus Gaussian
elimination techniques are used to recover the information
symbols.

As an example, for n = 6,k = 3, and b = 3, one
can use f(z) = #3 + 2 + 1 as the irreducible polynomial.
The corresponding parity check matrix Hg 333 is shown in
equation (18)

100 100 100 100 000 000 ]
010 010 010 010 000 000
001 001 001 001 000 000
001 010 101 000 100 000
Hgsss= | 101 011 111 000 010 000 (18)
010 101 011 000 001 000
010 011 110 000 000 100
011 110 001 000 000 010
| 101 111 100 000 000 001 |

on the next page and the 3 x 6 array code is shown in Table



TABLE IV
4 x 12 ARRAY CODE (NOT ARRAY BP-XOR CODE)

U1

U2

U3

Vg

Us

Us

Vg D V4 D V10

v3 D vs D v11

V5 D vg D vg

U5 © v7 O V12

Ve D vg D 11

v7 D vg D v2

v3 D vg D v7

V4 B vy D vg

V7 B v2 D V12

Vg & Vg D V10

v7 B V10 D V11

v10 D vs5 D v3

v12 B U5 D v11

Vg D V10 ® V12

v10 D V11 D V1

vg D vz D1

Vg @ Vg4 D vg

v1 D v12 O vy

v

Ug

Vg

V10

V11

V12

v3 B vg D V10

V4 B vg D V11

V1 D v2 D v11

V11 D v12 B vg

V12 D vz D vy

V1 B v3 D vy

v D vg D v11

V10 D V1 O V12

v3 DB vg D vy

V4 D vy D vy

V5 D vg D vg

V9 D vg D U5

V1 B v2 D Uy

Vg B U3 D Vg

V12 D vg D vg

v1 B U7 D Vg

Vg B vg D V10

vg b v7 D V11

TABLE V

3-0UT-OF-11 LDPC SECRET SHARING SCHEME

secret part 1: s;

So D vg D V10

S3 @ vg D vy

secret part 2: So

S3 D ve D vr Dvs Doy

V5 D vg D Vg

secret part 3: s3

V4 D vy D vg

V7 D S2 B vy D V19 D sS4 D vs B v11

secret part 4: sy

Vg D V10 D S4 D vs D V11

V10 D v11 D 51

Vg

Us

V6

v7 D s4 D v11

Ug@’l}g@sl

v7 D vg D S2 D vy D V10

Vg B Vg D V10

V7 B v10 B V11

V10 D V5 D s3 D vg D vy

vg D S35 P vg D vy D sy

S2 @ v10 D vg

S1 D 54D V5 D11 D vy

v

U8

Vg

S3 D ve D v7 D vy D V1o

Vg D vg O v11

$1 D s2 D vy D V1o D V11

Vg D vg D V11

V10 D 81 D S4B v5 D v11

S3 @D vg D Vg

$1 D S2 D v4 D V10 B U5

So D vy B v10 D s3 D vy

S4 D v5 B v11 D Ug D vg

V10

V11

S4 D vs B v11

S4 D v5 D vg

S4 D Vs D11 D S3 D ve D vr D vy

51D 83D vg D vy D vg

1)4@’05@1)8

Us@vﬁ@vg

So D v4 D v10 D Ve D Uy

81D v7 D vg

So D vg D vg

vg © v7 O V11

TABLE VI
3 X 6 ARRAY [6, 3,4] CODE

V1 | V4 | V7 | V1 D g DUy V3 D vs D v7 D vg Vg D V5 D vg D vy D vs
Vo | Vs | Vg | Vo B s Bvg | v1 Bvg D us D vg D vy P vg B vg Vg D vz D vy @ vs D vg
U3 | Vs | Vg | V3 D g D vy V2 D vy O vg O vg D Vg v1 D v3 D vy B vs D v O vy

VL

Another potential approach to define Reed-Solomon codes
using irreducible polynomials over F5 is to use Cauchy ma-
trices. Rabin [27] used Cauchy matrices to design information
dispersal and retrieval protocols and Blomer et al [11] used
Cauchy matrices to define XOR-based erasure-resilient coding
schemes.

Let ¢,k < 2° — 1. For an irreducible polynomial f(x) over
F, with Cy being the companion matrix. A ¢ x k Cauchy
block matrix C' = [¢; j]icq,4,je1,k) based on Cy is defined

by letting ¢; j = (C} + C}H)_l. That is, C' equals to

(Cr+Cith=t (Cp+ )

(Cp+ O~
(CF+CH™t (CF+ )

(CF+ 0~

(Cr+ o™t (Ch+ o)t (Ch+CFhy~

By the fact that Cauchy determinant is non zero, every block
square sub-matrix of a Cauchy block matrix is nonsingular
(see, e.g., [27], [11]). Thus the parity check matrix HS, , , =
[C|I] defines an [n, k] MDS b x n array code. /

The authors in [11] used a different approach to design
Cauchy matrix based Reed-Solomon codes over F5. Specif-



ically, they first design Reed-Solomon codes using Cauchy
matrices over Fy. Then they mapped each entry (an element
of Fy) in the parity check matrix to a b X b matrix over
F5. The map is defined as follows. Assume that f(x) is an
irreducible polynomial of degree b over F5. For each element
a= (a1, -,a1) € Fo, a b x b matrix 7(a) = [a; ]
is defined in [11] by letting a; 1 + a; 22 + -+ + a;pa’~ ! =
7 Hag +arpr+ -+ arpr®~1) mod f(x).

The above approach from [11] is equivalent to our compan-
ion matrix based approach by the following observation: For
a=(0,1,0,---,0), 7(a)? is the companion matrix of f(z).

Forn = 6,k = 3,t =3,b =3 and f(z) = 2> + 2z + 1,
Hg 3,33 is defined in equation (18) and Hgg_&g is defined in
equation (19). '

111 001 010 100 000 000

011 101 011 010 000 000

101 010 101 001 000 000

110 011 100 000 100 000
HSy55=| 001 110 010 000 010 000 | (19)

100 111 001 000 001 000

001 111 101 000 000 100

101 100 111 000 000 010

| 010 110 011 000 000 001 |

The numbers of non zero elements in the columns of
Hg 333 and Hg373,3 are listed in the following table. The
table shows that Cauchy matrix based array codes have ap-
proximately 15% more non zero elements in the parity check
matrix.

column |1 (2|34 [5|6|7|8|9] total

Hes33 |3 |45 [4]6[5[5[4[5] 41
H§s35|5[4]6]6[6]5[4]5][6] 47

In addition to the above comparison, we have run a sequence
of experiments for different values of (n, k,¢,b) and different
low weight irreducible polynomials. The experimental results
show that for any given low weight irreducible polynomial, the
Cauchy matrix based parity check matrix H. S k¢, consistently
has 15% to 50% more non zero elements than H,, 1, (the
50% value comes from larger values of b). Thus for private
preserving cloud storage systems, low weight irreducible poly-
nomial based Vandermonde matrix may be a better choice for
defining secret sharing schemes with low update complexity.

In order to further reduce the density of parity check
matrices, it is useful to select a set of low weight irreducible
polynomials with certain constraints, and the parity check
matrix is constructed using the set of low weight irreducible
polynomials instead of a single low weight irreducible poly-
nomial.

Assume fy,---, fr is a list of low weight irreducible
polynomials over F, of the same degree such that C’j is
relatively low densny for i < kand j < n — k. Let
C; = Py, Pl , where P; is a permutation matrix. If
Ci, + C, is non-singular for all 4; # 42, then they could be
used to construct the Vandermonde-like parity check matrices.
Since C = P,C} P, !, we can reduce the density of the final

parity check matrix further.

Another approach that one may use is to investigate the
use of low weight irreducible polynomials over Fom. In other
words, one may use the companion matrices of low weight ir-
reducible polynomials over Fom (where m divides b) to design
array codes over Fhm. These codes will then be converted to
array codes over F5 by replacing each element in the parity
check matrix with the companion matrix corresponding to
that element. The resulting array codes could then be used
to design secret sharing schemes with low update complexity.

It is possible to construct Reed-Solomon and BCH codes
over rings using non-irreducible polynomials (see, e.g., [4],
[7], [8], [9]). Since the companion matrices C¢ of certain non-
irreducible polynomials have better properties for array code
design, one may use these array codes to design secret sharing
schemes with low update complexity.

For a given b, let f;(z) = 2®+2'+1and Cy,, ---, Cy,_, be
the companion matrices of these polynomials. As an example,
for b =4, fo(x) = 2* + 22 + 1 and let C, be the companion
matrix of f.

[0 0 0 1]
1 00 1
Cn = 0100
(00 1 0
00 0 1
1 00 0
Cr. = 01 0 1 (20)
(00 1 0
00 0 1
1 0 0 0
Cp, = 0100
00 11

It is straightforward to check that C;° = C%, = C}> = I4.
Thus the order of C,,CY,, and Cy, are 15, 6, and 15 respec-
tively (note that both f; and f3 are irreducible polynomials).
It is straightforward to check that C’62 = I4. Thus the order
of Cy, is 6. '

By choosing appropriate permutation matrices (J;, we may
construct a list of low density matrices C; = Q;C,Q; Loaf
the list of matrices C; has the properties that C;, + C;, are
non-singular for i; # iy, then they may be used to design
close to lowest density parity check matrices if each square
sub-matrix of the Vandermonde matrix is non-singular. For
example, for p = 5, the following matrices may be used

00 0 1 00 1 1
1000 0010
Ci=101 01 C2=17 00 0
00 1 0| |01 0 0 |
and
[0 0 1 0] [0 1 0 0]
00 11 1 010
CG=1010 0 Ci=10 0 0 1
11 0 0 | |10 0 0 |
where C; = QinQQi_l and Q1,Q2,Q3, and Q4 are

the permutation matrices of the permutation (1,2,3,4),



(3,1,4,2), (2,4,1,3), and (4,3,2,1) respectively. Further-
more, it should be noted that the numbers of non zero elements
in C’}Q, C’J%Q, C;’z,C’jéz, C}Z’z are 5,6,6,6,5 respectively, which
are close to the lowest density that one could achieve.

X. CONCLUSION

In this paper, we used XOR secret sharing schemes to
design privacy preserving data distribution schemes in cloud
environments. This will allow computation over encrypted
texts. However, we should also point out the limitation of this
approach. For example, it will be generally hard to prevent
collusion attacks. When deployed, the users should make the
assumption that cloud servers will not collude which is hard
to achieve in some cases. For example, we know that dropbox
uses amazon servers for their data storage. In other words,
dropbox and amazon cloud storage servers may be considered
as one server in our applications.
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