
1

Perfectly Secure Message Transmission Revisited
Yongge Wang and Yvo Desmedt

Abstract—Secure communications guaranteeing reliability and privacy
(without unproven assumptions) in networks with active adversaries has
been an important research issue. It has been studied for point to point
networks by Dolev-Dwork-Waarts-Yung (JACM 1993), Desmedt-Wang
(Eurocrypt 2002), and Srinathan-Narayanan-Rangan (Crypto 2004).
Dolev-Dwork-Waarts-Yung gave necessary and sufficient conditions for
secure communication in networks with the condition that (1) all the
channels are two-way; or (2) all the channels are one-way from the
sender to the receiver. In this paper, we study the general case with a
network modeled by a directed graph. In this general case, there are
communication channels from the sender to the receiver and there are
feedback channels from the receiver to the sender. We give necessary
and sufficient bounds on the number of channels that are required from
sender to receiver given a number of “feedback” channels from receiver
to sender. We give these bounds for the case reliability is perfect, as well
as for the case it is not perfect.

Index Terms—network security, privacy, reliability, network connec-
tivity.

I. INTRODUCTION

Secure communications guaranteeing reliability and privacy (with-
out unproven assumptions) in networks with active adversaries has
been an important research issue. Original work on secure distributed
computation assumed a complete graph for secure and reliable com-
munication. Dolev, Dwork, Waarts, and Yung [5] considered secure
communication in networks that are not necessarily complete. The
trade-off between network connectivity and secure communication
has been studied extensively (see, e.g., [1], [2], [4], [5], [11], [19],
[13]). For example, Dolev [4] and Dolev et al. [5] showed that, in
the case of k Byzantine faults, reliable communication is achievable
only if the system’s network is 2k + 1 connected. They also showed
that if all the paths are one way, then 3k+1 connectivity is necessary
and sufficient for reliable and private communications. However
they did not prove any results for the general case when there
are certain number of directed paths in one direction and another
number of directed paths in the other direction. While undirected
graphs correspond naturally to the case of pairwise two-way channels,
directed graphs do not correspond to the case of all-one-way or all-
two-way channels considered in [5], but to the mixed case where
there are some paths in one direction and some paths in the other
direction. In this paper, we will initiate the study in this direction
by showing what can be done with a general directed graph. Note
that this scenario is important in practice, in particular, when the
network is not symmetric. For example, a channel from A to B is
cheap and a channel from B to A is expensive but not impossible.
Another example is that A has access to more resources than B
does. Specifically, we will show the following necessary and sufficient
result: If u is the number of feedback channels then perfectly secure

An extended abstract of some results in this paper have appeared in [3].
Yongge Wang is with the Department of Software and Information

Systems, University of North Carolina at Charlotte, Charlotte,
28223, USA, URL: http://www.sis.uncc.edu/ yonwang.
Yvo Desmedt is BT Chair of Information Security, Department
of Computer Science, University College London, UK, URL:
http://www.cs.ucl.ac.uk/staff/Y.Desmedt/. Yvo Desmedt is
partially funded by National Science Foundation CCR-0209092 and EPSRC
EP/C538285/1. Part of this research was done while Yvo Desmedt was
visiting Certicom, the Univ. of North Carolina Charlotte, and while at Florida
State University.

message transmission from the sender to the receiver is possible if
and only if there are max{3k + 1− 2u, 2k + 1} forward channels.

Goldreich, Goldwasser, and Linial [10], Franklin and Yung [8],
Franklin and Wright [7], and Wang and Desmedt [20] have studied
secure communication and secure computation in multi-recipient
(multicast) models. In a “multicast channel” (such as Ethernet),
one participant can send the same message—simultaneously and
privately—to a fixed subset of participants. Franklin and Yung [8]
have given a necessary and sufficient condition for individuals to
exchange private messages in multicast models in the presence of pas-
sive adversaries (passive gossipers). For the case of active Byzantine
adversaries, many results have been presented by Franklin and Wright
[7], and, Wang and Desmedt [20]. Note that Goldreich, Goldwasser,
and Linial [10] have also studied fault-tolerant computation in the
public multicast model (which can be thought of as the largest
possible multirecipient channels) in the presence of active Byzan-
tine adversaries. Specifically, Goldreich, et al. [10] have made an
investigation of general fault-tolerant distributed computation in the
full-information model. In the full information model no restrictions
are made on the computational power of the faulty parties or the
information available to them. (Namely, the faulty players may be
infinitely powerful and there are no private channels connecting
pairs of honest players). In particular, they present efficient two-party
protocols for fault-tolerant computation of any bivariate function.

There are many examples of multicast channels (see, e.g. [7]),
such as an Ethernet bus or a token ring. Another example is a shared
cryptographic key. By publishing an encrypted message, a participant
initiates a multicast to the subset of participants that is able to decrypt
it.

We present our model in Section II. In Sections III and IV, we
study secure message transmission over directed graphs. Section VI
is devoted to reliable message transmission over hypergraphs, and
Section VII is devoted to secure message transmission over neighbor
networks.

II. MODEL

We will abstract away the concrete network structures and consider
directed graphs. A directed graph is a graph G(V, E) where all
edges have directions. In our discussion, we will also assume that the
network modelled by G(V, E) is a synchronous network. In another
word, there is a time notion that all involved parties could refer to.
For a directed graph G(V, E) and two nodes A, B ∈ V , throughout
this paper, n denotes the number of vertex disjoint paths between
the two nodes and k denotes the number of faults under the control
of the adversary. We write |S| to denote the number of elements
in the set S. We write x ∈R S to indicate that x is chosen with
respect to the uniform distribution on S. Let F be a finite field, and
let a, b, c, M ∈ F. We define auth(M ; a, b) := aM + b (following
[7], [9], [16], [17]) and auth(M ; a, b, c) := aM2+bM +c (following
[20]). Note that each authentication key key = (a, b) can be used
to authenticate one message M without revealing any information
about any fixed component of the authentication key and that each
authentication key key = (a, b, c) can be used to authenticate two
messages M1 and M2 without revealing any information about any
fixed component of the authentication key. Note that by authenticating
a message, we reveal the linear combination of the authentication

2

keys though no information about any fixed component of the
authentication key is revealed. We will also use a function 〈. . .〉 which
maps a variable size (we assume that this variable size is bounded by
a pre-given bound) ordered subset of F to an image element in a field
extension F∗ of F, and from any image element we can uniquely and
efficiently recover the ordered subset.

Let k and n be two integers such that 0 ≤ k < n ≤ 3k + 1.
A (k + 1)-out-of-n secret sharing scheme is a probabilistic function
S: F → Fn with the property that for any M ∈ F and S(M) =
(v1, . . . , vn), no information of M can be inferred from any k entries
of (v1, . . . , vn), and M can be recovered from any k + 1 entries of
(v1, . . . , vn). The set of all so obtained possible (v1, . . . , vn) is called
a code and its elements codewords [14]. We say that a (k + 1)-out-
of-n secret sharing scheme can detect k′ errors if given any codeword
(v1, . . . , vn) and any tuple (u1, . . . , un) over F such that 0 < |{i :
ui 6= vi, 1 ≤ i ≤ n}| ≤ k′ one can detect that (u1, . . . , un) is
not a codeword. If the code is Maximal Distance Separable, then the
maximum value of errors that can be detected is n−k−1 as follows
easily from [14]. We say that the (k + 1)-out-of-n secret sharing
scheme can correct k′ errors if from any S(M) = (v1, . . . , vn) and
any tuple (u1, . . . , un) over F with |{i : ui 6= vi, 1 ≤ i ≤ n}| ≤
k′ one can recover the secret m. If the code is Maximal Distance
Separable, then the maximum value of errors that allows the recovery
of the vector (v1, . . . , vn) is b(n − k − 1)/2c [14]. A (k + 1)-out-
of-n Maximal Distance Separable (MDS) secret sharing scheme is a
(k+1)-out-of-n secret sharing scheme with the property that for any
k′ ≤ (n − k − 1)/2, one can correct k′ errors and simultaneously
detect n− k − k′ − 1 errors (as follows easily by generalizing [14,
p. 10]). Maximal Distance Separable (MDS) secret sharing schemes
can be constructed from any MDS codes, for example, from Reed-
Solomon code [15], e.g., using Shamir secret sharing scheme [18],
as basically observed in [15].

In a message transmission protocol, the sender A starts with a
message MA. At the end of the protocol, the receiver B outputs a
message MB . We assume that the message space M is a subset of
a finite field F. We consider two kinds of adversaries. A passive
adversary (or gossiper adversary) is an adversary who can only
observe the traffic through k internal nodes. An active adversary (or
Byzantine adversary) is an adversary with unlimited computational
power who can control k internal nodes. That is, an active adversary
will not only listen to the traffics through the controlled nodes, but
also control the message sent by those controlled nodes. Both kinds of
adversaries are assumed to know the complete protocol specification,
message space, and the complete structure of the graph. In this paper,
we will not consider a dynamic adversary who could change the
nodes it controls from round to round, instead we will only consider
static adversaries. That is, at the start of the protocol, the adversary
chooses the k faulty nodes. An alternative interpretation is that k
nodes are static collaborating adversaries.

For any execution of the protocol, let adv be the adversary’s view
of the entire protocol. We write adv(M, r) to denote the adversary’s
view when MA = M and when the sequence of coin flips used by
the adversary is r.

Definition 2.1: (see Franklin and Wright [7])
1) Let δ < 1

2
. A message transmission protocol is δ-reliable if,

with probability at least 1− δ, B terminates with MB = MA.
The probability is over the choices of MA and the coin flips
of all nodes.

2) A message transmission protocol is reliable if it is 0-reliable.
3) A message transmission protocol is ε-private if, for every two

messages M0, M1, and for every r,
∑

c
|Pr[adv(M0, r) =

c] − Pr[adv(M1, r) = c]| ≤ 2ε. The probabilities are taken
over the coin flips of the honest parties, and the sum is over

all possible values of the adversary’s view.
4) A message transmission protocol is perfectly private if it is

0-private.
5) A message transmission protocol is (ε, δ)-secure if it is ε-

private and δ-reliable.
6) An (ε, δ)-secure message transmission protocol is efficient if

its round complexity and bit complexity are polynomial in the
size of the network, log 1

ε
(if ε > 0) and log 1

δ
(if δ > 0).

For two nodes A and B in a directed graph such that there are 2k+1
node disjoint paths from A to B, there is a straightforward reliable
message transmission from A to B against a k-active adversary: A
sends the message m to B via all the 2k + 1 paths, and B recovers
the message m by a majority vote.

III. (0, δ)-SECURE MESSAGE TRANSMISSION IN DIRECTED

GRAPHS

Our discussion in this section will be concentrated on directed
graphs. Dolev, Dwork, Waarts, and Yung [5] addressed the problem
of secure message transmissions in a point-to-point network. In
particular, they showed that if all channels from A to B are one-way,
then (3k+1)-connectivity is necessary and sufficient for (0,0)-secure
message transmissions from A to B against a k-active adversary.
They also showed that if all channels between A and B are two-
way, then (2k +1)-connectivity is necessary and sufficient for (0,0)-
secure message transmissions between A and B against a k-active
adversary. In this section we assume that there are only 2k + 1− u
directed node disjoint paths from A to B, where 1 ≤ u ≤ k. We
show that u directed node disjoint paths from B to A are necessary
and sufficient to achieve (0, δ)-secure message transmissions from A
to B against a k-active adversary.

Franklin and Wright [7] showed that even if all channels between
A and B are two way, 2k + 1 channels between A and B are still
necessary for (1 − δ)-reliable (assuming that δ < 1

2

(
1− 1

|F|

)
)

message transmission from A to B against a k-active adversary.
Theorem 3.1: (Franklin and Wright [7]) Let G(V, E) be a directed

graph, A, B ∈ V , and there are only 2k two-way node disjoint paths
between A and B in G. Then δ-reliable message transmission from A

to B against a k-active adversary is impossible for δ < 1
2

(
1− 1

|F|

)
.

In the following, we first show that if there is no directed path
from B to A, then 2k + 1 directed paths from A to B is necessary
and sufficient for (0, δ)-secure message transmission from A to B.

Theorem 3.2: Let G(V, E) be a directed graph, A, B ∈ V , and
0 < δ < 1

2
. If there is no directed paths from B to A, then

the necessary and sufficient condition for (0, δ)-secure message
transmission from A to B against a k-active adversary is that there
are 2k + 1 directed node disjoint paths from A to B.
Proof. The necessity is proved in Theorem 3.1. Let p1, . . . , p2k+1 be
the 2k + 1 directed node disjoint paths from A to B. Let MA ∈ F
be the secret that A wants to send to B. A constructs (k+1)-out-of-
(2k+1) secret shares (sA

1 , . . . , sA
2k+1) of MA. The protocol proceeds

from round 1 through round 2k + 1. In each round 1 ≤ i ≤ 2k + 1,
we have the following steps:

Step 1 A chooses {(aA
i,j , b

A
i,j) ∈R F2 : 1 ≤ j ≤ 2k + 1}.

Step 2 A sends (sA
i , auth(sA

i ; aA
i,1, b

A
i,1), . . . , auth(sA

i ; aA
i,2k+1, b

A
i,2k+1))

to B via path pi, and sends (aA
i,j , bA

i,j) to B via path pj

for each 1 ≤ j ≤ 2k + 1.
Step 3 B receives (sB

i , cB
i,1, . . . , c

B
i,2k+1) via path pi, and receives

(aB
i,j , b

B
i,j) via path pj for each 1 ≤ j ≤ 2k + 1.

Step 4 B computes t = |{j : cB
i,j = auth(sB

i ; aB
i,j , b

B
i,j)}|. If t ≥

k + 1, then B decides that sB
i is a valid share. Otherwise

B discards sB
i .

3

It is straightforward to see that the adversary will learn at most
k shares of the (k + 1)-out-of-(2k + 1) secret sharing scheme.
Thus the protocol achieves perfect privacy. Now assume that the
path pi contains no faulty nodes, then B receives the correct share
si on path pi during the round i and decides that sB

i is a valid
share. In another word, B receives at least k + 1 valid shares.
For a faulty path pi, sB

i may be different from sA
i . The protocol

fails if for some faulty path pi, sB
i 6= sA

i but B decides that sB
i

is a valid share. In order for the adversary to fail the protocol,
during round i, the adversary could deliver (sB

i , cB
i,1, . . . , c

B
i,2k+1)

via the faulty path pi for appropriately chosen (could be randomly
chosen) sB

i , cB
i,1, . . . , c

B
i,2k+1. At the same time, the adversary will

guarantee that the values (aB
i,j , b

B
i,j) received by B on all faulty paths

pj would meet the condition cB
i,j = auth(sB

i ; aB
i,j , b

B
i,j). Since the

adversary has no control over non-faulty paths, only with a very
small probability, cB

i,j = auth(sB
i ; aB

i,j , b
B
i,j) for a non-faulty path

pj . In another word, B will decide that sB
i is a valid share only

if cB
i,j = auth(sB

i ; aB
i,j , b

B
i,j) for a non-faulty path pj , which occurs

with a very small probability. In order to make the protocol failure
probability δ smaller, one could chosen larger finite field F.

From our above discussion, with high probability, B will recover
the secret MB = MA. Thus the above protocol is a (0, δ)-secure
message transmission protocol from A to B against a k-active
adversary. Q.E.D.

By Theorem 3.1, the necessary condition for (0, δ)-secure message
transmission from A to B against a k-active adversary is that there
are at least k + 1 node disjoint paths from A to B and there are at
least 2k + 1 node disjoint paths in total from A to B and from B
to A. In the following, we show that this condition is also sufficient.
We first show that the condition is sufficient for k = 1.

Theorem 3.3: Let G(V, E) be a directed graph, A, B ∈ V . If there
are two directed node disjoint paths p0 and p1 from A to B, and one
directed path q (which is node disjoint from p0 and p1) from B to A,
then for any 0 < δ < 1

2
, there is a (0, δ)-secure message transmission

protocol from A to B against a 1-active adversary.
Proof. In the following protocol, A (0, δ)-securely transmits a
message MA ∈ F to B.

Step 1 A chooses sA
0 ∈R F, (aA

0 , bA
0), (aA

1 , bA
1) ∈R F2, and

let sA
1 = MA − sA

0 . For each i ∈ {0, 1}, A sends
(sA

i , (aA
i , bA

i), auth(sA
i ; aA

1−i, b
A
1−i)) to B via path pi.

Step 2 Assume that B receives (sB
i , (aB

i , bB
i), cB

i) via path pi. B
checks whether cB

i = auth(sB
i ; aB

1−i, bB
1−i) for i = 0, 1.

If both equations hold, then B knows that with high
probability the adversary was either passive or not on the
paths from A to B. B can recover the secret message, sends
“OK” to A via the path q, and terminates the protocol.
Otherwise, one of equations does not hold and B knows
that the adversary was on one of the paths from A to
B. In this case, B chooses (aB , bB) ∈R F2, and sends
((aB , bB), (sB

0 , (aB
0 , bB

0), cB
0), (sB

1 , (aB
1 , bB

1), cB
1)) to A via

the path q.
Step 3 If A receives “OK”, then A terminates the protocol.

Otherwise, from the information A received via path
q, A decides which path from A to B is corrupted
and recovers B’s authentication key (aA, bA). A sends
(MA, auth(MA; aA, bA)) to B via the uncorrupted path
from A to B. Note that the adversary may control the path
q and A may never receives any message on the path q.
If this happens, A can assume that B has received the
correct message (thus we are assuming that the network
is a synchronous network).

Step 4 B recovers the message and checks that the authenticator is

correct.

Similarly as in the proof of Theorem 3.2, it can be shown that the
above protocol is (0, δ)-secure against a 1-active adversary. Q.E.D.

Theorem 3.4: Let G(V, E) be a directed graph, A, B ∈ V , and
k ≥ u ≥ 1. If there are 2k + 1− u directed node disjoint paths p1,
. . ., p2k+1−u from A to B, and u directed node disjoint paths q1, . . .,
qu (q1, . . ., qu are node disjoint from p1, . . ., p2k+1−u) from B to A,
then for any 0 < δ < 1

2
, there is an efficient (0, δ)-secure message

transmission protocol from A to B against a k-active adversary.
Before we give an efficient (0, δ)-secure message transmission pro-

tocol from A to B, we first demonstrate the underlying idea by giving
a non-efficient (exponential in k) (0, δ)-secure message transmission
protocol from A to B against a k-active adversary. Let MA ∈ F
be the secret that A wants to send to B, and P1, . . . ,Pt be an
enumeration of size k +1 subsets of {p1, . . . , p2k+1−u, q1, . . . , qu}.
Since there are at most k-corrupted paths, at least one of the path
sets P1, . . . ,Pt contains all honest paths. If we know that some Pm

(m ≤ t) contains all non-faulty paths, we can let A and B to share
a random pair (αi,m, βi,m) for each path in pi (or qi) in Pm. Then
we compute αm =

∑
i
αi,m, βm =

∑
i
βi,m, and use (αm, βm) as

the authentication key and αm as the encryption key to communicate
the message from A to B. Note that there is at least one directed
path from A to B in Pm.

Since we do not know which path set Pm contains all non-faulty
paths, we have to try all Pm. During our trial on the path set Pm, if
the adversary modifies any value during the transmission, the receiver
B will notice the modification and will discard the received value
through Pm. After the entire trial, the receiver B will receive the
message from the non-faulty Pm (or Pm is faulty, but the adversary
was passive during the run of the protocol). Specifically, the protocol
proceeds from round 1 through t. In each round 1 ≤ m ≤ t, we have
the following steps:

Step 1 For each pi ∈ Pm, A chooses (aA
i,m, bA

i,m, kA
i,m) ∈R F2

and sends (aA
i,m, bA

i,m, kA
i,m) to B via pi.

Step 2 For each pi ∈ Pm, B receives (aB
i,m, bB

i,m, kB
i,m) from A

via pi.
Step 3 For each qi ∈ Pm, B chooses (cB

i,m, dB
i,m, lBi,m) ∈R F2 and

sends (cB
i,m, dB

i,m, lBi,m) to A via qi.
Step 4 For each qi ∈ Pm, A receives (cA

i,m, dA
i,m, lAi,m) from B

via qi.
Step 5 A computes CA =

∑
pi∈Pm

aA
i,m +

∑
qi∈Pm

cA
i,m, DA =∑

pi∈Pm
bA
i,m +

∑
qi∈Pm

dA
i,m, KA =

∑
pi∈Pm

kA
i,m +∑

qi∈Pm
lAi,m, and sends (MA + KA, auth(MA +

KA; CA, DA)) to B via all paths in pi in Pm.
Step 6 For each pi ∈ Pm, B receives (eB

i,m, fB
i,m) from A via pi.

Step 7 If (eB
i,m, fB

i,m) = (eB
j,m, fB

j,m) for all pi, pj ∈ Pm, then B
goes to Step 8. Otherwise, B goes to round m + 1.

Step 8 B computes CB =
∑

pi∈Pm
aB

i,m +
∑

qi∈Pm
cB

i,m,
DB =

∑
pi∈Pm

bB
i,m +

∑
qi∈Pm

dB
i,m, and KB =∑

pi∈Pm
kB

i,m +
∑

qi∈Pm
lBi,m.

Step 9 If fB
i,m = auth(eB

i,m; CB , DB), then B computes the secret
MB = eB

i,m −KB and terminates the protocol. Otherwise,
B goes to round m + 1.

Since there is at least one path set Pm such that Pm contains all
non-faulty paths, B accepts a value by the end of the protocol with
certainty. It remains to show that if B accepts a value, then with high
probability, this value is the same as the value sent by A. Assume
that at the end of the protocol, B accepts a value transmitted via
the path set Pm (m ≤ t). If Pm contains all non-faulty paths or if
the adversary was passive during the protocol run, then obviously B

4

accepts the correct secret from A. Now assume that Pm contains at
least one faulty path with active adversary. If the adversary was active
from Step 1 to Step 4, then A and B shares different authentication
key and encryption key. Since there are at most k faulty paths, the
adversary learns zero information about the encryption key or any
component of the authentication key. Thus the adversary can only let
the verifications in Steps 7 and 9 pass with negligible probability. In
the same way, if the adversary was active during Steps 5 and 6, the
probability that verifications in Steps 7 and 9 pass is negligible.

Proof. (Proof of Theorem 3.4) We have just presented an exponen-
tial time (0, δ)-secure message transmission protocol from A to B. In
the following, we describe a polynomial time (0, δ)-secure message
transmission protocol from A to B. Let MA ∈ F be the secret that
A wants to send to B.

Our protocol proceeds from round 1 through 2k + 2 + u. Dif-
ferent rounds are dedicated to different scenarios. In particular, we
distinguish the following two cases:

1) There are k + 1 non-faulty paths from A to B.
2) There is at least one honest path from B to A.

In the protocol, A first constructs (k + 1)-out-of-(2k + 1−u) secret
shares (sA

1 , . . . , sA
2k+1−u) of MA.

For each round 1 ≤ i ≤ 2k + 1 − u, A chooses a random
authentication key pair keyi,j for each path pj and sends it to B
via pj . A then sends to B, via path pi, the share sA

i authenticated
with all these authentication keys. If there are at least k+1 non-faulty
paths from A to B, then at the end of round 2k+1−u, B can recover
at least k+1 correct shares and the (k+1)-out-of-(2k+1−u) secret
sharing scheme enables B to recover the secret MB . Specifically, for
each round 1 ≤ i ≤ 2k + 1− u, we have the following steps:

Step 1 A chooses {(aA
i,j , b

A
i,j) ∈R F2 : 1 ≤ j ≤ 2k + 1− u}.

Step 2 A sends {sA
i , auth(sA

i ; aA
i,1, b

A
i,1), . . .,

auth(sA
i ; aA

i,2k+1−u, bA
i,2k+1−u)} to B via path pi,

and sends (aA
i,j , b

A
i,j) to B via path pj for each

1 ≤ j ≤ 2k + 1− u.
Step 3 B receives {sB

i , dB
i,1, . . . , d

B
i,2k+1−u} via path pi, and

(aB
i,j , b

B
i,j) via path pj for each 1 ≤ j ≤ 2k + 1− u.

Step 4 B computes t = |{j : dB
i,j = auth(sB

i ; aB
i,j , b

B
i,j)}|. If t ≥

k + 1, then B decides that sB
i is a valid share. Otherwise

B decides that sB
i is an invalid share.

At the end of round 2k + 1 − u, if B has received k + 1 valid
shares, then B recovers the secret MB from these valid shares and
terminates the protocol. If B cannot recover the secret MB at the
end of round 2k + 1−u, then there are less than k + 1 honest paths
from A to B. Thus there is at least one honest path from B to A
(note that we have in total 2k + 1 paths and at most k of them are
faulty).

In the following, we describe the remaining rounds of the protocol.
In this part of the protocol, with the help of feedback channels from
B to A (note that at least one of these channels is uncorrupted), A
and B can agree on a shared authentication key and encryption key
to communicate the message MA securely from A to B. In order to
use the feedback channels from B to A, A first sends a random 6-
tuple value to B via each forward path pi from A to B. Specifically,
the round 2k + 2− u has the following steps:

Step 1 A chooses {(aA
i , bA

i , cA
i) ∈R F6 : 1 ≤ i ≤ 2k+1−u}, and

sends (aA
i , bA

i , cA
i) to B via path pi for each i ≤ 2k+1−u.

Note that we abuse our notations by letting aA
i , bA

i , cA
i ∈ F2

for each i.
Step 2 For each 1 ≤ i ≤ 2k + 1− u, B receives (aB

i , bB
i , cB

i) on
path pi from A (if no value is received on path pi, B sets
it to a default value).

Step 3 For each 1 ≤ i ≤ 2k + 1 − u, B chooses rB
i ∈R F

and computes βB = {(rB
i , auth(rB

i ; aB
i , bB

i , cB
i)) : 1 ≤

i ≤ 2k + 1 − u}. Note that aB
i , bB

i , cB
i ∈ F2, but we can

regard each aB
i , bB

i , cB
i as an element of F by summing the

components.
Now B needs to send a random 4-tuple (dB

i , eB
i) to A on each

feedback channel qi from B to A. After receiving these random 4-
tuples from B, A needs to determine whether the received 4-tuple is
the same as the original 4-tuple sent by B (since there is at least one
honest feedback channel, at least one of the random 4-tuples received
by A is not modified). In order to help A to get some hint on this, the
techniques that we have used in round 1 to round 2k +1−u will be
used again. That is, in order for B to send a random 4-tuple (dB

i , eB
i)

to A on path qi (1 ≤ i ≤ u), B sends random authentication keys to
A for each path qj (1 ≤ j ≤ u), and sends to A via qi the random 4-
tuple (dB

i , eB
i) authenticated with all these authentication keys. This

is done by the rounds from 2k + 3 − u to 2k + 2. Specifically, in
each round i+2k +2−u (1 ≤ i ≤ u), we have the following steps:

Step 1 B chooses (dB
i , eB

i) ∈R F4 and {(vB
i,j , w

B
i,j) ∈R F8 : 1 ≤

j ≤ u}.
Step 2 B sends (dB

i , eB
i), βB , and {auth(〈dB

i , eB
i 〉; vB

i,j , w
B
i,j) :

1 ≤ j ≤ u} to A via path qi, and (vB
i,j , wB

i,j) to A via
path qj for each 1 ≤ j ≤ u.

Step 3 A receives (or substitutes default values) (dA
i , eA

i), βA
i , and

{αA
i,j : 1 ≤ j ≤ u} from B via path qi, and (vA

i,j , w
A
i,j)

from B via path qj for each 1 ≤ j ≤ u.
According to the values that A has received, A divides the paths set
{q1, . . . , qu} into consistent subsets Q1, . . . ,Qt such that for each
1 ≤ l ≤ t, all paths in Ql behave in a consistent way. In particular,
there is at least one path set Ql that behaved honestly during the
rounds from 2k+3−u to 2k+2 (though A cannot determine which
path set was honest, A will try to use each of them in a separate way
and let B to determine which path set is honest). The partition of the
paths are done according to the following criteria. For any l, m, n
with 1 ≤ l ≤ t, 1 ≤ m, n ≤ u, and qm, qn ∈ Ql, we have

1) βA
m = βA

n ;
2) αA

m,n = auth(〈dA
m, eA

m〉; vA
m,n, wA

m,n);
3) αA

n,m = auth(〈dA
n , eA

n 〉; vA
n,m, wA

n,m).
For each Ql, let qm ∈ Ql and βA

m = {(rA
i,l, γ

A
i,l) : 1 ≤ i ≤ 2k +1−

u}. A computes the number

tl = |{i : γA
i,l = auth(rA

i,l; a
A
i , bA

i , cA
i), 1 ≤ i ≤ 2k + 1− u}|+ |Ql|

If tl ≤ k, then A decides that Ql is an unacceptable set, otherwise,
A decides that Ql is an acceptable set. Let Ql = ∅ for t < l ≤ u. It
is straightforward to check that the following holds:

1) If qi is an honest feedback channel and qi ∈ Ql, then with
high probability, the random 4-tuples that A received on the
paths from Ql are not modified.

2) If qi is an honest feedback channel and qi ∈ Ql, then A
determines that Ql is an acceptable set.

However, all acceptable path sets look the same to A and A cannot
determine whether an acceptable path set contains all honest paths
(or paths controlled by passive adversaries). A continues the protocol
by assuming that each acceptable path set is honest. In another word,
assuming that an acceptable path set Ql is honest, from the values
received by A via paths in Ql, A can determine which of the random
6-tuples (aA

i , bA
i , cA

i) it sent to B during the round 2k + 2− u have
been received by B correctly. Using these “correctly-received-by-B”
6-tuples and the random 4-tuples received by A via paths in Ql, A
can compute an authentication key and an encryption key to securely
send the messages to B. If the assumption that Ql is honest is valid,

5

then B should be able to compute the same authentication key and
the same encryption key. Since at least one of these acceptable path
sets is honest, B will be able to decrypt the secret message correctly.
Specifically, for each round 2k + 2 + l (1 ≤ l ≤ u), we have the
following steps:

Step 1 If Ql = ∅ or Ql is an unacceptable set, then go to the next
round.

Step 2 A computes Pl = {pi : γA
i,l = auth(rA

i,l; a
A
i , bA

i , cA
i), 1 ≤

i ≤ 2k + 1−u}, CA
l =

∑
pi∈Pl

aA
i +

∑
qi∈Ql

dA
i , DA

l =∑
pi∈Pl

bA
i +

∑
qi∈Ql

eA
i , and KA

l be the sum of the two
components of CA

l . Note that CA
l , DA

l ∈ F2, KA
l ∈ F,

and tl = |Pl| + |Ql| > k (thus the adversary learns no
information regarding CA

l , DA
l).

Step 3 A sends (〈Ql,Pl, M
A + KA

l 〉, auth(〈Ql,Pl, M
A +

CA
l 〉; CA

l , DA
l)) to B via all paths pi ∈ Pl. Without loss

of generality, we assume that 〈Ql,Pl〉 could be represented
by an element of F. Thus 〈Ql,Pl, M

A + CA
l 〉 could be

interpreted as an element of F2.
Step 4 B receives (ξB

i,l, λ
B
i,l) from path pi for 1 ≤ i ≤ 2k +1−u.

Step 5 For each 1 ≤ i ≤ 2k+1−u, B computes 〈QB
i,l,PB

i,l, τ
B
i,l〉 =

ξB
i,l (that is, B decomposes ξB

i,l), CB
i,l =

∑
pj∈Pi,l

aB
j +∑

qj∈Qi,l
dB

j , DB
i,l =

∑
pj∈Pi,l

bB
j +

∑
qj∈Qi,l

eB
j , and

KB
i,l as the sum of the two components of CB

i,l.
Step 6 For each 1 ≤ i ≤ 2k + 1 − u, B checks whether λB

i,l =
auth(ξB

i,l; C
B
i,l, D

B
i,l). If the equation holds, then B computes

the secret MB = τB
i,l −KB

i,l.
If B has not got the secret at the end of round 2k+1−u, then there
exists an uncorrupted path qj from B to A and a path set Ql such
that qj ∈ Ql and the information that A receives from paths in Ql

are reliable. Thus, at the end of round 2k + 2 + u, B will output a
secret MB . It is easy to check that, with high probability, this secret
is the same as MA.

Since for an acceptable Ql, tl = |Pl| + |Ql| > k, the adversary
learns no information about CA

l or DA
l or KA

l . Thus it is clear that the
protocol achieves perfect privacy. Thus it is a (0, δ)-secure message
transmission protocol from A to B against a k-active adversary.
Q.E.D.

Corollary 3.5: Let G(V, E) be a directed graph, A, B ∈ V , k ≥
u ≥ 1, δ < 1

2

(
1− 1

|F|

)
, and there are 2k + 1 − u directed node

disjoint paths p1, . . ., p2k+1−u from A to B. Then a necessary and
sufficient condition for (0, δ)-secure message transmission protocol
from A to B against a k-active adversary is that there are u directed
node disjoint paths q1, . . ., qu (q1, . . ., qu are node disjoint from p1,
. . ., p2k+1−u) from B to A.

Proof. This follows from Theorem 3.1 and Theorem 3.4. Q.E.D.

IV. (0, 0)-SECURE MESSAGE TRANSMISSION IN DIRECTED

GRAPHS

In the previous section, we addressed probabilistic reliable message
transmission in directed graphs. In this section, we consider perfectly
reliable message transmission in directed graphs. We will show that if
there are u directed node disjoint paths from B to A, then a necessary
and sufficient condition for (0, 0)-secure message transmission from
A to B against a k-active adversary is that there are max{3k + 1−
2u, 2k + 1} directed node disjoint paths from A to B.

Theorem 4.1: Let G(V, E) be a directed graph, A, B ∈ V .
Assume that there are u directed node disjoint paths from B to
A. Then a necessary condition for (0, 0)-secure message transmis-
sion from A to B against a k-active adversary is that there are
max{3k + 1 − 2u, 2k + 1} directed node disjoint paths from A
to B.

Proof. First we note a simple fact that if there are max{3k + 1 −
2u, 2k + 1} directed node disjoint paths from A to B, then A can
always 0-reliably sends a message M to B by broadcasting the
message M via all paths to B (B can recover the message reliably
by a majority vote).

If u = 0, then by the results in [5], we need 3k + 1 directed node
disjoint paths from A to B for (0, 0)-secure message transmission
against a k-active adversary. If u ≥ d k

2
e, then again by the results

in [5], we need 2k + 1 directed node disjoint paths from A to B
for 0-reliable (that is, perfectly reliable) message transmission from
A to B against a k-active adversary. From now on, we assume that
0 < u < d k

2
e.

For a contradiction, we assume that there are only 3k−2u directed
node disjoint paths from A to B, denoted as p1, . . . , p3k−2u. Let
q1, . . . , qu be the directed node disjoint paths from B to A.

Let Π be a (0, 0)-secure message transmission protocol from A to
B. In the following, we will construct a k-active adversary to defeat
this protocol. The transcripts distribution viewA

Π of A is drawn from
a probability distribution that depends on the message MA to be
transmitted by A, the coin flips RA of A, the coin flips RB of B,
the coin flips RA of the adversary (without loss of generality, we
assume that the value RA will determine the choice of faulty paths
controlled by the adversary), and the coin flips RT of all other honest
nodes. Without loss of generality, we can assume that the protocol
proceeds in steps, where A is silent during even steps and B is silent
during odd steps (see [5]).

The strategy of the adversary is as follows. First it uses RA to
choose a value b. If b = 0, then it uses RA again to choose k
directed paths pa1 , . . . , pak from A to B and controls the first node
on each of these k paths. If b = 1, then it uses RA again to choose
k − u directed paths pa1 , . . . , pak−u from A to B and controls the
first node on each of these k − u paths and the first node on each
of the u paths from B to A. It also uses RA to choose a message
M̂A ∈ F according to the same probability distribution from which
the actual message MA was drawn. In the following we describe the
protocol the adversary will follow.

• Case b = 0. The k paths pa1 , . . . , pak behave as a passive
adversary. That is, it proceeds according to the protocol Π.

• Case b = 1. The k − u paths pa1 , . . . , pak−u ignore what A
sends in each step of the protocol and simulates what A would
send to B when A sending M̂A to B. The u paths from B
ignore what B sends in each step of the protocol and simulate
what B would send to A when b = 0.

In the following, we assume that the tuple (MA, RA, RB , RT , RA)
is fixed, b = 0, the protocol halts in l steps, and the view of A is
viewA

Π(MA, RA, RB , RT , RA). Let αA
i,j be the values that A sends

on path pi in step j and ~αA
i = (αA

i,1, . . . , α
A
i,l). We can view ~αA

i as
shares of the message MA. Similarly, let αB

i,j be the values that B
receives on path pi in step j and ~αB

i = (αB
i,1, . . . , α

B
i,l).

First, it is straightforward to show that for any k paths pa1 , . . . , pak

from A to B, there is an R̂A
1 such that b = 0, the adversary controls

the paths pa1 , . . . , pak , and

viewA
Π(MA, RA, RB , RT , RA) = viewA

Π(MA, RA, RB , RT , R̂A
1)
(1)

Due to the fact that Π is a perfectly private message transmission
protocol, from any k shares from (~αA

1 , ~αA
2 , . . ., ~αA

3k−2u) one cannot
recover the secret message MA. Thus (~αA

1 , ~αA
2 , . . . , ~αA

3k−2u) is at
least a (k + 1)-out-of-(3k − 2u) secret sharing scheme.

Secondly, for any k−u paths pa1 , . . . , pak−u from A to B, there
is an R̂A

2 such that b = 1, M̂A 6= MA, the adversary controls the

6

paths pa1 , . . . , pak−u , q1, . . . , qu, and

viewA
Π(MA, RA, RB , RT , RA) = viewA

Π(MA, RA, RB , RT , R̂A
2)
(2)

Due to the fact that Π is a perfectly reliable message transmission
protocol, any k − u errors in the shares (~αB

1 , ~αB
2 , . . . , ~αB

3k−2u) can
be corrected by B to recover the secret message MA.

In summary, (~αA
1 , ~αA

2 , . . . , ~αA
3k−2u) is at least a (k + 1)-out-of-

(3k − 2u) secret sharing scheme that can correct k − u errors. By
the results in [14], we know that the maximum number of errors that
a (k + 1)-out-of-(3k − 2u) secret sharing scheme could correct is⌊

(3k − 2u)− k − 1

2

⌋
=

⌊
2k − 2u− 1

2

⌋
= k − u− 1.

This is a contradiction, which concludes the proof. Q.E.D.
The following theorem gives a sufficient condition for (0, 0)-secure

message transmissions.
Theorem 4.2: Let G(V, E) be a directed graph, A, B ∈ V , and

k ≥ 2. If there are n = max{3k + 1 − 2u, 2k + 1} directed node
disjoint paths p1, . . . , pn from A to B and u directed path q1, . . . , qu

from B to A (q1, . . . , qu are node disjoint from p1, . . . , pn) then there
is an efficient (0, 0)-secure message transmission protocol from A to
B against a k-active adversary.
Proof. If u = 0, then n = 3k + 1 and the results in [5] show that
there is a (0, 0)-secure message transmission protocol from A to B
against a k-active adversary. If k = 0, then n ≥ 1. Thus A can
send the secret message from any path from A to B and B can
reliably and privately recover the message. That is, there is a (0, 0)-
secure message transmission protocol from A to B against a k-active
adversary.

Assume that u > 0, k > 0, and the theorem holds for u− 1 and
k− 1. We show that the Theorem holds for u and k by induction. In
the following we describe a protocol π in which A (0, 0)-securely
transmits MA ∈R F to B. There is a detailed case analysis at the
end of the protocol. Thus the reader is referred to read the paragraphs
at the end of the protocol at the same time when the reader reads
the protocol details. In the following protocol, we often say that A
reliably sends a value x to B. This means that A broadcasts x to
B via all paths from A to B and B recovers this value x using a
majority vote.

Step 1 A chooses RA
0 , RA

1 ∈R F such that RA
0 + RA

1 = MA.
Step 2 A constructs (k + 1)-out-of-n MDS secret shares

(sA
1,0, ..., s

A
n,0) of RA

0 . For each i ≤ n, A sends sA
i,0 to

B via the path pi.
Step 3 For each i ≤ n, B receives (or sets default) sB

i,0 on path
pi. B distinguishes the following two cases:

1) There is no error in the received shares. B recovers
RB

0 from the received shares, sets FLAG = 0, and
sends “OK” back to A via all paths qj for j ≤ u.

2) There are errors in the received shares. B sets
FLAG = 1 and sends (sB

1,0, ..., s
B
n,0) back to A via

all paths qj for j ≤ u.

Step 4 For each j ≤ u, A receives “OK” or (s̄A
1,j , ..., s̄

A
n,j) from

qj (if anything else is received, A sets default value). A
distinguishes the following two cases:

1) (s̄A
1,j , ..., s̄

A
n,j) = (sA

1,0, ..., s
A
n,0) for all j ≤ u or A

received “OK” from all u paths qj . A reliably sends
“OK” to B. A goes to Step 6.

2) All other cases. Let i0 ≤ n, j0 ≤ u be any integers
such that sA

i0,0 6= s̄A
i0,j0 . A reliably sends “path pi0

or qj0 is faulty”. A goes to the (0, 0)-secure message

transmission protocol against a (k− 1)-active adver-
sary on the paths {pi : i 6= i0} ∪ {qj : j 6= j0} to
transmit MA to B (here we use induction).

Step 5 B distinguishes the following two cases:
1) B reliably receives “OK”. B further distinguishes the

following two cases:
1.a) FLAG = 0. B goes to Step 6.
1.b) FLAG = 1. B knows that there are at most

k − u errors in the shares (sB
1,0, ..., s

B
n,0). Thus

B recovers RB
0 from these shares by correcting

at most k − u errors. B goes to Step 6.
2) B reliably receives “path pi0 or qj0 is faulty”. In this

case, B goes to the (0, 0)-secure message transmis-
sion protocol against a (k − 1)-active adversary on
the paths {pi : i 6= i0} ∪ {qj : j 6= j0} and receives
the message MB .

Step 6 A constructs (k + 1)-out-of-n MDS secret shares
(sA

1,1, ..., s
A
n,1) of RA

1 . For each i ≤ n, A sends sA
i,1 to

B via the path pi.
Step 7 For each i ≤ n, B receives (or sets default) sB

i,1 on path
pi. B distinguishes the following two cases:

1) There is no error in the received shares. B recovers
RB

1 from the received shares, and sends “OK” back
to A via all paths qj for j ≤ u. B computes the
secret message MB = RB

0 + RB
1 and terminates the

protocol.
2) There are errors in the received shares. B further

distinguishes the following two cases:
2.a) FLAG = 0. B sends (sB

1,1, ..., s
B
n,1) back to A

via all paths qj for j ≤ u.
2.b) FLAG = 1. B knows that there are at most

k − u errors in the shares (sB
1,1, ..., s

B
n,1). Thus

B recovers RB
1 from these shares by correcting

at most k−u errors. B sends “OK” back to A via
all paths qj (j ≤ u), computes the secret message
MB = RB

0 + RB
1 , and terminates the protocol.

Step 8 For each j ≤ u, A receives “OK” or (s̄A
1,j , ..., s̄

A
n,j) from

qj (if anything else is received, A sets default value). A
distinguishes the following two cases:

1) (s̄A
1,j , ..., s̄

A
n,j) = (sA

1,0, ..., s
A
n,0) for all j ≤ u or A

received “OK” from all u paths qj . A reliably sends
“OK” to B. A terminates the protocol.

2) All other cases. Let i0 ≤ n, j0 ≤ u be any integers
such that sA

i0,0 6= s̄A
i0,j0 . A reliably sends “path pi0

or qj0 is faulty”. A goes to the (0, 0)-secure message
transmission protocol against a (k− 1)-active adver-
sary on the paths {pi : i 6= i0} ∪ {qj : j 6= j0} to
transmit MA to B (here we use induction).

Step 9 B distinguishes the following two cases:
1) B reliably receives “OK”. In this case, B knows that

there are at most k−u errors in the shares (sB
1,1, . . .,

sB
n,1). B recovers RB

1 from these shares by correcting
at most k − u errors, computes the secret message
MB = RB

0 + RB
1 , and terminates the protocol.

2) B reliably receives “path pi0 or qj0 is faulty”. In this
case, B goes to the (0, 0)-secure message transmis-
sion protocol against a (k − 1)-active adversary on
the paths {pi : i 6= i0} ∪ {qj : j 6= j0} and receives
the message MB .

Since n = max{3k + 1 − 2u, 2k + 1} and n − k ≥ k + 1, the
(k + 1)-out-of-n MDS secret sharing scheme in Steps 2 and 3 can

7

be used to detect at most k errors without correcting them. If there
is no error in the received shares, B recovers RB

0 correctly in Step
3. If B detects that there are errors in the received shares, B sends
back the received shares to A via all the B to A paths in Step 3.
If A receives “OK” from all B to A paths in Step 4, then we can
distinguish the following two cases:

1) B sends “OK” to A in Step 3. In this case, B has recovered
RB

0 correctly in Step 3 and A can send RA
1 to B now. Thus

A goes to Step 6.
2) B does not send “OK” to A in Step 3. In this case, all the u

paths from B to A are corrupted. Thus there are at most k−u
corrupted paths from A to B. Since n − k − 1 = max{2k −
2u, k} ≥ 2(k− u), B can recover the value RB

0 by correcting
at most k − u errors if B can get this additional information
that there are at most k−u errors in the received shares. Thus
A can send “OK” to B and B will learn this information. A
can then go to Step 6 to send RA

1 to B.

In Step 4, if A receives from all B to A paths exactly the same shares
that it has sent in Step 2. Then we can distinguish the following two
cases:

1) B sends “OK” to A in Step 3. Then B has recovered RB
0 and

A can go to Step 6 to send RA
1 to B.

2) B detects errors and sends the received shares to A in Step 3.
In this case, all the u paths from B to A are corrupted and there
are at most k − u corrupted paths from A to B. The similar
argument as in the previous case shows that B can recover the
value RB

0 by correcting at most k− u errors if B can get this
additional information and A can go to Step 6 to send RA

1 to
B.

If B receives “OK” in Step 5, then either B has already recovered
RB

0 in Step 3 or B has detected errors in Step 5. If it is the latter
case, our above analysis shows that there are at most k − u errors
in the shares that B has received in Step 3. Thus B can recover RB

0

by correcting at most k − u errors and safely goes to Step 6. If B
receives “path pi0 or qj0 is faulty” in Step 5, then B goes to the
induction step (even if B has recovered RB

0 in Step 3, B still needs
to go to the induction step since A does not know this fact). Note
that if we delete the two paths pi0 and qj0 , then we have at most
k − 1 unknown faulty paths, n − 1 paths from A to B, and u − 1
paths from B to A. Since

max{3(k − 1) + 1− 2(u− 1), 2(k − 1) + 1}
= max{3k − 2u, 2k − 1}
≤ max{3k − 2u, 2k}
= n− 1,

there is (by induction) a (0, 0)-secure message transmission protocol
from A to B against a (k − 1)-active adversary on the paths {pi :
i 6= i0}∪{qj : j 6= j0}, and B can receive the correct message MB .

Now assume that B has recovered RB
0 and we continue to Step

6. If B detects no error in Step 7, then B can recover RB
1 (thus the

secret MB) safely and terminate the protocol. If B detects errors in
Step 7, then we can distinguish the following two cases:

1) FLAG = 0. In this case, B has not asked for help in Step 3
and B can ask for help by sending the received shares back to
A.

2) FLAG = 1. In this case, B has already asked for help in Step 3
and the adversary may have recovered the value of RB

0 . Thus
B cannot ask for help any more. However, A only initiates
Step 6 if Case 1 of Step 4 happens. Combining with the fact
that FLAG = 1, we know that all the paths from B to A are
corrupted. This means that there are at most k − u errors in

the shares that B receives, and B can safely recover RB
1 by

correcting at most k − u errors.
Now assume that B asks for help in Step 7 and we come to Steps 8
and 9. The similar arguments as for Steps 4 and 5 show that one of
the following two cases happens:

1) A sends “OK” to B, B recovers RB
1 (therefore MB also).

2) A and B identify two paths so that at least one of them is
corrupted, and go to the induction step.

We therefore proved that the protocol π is (0, 0)-secure against a
k-active adversary. Q.E.D.

V. ALLOWING OVERLAPS BETWEEN FEEDBACK CHANNELS AND

FORWARD CHANNELS

In the previous section, we proved a necessary and a sufficient
condition for (0, 0)-secure message transmission from A to B. Our
sufficient result requires that the paths from A to B be node disjoint
from the paths from B to A. In this section, we show some results
that allows overlaps between these paths.

Theorem 5.1: Let G(V, E) be a directed graph, A, B ∈ V and
k ≥ 0. If there are n = 2k+1 directed node disjoint paths p1, . . . , pn

from A to B and k + 1 directed node disjoint paths q1, . . . , qk+1

from B to A (where q1, . . . , qk+1 are not necessarily node disjoint
from p1, . . . , pn) then there is an efficient (0, 0)-secure message
transmission protocol from A to B against a k-active adversary.

Proof. We note that the proof of Theorem 5.1 could not be used
here since if we remove (in the induction step) two paths pi and qj

such that one of them is corrupted, we are not guaranteed that the
k-active adversary becomes a (k−1)-active adversary (qj may share
a node with some other directed paths from A to B and that node
could be corrupted).

First we describe the proof informally. In the protocol, A tries to
transmit the secret message to B assuming that one of the directed
paths from B to A is not corrupted. This is done by running k + 1
concurrent sub-protocols in phase one, in each sub-protocol B uses
one of the directed paths from B to A to send some feedback
information to A. Since there are k + 1 directed node disjoint paths
from B to A and there are at most k corrupted paths, B will be
guaranteed to receive the correct secret.

A and B execute the following protocol on the path set {pi : 1 ≤
i ≤ n}∪ {q} for each directed path q from B to A. First A chooses
R0 ∈R F and sends shares of R0 to B via the paths p1, . . . , pn

using a (k + 1)-out-of-n MDS secret sharing scheme. If there is no
error in the received shares, B recovers R0. Otherwise B needs help
from A and B sends the received shares back to A via the B to A
path q. The problem is that: B may receive help even if B has never
asked for. However B can detect this. Therefore B always works
with A on such a protocol and recovers the correct R0. Then A
sends R1 = MA −R0 using a (k +1)-out-of-n MDS secret sharing
scheme. If there is no error in the received shares of R1, B has
found the secret and can terminate the protocol. If B cannot correct
these errors, B needs to continue the protocol. In this situation, B
distinguishes the following two cases:

1) B has not asked for help in the transmission of R0. B can ask
for help now and B will then recover the secret MA.

2) B has asked for help in the transmission of R0. In this case B
cannot ask for help (otherwise the adversary may learn both the
values of R0 and R1 and thus may recover the secret). The sub-
protocol needs to be restarted (that is, A constructs different
R0 and R1 for MA and sends them to B again). Each time
when A and B restart this sub-protocol, A sends the shares of
R0 and R1 only via these “non-corrupted” paths from A to B.
The “non-corrupted” paths are computed from the feedbacks

8

that A has received from the path q. If q is not corrupted, then
the computation is reliable. However, if q is corrupted, then
the computation is unreliable. Since there is at least one non-
corrupted path qi0 from B to A, B recovers the secret from
the sub-protocol running on the path set {p1, . . . , pn}∪{qi0}.

If B asks for help in the transmission of R0, then both A and
B “identify” the corrupted paths from A and B according to the
information that B sends to A via the path q. If k′ dishonest paths
from A to B have been (correctly or incorrectly) identified at the
restart of the sub-protocol, A uses a (k+1)-out-of-(2k+1−k′) MDS
secret sharing scheme. This MDS secret sharing scheme will only be
used for error detection (or message recovery in the case that no error
occurs), thus it can be used to detect 2k+1−k′−k−1 = k−k′ errors.
Due to the fact that this MDS secret sharing scheme cannot detect k
errors we need to organize ourselves that B will never use incorrectly
identified paths from A to B since otherwise B could compute the
incorrect “secret”. This is easy to be addressed by having B detect
whether the path q from B to A is dishonest or not. This is done by
having A reliably send to B what A received via the path q. Since
a (k + 1)-out-of-(2k + 1) MDS secret sharing scheme can detect
k errors, both A and B identify at least k′ ≥ k − u + 1 dishonest
paths from A to B in the first run of the sub-protocol. During each
following run of the sub-protocol, B will either recover the secret
message (when no error occurs) or detect at least one corrupted path
from A to B (A could also detect the corrupted path from A to B
according to the information A received on the path q). Thus the
sub-protocol will be restarted at most k times.

Now we present the entire protocol formally.
Step 1 For each directed path q from B to A, A and B run the

sub-protocol between Step 2 and Step 10 (the sub-protocols
for the k + 1 paths could be run in parallel).

Step 2 A sets AB CHANNELA = {p1, . . . , pn} and jA = 0.
B sets AB CHANNELB = {p1, . . . , pn} and jB = 0.

Step 3 Let nj = |AB CHANNELA|. A chooses R0 ∈R F,
and constructs (k + 1)-out-of-nj MDS secret shares
{sA

i : pi ∈ AB CHANNELA} of R0. For each pi ∈
AB CHANNELA, A sends sA

i to B via the path pi.
Step 4 For each pi ∈ AB CHANNELB , B receives sB

i from A
via the path pi. B distinguishes the following two cases:

1) B can recover R0. B recovers R0 only if there is no
error in the received shares. B sends “ok” to A via
the path q.

2) B cannot recover R0. B sends {sB
i : pi ∈

AB CHANNELB} to A via the path q.
Step 5 A distinguishes the following two cases:

1) A receives “ok” via the path q. A reliably sends “ok”
to B.

2) A receives {s̄B
i : pi ∈ AB CHANNELA} (or

sets default values if the received values are not in
valid format). A sets BADA = {pi : s̄B

i 6= sA
i }

and reliably sends {s̄B
i : pi ∈ AB CHANNELA}

and BADA to B. A sets AB CHANNELA =
AB CHANNELA \ BADA,

Step 6 B distinguishes the following two cases:
1) B reliably receives “ok” from A. If B sent “ok” to

A in the Step 4, then goes to Step 7. Otherwise, B
terminates this sub-protocol.

2) B reliably receives {s̄B
i : pi ∈ AB CHANNELB}

and BADB from A. If s̄B
i = sB

i for
all pi ∈ AB CHANNELB , then B sets
AB CHANNELB = AB CHANNELB \ BADB ,

recovers R0 from {sB
i : pi ∈ AB CHANNELB},

and goes to Step 7. Otherwise, B terminates this
sub-protocol.

Step 7 Let nj = |AB CHANNELA|. A constructs (k + 1)-out-
of-nj MDS secret shares {sA

i : pi ∈ AB CHANNELA}
of R1 = MA −R0. For each pi ∈ AB CHANNELA, A
sends sA

i to B via the path pi.
Step 8 For each pi ∈ AB CHANNELB , B receives sB

i from A
via the path pi. B distinguishes the following two cases:

1) B can recover R1. B recovers R1 only if there is no
error in the received shares. B sends “ok” to A via
the path q.

2) B cannot recover R1. For this situation we need to
distinguish two cases:

2.a) B sent “ok” to A in Step 4. That is, B has
not asked for help to recover R0. Then B
can ask for help now. B sends {sB

i : pi ∈
AB CHANNELB} to A via the path q.

2.b) B sent the received shares to A in Step 4. That
is, B has asked for help to recover R0. Then B
cannot ask for help now. B sends “continue to the
next round” to A via the path q.

Step 9 A distinguishes the following three cases:
1) A receives “ok” via the path q. A reliably sends “ok”

to B.
2) A receives “continue to the next round” via the path

q. A sets jA = jA + 1, reliably sends “continue to
the next round” to B, and goes to Step 3.

3) A receives {s̄B
i : pi ∈ AB CHANNELA} (or sets

default values if the received values are in invalid
format). A sets BADA = {pi : s̄B

i 6= sA
i },

AB CHANNELA = AB CHANNELA \ BADA,
and reliably sends {s̄B

i : pi ∈ AB CHANNELA}
and BADA to B.

Step 10 B distinguishes the following three cases:
1) B reliably receives “ok” from A. If B sent “ok” to A

in the Step 8, then B has recovered the secret. B ter-
minates the entire protocol. Otherwise, B terminates
this sub-protocol.

2) B reliably receives “continue to the next round”. If
B sent “continue to the next round” to A in the Step
8, then B sets jB = jB + 1 and goes to Step 3.
Otherwise, B terminates this sub-protocol.

3) B reliably receives {s̄B
i : pi ∈ AB CHANNELB}

and BADB from A. If s̄B
i = sB

i for
all pi ∈ AB CHANNELB , then B sets
AB CHANNELB = AB CHANNELB \ BADB ,
recovers R1 from {sB

i : pi ∈ AB CHANNELB},
computes the secret MB = R0 +R1, and terminates
the entire protocol. Otherwise, B terminates this
sub-protocol.

It is straightforward to show that at the beginning of each run of
the sub-protocol between Step 2 and Step 10, Both A and B have
the same sets of AB CHANNEL, that is, AB CHANNELA =
AB CHANNELB at Step 2. From the analysis before the above
protocol, it is straightforward that the above protocol is a (0, 0)-
secure message transmission protocol against a k-active adversary.
Q.E.D.

VI. SECURE MESSAGE TRANSMISSIONS IN HYPERGRAPHS

Applications of hypergraphs in secure communications have been
studied by Franklin and Yung in [8]. A hypergraph H is a pair (V, E)

9

where V is the node set and E is the hyperedge set. Each hyperedge
e ∈ E is a pair (A, A∗) where A ∈ V and A∗ is a subset of V . In
a hypergraph, we assume that any message sent by a node A will be
received identically by all nodes in A∗, whether or not A is faulty,
and all parties outside of A∗ learn nothing about the content of the
message.

Let A, B ∈ V be two nodes of the hypergraph H(V, E). We say
that there is a “direct link” from node A to node B if there exists
a hyperedge (A, A∗) such that B ∈ A∗. We say that there is an
“undirected link” from A to B if there is a directed link from A to
B or a directed link from B to A. If there is a directed (undirected)
link from Ai to Ai+1 for every i, 0 ≤ i < k, then we say that there
is a “directed path” (“undirected path”) from A0 to Ak. A and B
are “strongly k-connected” (“weakly k-connected”) in the hypergraph
H(V, E) if for all S ⊂ V \ {A, B}, |S| < k, there remains a
directed (undirected) path from A to B after the removal of S and
all hyperedges (X, X∗) such that S ∩ (X∗ ∪ {X}) 6= ∅. Franklin
and Yung [8] showed that reliable and private communication from
A to B is possible against a k-passive adversary if and only if A and
B are strongly 1-connected and weakly (k +1)-connected. It should
be noted that B and A are strongly k-connected does not necessarily
mean that A and B are strongly k-connected.

Following Franklin and Yung [8], and, Franklin and Wright [7],
we consider multicast as our only communication primitive in this
section. A message that is multicast by any node A in a hypergraph is
received by all nodes A∗ with privacy (that is, nodes not in A∗ learn
nothing about what was sent) and authentication (that is, nodes in A∗

are guaranteed to receive the value that was multicast and to know
which node multicast it). We assume that all nodes in the hypergraph
know the complete protocol specification and the complete structure
of the hypergraph.

Definition 6.1: Let H(V, E) be a hypergraph, A, B ∈ V be
distinct nodes of H , and k ≥ 0. A, B are k-separable in H if
there is a node set W ⊂ V with at most k nodes such that any
directed path from A to B goes through at least one node in W . We
say that W separates A, B.
Remark. Note that there is no straightforward relationship between
strong connectivity and separability in hypergraphs.

Theorem 6.2: Let H(V, E) be a hypergraph, A, B ∈ V be distinct
nodes of H , and k ≥ 0. The nodes A and B are not 2k-separable if
and only if there are 2k + 1 directed node disjoint paths from A to
B in H .
Proof. This follows directly from the maximum-flow minimum-cut
theorem in classical graph theory. For details, see, e.g., [6]. Q.E.D.

Theorem 6.3: Let H(V, E) be a hypergraph, A, B ∈ V be distinct
nodes of H , and k ≥ 0. A necessary and sufficient condition
for reliable message transmission from A to B against a k-active
adversary is that A and B are not 2k-separable in H .
Proof. First assume that A and B cannot be separated by a 2k-node
set. By Theorem 6.2, there are 2k + 1 directed node disjoint paths
from A to B in H . Thus reliable message transmission from A to
B is possible.

Next assume that A and B can be separated by a 2k-node set W in
H . We shall show that reliable message transmission is impossible.
Suppose that π is a message transmission protocol from A to B and
let W = W0 ∪ W1 be a 2k-node separation of A and B with W0

and W1 each having at most k nodes. Let m0 be the message that
A transmits. The adversary will attempt to maintain a simulation of
the possible behavior of A by executing π for message m1 6= m0.
The strategy of the adversary is to flip a coin and then, depending on
the outcome, decide which set of W0 or W1 to control. Let Wb be
the chosen set. In each execution step of the transmission protocol,
the adversary causes each node in Wb to follow the protocol π as

if the protocol were transmitting the message m1. This simulation
succeeds with nonzero probability. Since B does not know whether
b = 0 or b = 1, at the end of the protocol B cannot decide whether
A has transmitted m0 or m1 if the adversary succeeds. Thus with
nonzero probability, the reliability is not achieved. Q.E.D.

Theorem 6.3 gives a sufficient and necessary condition for achiev-
ing reliable message transmission against a k-active adversary over
hypergraphs. In the following example, we show that this condition
is not sufficient for achieving privacy against a k-active adversary
(indeed, even not for a k-passive adversary).

Example 1: Let H(V, Eh) be the hypergraph in Figure 1 where
V = {A, B, v1, v2, v, u1, u2} and Eh = {(A, {v1, v2}),
(v1, {v, B}), (v2, {v, B}), (A, {u1, u2}), (u1, {v, B}),
(u2, {v, B})}. Then the nodes A and B are not 2-separable
in H . Theorem 6.3 shows that reliable message transmission from
A to B is possible against a 1-active adversary. However, the
hypergraph H is not weakly 2-connected (the removal of the node
v and the removal of the corresponding hyperedges will disconnect
A and B). Thus, the result by Franklin and Yung [8] shows that
private message transmission from A to B is not possible against a
1-passive adversary.

� �
�� � � �

��� � ��

h
h h h h

h
h

�
���

�����

@
@

@R

H
HHH

HHHj

@
@

@
@

@
@

@@R

H
HHH

HHHj

A
A
A
A
A
A
AAU

S
S

SSw

�
���

����

�
�

�	

�
�

��/

�
�

�
�

�
�

��

�
�

�
�

�
�

��	

A

B

v1 u1 u2v2

v

Fig. 1. The hypergraph H(V, Eh) in Example 1

Theorem 6.4: Let δ > 0 and A and B be two nodes in a
hypergraph H(V, E) satisfying the following conditions:

1) A and B are not 2k-separable in H .
2) B and A are not 2k-separable in H .
3) A and B are strongly k-connected in H .

Then there is a (0, δ)-secure message transmission protocol from A
to B against a k-active adversary.
Proof. Assume that the conditions of the theorem is satisfied. For
each k-node subset set S of V \ {A, B}, let pS be a directed path
from A to B which witnesses that A and B are strongly k-connected
by removing the nodes in S and corresponding hyperedges in H . Let
S = {S : S ⊂ V \ {A, B}, |S| = k} and P = {pS : S ∈ S}. Then
A transmits the message MA to B using the following protocol.

Step 1 For each S ∈ S, A chooses a random pair (aS , bS) ∈R F2,
and transmits this pair to B via the path pS .

Step 2 For each S ∈ S, B receives a pair (aB
S , bB

S) from A via the
path pS .

Step 3 For each S ∈ S, B chooses a random rS ∈R F and
computes sS = auth(rS ; aB

S , bB
S).

Step 4 B reliably transmits s = 〈〈rS , sS〉 : S ∈ S〉 to A.
Step 5 A reliably receives the value s = 〈〈rS , sS〉 : S ∈ S〉 from

B.

10

Step 6 A computes the key index set Kindex = {iS :
sS = auth(rS ; aA

S , bA
S)} and the shared secret KA =∑

iS∈Kindex
aA

S .

Step 7 A reliably transmits 〈Kindex, M
A +KA〉 to B, where MA

is the secret message.
Step 8 B reliably receives the value 〈Kindex, c〉 from A. B com-

putes the secret KB =
∑

iS∈Kindex
aB

S , and decrypts the
message MB = c−KB .

It is possible that aA
S 6= aB

S but auth(rS ; aA
S , bA

S) = auth(rS ; aB
S , bB

S)
for some S ∈ S. However this probability is negligible. Thus the
above protocol is reliable with high probability. Since A and B are
strongly k-connected in H , there is a pair (aS , bS) such that (aS , bS)
reliably reaches B and the adversary cannot infer any information of
aS from its view. Thus the above protocol is (0, δ)-secure against a
k-active adversary if one chooses sufficiently large F. Q.E.D.

The results in Sections III and IV show that the condition in
Theorem 6.4 is not necessary. For example, for a graph G(V, E) with
2k directed node disjoint paths from A to B, and 1 directed node
disjoint path from B to A, A and B are 2k separable in G(V, E).
But according to Theorem 3.4, there is a (0, δ)-secure message
transmission protocol from A to B against a k-active adversary.

VII. SECURE MESSAGE TRANSMISSION OVER NEIGHBOR

NETWORKS

A. Definitions

A special case of the hypergraph is the neighbor networks. A
neighbor network is a graph G(V, E). In a neighbor network, a node
A ∈ V is called a neighbor of another node B ∈ V if there is an edge
(A, B) ∈ E. In a neighbor network, we assume that any message
sent by a node A will be received identically by all its neighbors,
whether or not A is faulty, and all parties except for A’s neighbors
learn nothing about the content of the message.

For a neighbor network G(V, E) and two nodes A, B in it, Franklin
and Wright [7], and, Wang and Desmedt [20] showed that if there
are n multicast lines (that is, n paths with disjoint neighborhoods)
between A and B and there are at most k malicious (Byzantine style)
processors, then the condition n > k is necessary and sufficient
for achieving efficient probabilistically reliable and perfect private
communication.

For each neighbor network G(V, E), there is a hypergraph
HG(V, Eh) which is equivalent to G(V, E) in functionality.
HG(V, Eh) is defined by letting Eh be the set of hyperedges (A, A∗)
where A ∈ V and A∗ is the set of neighbors of A.

Let A and B be two nodes in a neighbor network G(V, E). We
have the following definitions:

1) A and B are k-connected in G(V, E) if there are k node
disjoint paths between A and B in G(V, E).

2) A and B are weakly k-hyper-connected in G(V, E) if A and
B are weakly k-connected in HG(V, Eh).

3) A and B are k-neighbor-connected in G(V, E) if for any set
V1 ⊆ V \{A, B} with |V1| < k, the removal of neighbor(V1)
and all incident edges from G(V, E) does not disconnect A and
B, where

neighbor(V1) =
V1 ∪ {A ∈ V : ∃B ∈ V1 such that (B, A) ∈ E} \ {A, B}.

4) A and B are weakly (n, k)-connected if there are n node
disjoint paths p1, . . . , pn between A and B and, for any node
set T ⊆ (V \ {A, B}) with |T | ≤ k, there exists 1 ≤ i ≤ n
such that all nodes on pi have no neighbor in T .

It is easy to check that the following relationships hold.

weak (n, k − 1)-connectivity (n ≥ k) ⇒ k-neighbor-connectivity
⇒ weak k-hyper-connectivity ⇒ k-connectivity

In the following examples, we show that these implications are strict.
Example 2: Let G(V, E) be the graph in Figure 2 where V =

{A, B, C, D} and E = {(A, C), (C, B), (A, D), (D, B), (C, D)}.
Then it is straightforward to check that G(V, E) is 2-connected but
not weakly 2-hyper-connected.

h h
h h!!!!

aaaa �
��

aaaa
A B

C

D

Fig. 2. The graph G(V, E) in Example 2

Example 3: Let G(V, E) be the graph in Figure 3 where V =
{A, B, C, D, F} and E = {(A, C), (A, D), (C, B), (D, B), (C, F),
(F, D)}. Then it is straightforward to check that A and B are weakly
2-hyper-connected but not 2-neighbor-connected.

h hh
h

h���

�
��Z

Z
ZZ

HHH
A B

C

D

F

Fig. 3. The graph G(V, E) in Example 3

Example 4: Let G(V, E) be the graph in Figure 4 where V =
{A, B, C, D, E, F , G, H} and E = {(A, C), (C, D), (D, E)
(E, B), (A, F), (F, G), (G, H) (H, B), (C, H), (E, F)}. Then it
is straightforward to check that A and B are 2-neighbor-connected
but not weakly (2, 1)-connected.

h h h h
h h h h��� HHH

H
HH !!!!

HH
HHH

HH���
����

A B

C D E

F G H

Fig. 4. The graph G(V, E) in Example 4

Example 2 shows that k-connectivity does not necessarily imply
weak k-hyper-connectivity. Example 3 shows that weak k-hyper-
connectivity does not necessarily imply k-neighbor-connectivity. Ex-
ample 4 shows that k-neighbor connectivity does not necessarily
imply weak (n, k − 1)-connectivity for some n ≥ k.

B. (0, δ)-Secure message transmission over neighbor networks

Wang and Desmedt [20] have given a sufficient condition for
achieving (0, δ)-security message transmission against a k-active
adversary over neighbor networks. In this section, we show that their
condition is not necessary.

Theorem 7.1: (Wang and Desmedt [20]) If A and B are weakly
(n, k)-connected for some k < n, then there is an efficient (0, δ)-
secure message transmission between A and B.

The condition in Theorem 7.1 is not necessary. For example, the
neighbor network G in Example 3 is not 2-neighbor-connected, thus

11

not weakly (2, 1)-connected. In the following we present a (0, δ)-
secure message transmission protocol against a 1-active adversary
from A to B for the neighbor network of Example 3. In the protocol,
we will often say that a node X sends a value x to its neighbor node
Y . This could be achieved in a neighbor network by the following
procedures:

1) Y broadcasts a value y to all its neighbors.
2) X broadcasts x + y to all of its neighbors.
3) Y recovers the message x using the value y.

In this procedure, Y will receive the value x secretly only if X and
Y have no common neighbors (or they have no collaborating faulty
neighbors).

Message transmission protocol for neighbor network G in Ex-
ample 3.

Step 1 A chooses two random pairs (rA
1 , rA

2) ∈R F2 and
(rA

3 , rA
4) ∈R F2. A sends (rA

1 , rA
2) to C and (rA

3 , rA
4)

to D.
Step 2 B chooses two random pairs (rB

1 , rB
2) ∈R F2 and

(rB
3 , rB

4) ∈R F2. B sends (rB
1 , rB

2) to C and (rB
3 , rB

4)
to D.

Step 3 C chooses a random pair (a1, b1) ∈R F2. C sends (a1 +
rA
1 , b1 + rA

2) to A and (a1 + rB
1 , b1 + rB

2) to B.
Step 4 D chooses a random pair (a2, b2) ∈R F2. D sends (a2 +

rA
3 , b2 + rA

4) to A and (a2 + rB
3 , b2 + rB

4) to B.
Step 5 From the messages received from C and D, A computes

(aA
1 , bA

1) and (aA
2 , bA

2).
Step 6 From the messages received from C and D, B computes

(aB
1 , bB

1) and (aB
2 , bB

2).
Step 7 B chooses a random r ∈R F, computes s1 =

auth(r; aB
1 , bB

1) and s2 = auth(r; aB
2 , bB

2). Using the
probabilistically reliable message transmission protocol of
Franklin and Wright [7], B transmits 〈r, s1, s2〉 to A.

Step 8 Let 〈rA, sA
1 , sA

2 〉 be the message received by A in the
last step, A computes the key index set Kindex = {i :
sA

i = auth(rA; aA
i , bA

i)}. A also computes the shared
secret KA =

∑
i∈Kindex

aA
i .

Step 9 Using the probabilistically reliable message transmis-
sion protocol of Franklin and Wright [7], A transmits
〈Kindex, M

A + KA〉 to B, where MA is the secret
message.

Step 10 Let 〈KB
index, c

B〉 be the message that B received in the last
step. B computes the shared secret KB =

∑
i∈KB

index
aB

i ,

and decrypts the message MB = cB −KB .
It is straightforward to check that the above protocol is an efficient

(0, δ)-secure message transmission protocol from A to B against a
1-active adversary.

Example 1 shows that for a general hypergraph, the existence of a
reliable message transmission protocol does not imply the existence
of a private message transmission protocol. We show that this is true
for probabilistic reliability and perfect privacy in neighbor networks
also.

Example 5: Let G(V, E) be the neighbor network in Figure 5
where V = {A, B, C, D, E, F, G} and E = {(A, C), (C, D),
(D, B), (A, E), (E, F), (F, B), (G, C), (G, D), (G, E), (G, F)}.
Then there is a probabilistic reliable message transmission protocol
from A to B against a 1-active adversary in G. But there is no
private message transmission from A to B against a 1-passive (or
1-active) adversary in G.

Proof. It is straightforward to check that G(V, E) is not weakly 2-
hyper-connected. Indeed, in the hypergraph HG(V, Eh) of G(V, E),

h
h h

h
h h

h�
��

Q
QQ

Q
QQ

"
"

""
�

�

��
Z

Z

@@

A B

C D

E F

G

Fig. 5. The graph G(V, E) in Example 5

the removal of node G and the removal of the corresponding hyper-
edges will disconnect A and B completely. Thus Franklin and Yung’s
result in [8] shows that there is no private message transmission
protocol against a 1-passive (or 1-active) adversary from A to B.
It is also straightforward to check that Franklin and Wright’s [7]
reliable message transmission protocol against a 1-active adversary
works for the two paths (A, C, D, B) and (A, E, F, B). Q.E.D.

Though weak k-hyper-connectivity is a necessary condition for
achieving probabilistically reliable and perfectly private message
transmission against a (k − 1)-active adversary, we do not know
whether this condition is sufficient. We conjecture that there is
no probabilistically reliable and perfectly private message transmis-
sion protocol against a 1-active adversary for the weakly 2-hyper-
connected neighbor network G(V, E) in Figure 6, where V = {A,
B, C, D, E, F , G, H} and E = {(A, C), (C, D), (D, E), (E, B),
(A, F), (F, G), (G, H), (H, B), (D, G)}. Note that in order to prove
or refute our conjecture, it is sufficient to show whether there is a
probabilistically reliable message transmission protocol against a 1-
active adversary for the neighbor network. For this specific neighbor
network, the trick in our previous protocol could be used to convert
any probabilistically reliable message transmission protocol to a
probabilistically reliable and perfectly private message transmission
protocol against a 1-active adversary.

h h h h
h h h h�

�� HHH

H
HH !!!!

A B

C D E

F G H

Fig. 6. The graph G(V, E)

ACKNOWLEDGEMENT

The authors would like to thank the anonymous referees for
comments on improving the presentation of this paper.

REFERENCES

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computing. In: Proc.
ACM STOC, ’88, pages 1–10, ACM Press, 1988.

[2] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditional secure
protocols. In: Proc. ACM STOC ’88, pages 11–19, ACM Press, 1988.

[3] Y. Desmedt and Y. Wang. Perfectly secure message transmission revis-
ited. In: Proc. Eurocrypt ’02, pages 502–517, Lecture Notes in Computer
Science 2332, Springer-Verlag, 2002.

[4] D. Dolev. The Byzantine generals strike again. J. of Algorithms, 3:14–30,
1982.

[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message
transmission. J. of the ACM, 40(1):17–47, 1993.

[6] L.R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

12

[7] M. Franklin and R. Wright. Secure communication in minimal connec-
tivity models. Journal of Cryptology, 13(1):9–30, 2000.

[8] M. Franklin and M. Yung. Secure hypergraphs: privacy from partial
broadcast. In: Proc. ACM STOC ’95, pages 36–44, ACM Press, 1995.

[9] E. Gilbert, F. MacWilliams, and N. Sloane. Codes which detect decep-
tion. The BELL System Technical Journal, 53(3):405–424, 1974.

[10] O. Goldreich, S. Goldwasser, and N. Linial. Fault-tolerant computation
in the full information model. SIAM J. Comput. 27(2):506–544, 1998.

[11] V. Hadzilacos. Issues of Fault Tolerance in Concurrent Computations.
PhD thesis, Harvard University, Cambridge, MA, 1984.

[12] W. Jackson and K. Martin. Combinatorial models for perfect secret
sharing schemes. Journal of Comb. Mathematics and Comb. Computing
28:249–265, 1998.

[13] M. Kumar, P. Goundan, K. Srinathan, and C. Rangan. On perfectly
secure communication over arbitrary networks. In: Proc. 21st ACM
PODC, pages 193–202, 2002.

[14] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting
codes. North-Holland Publishing Company, 1978.

[15] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon
codes. Comm. ACM, 24(9):583–584, September 1981.

[16] T. Rabin. Robust sharing of secrets when the dealer is honest or faulty.
J. of the ACM, 41(6):1089–1109, 1994.

[17] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In: Proc. ACM STOC ’89, pages 73–
85, ACM Press, 1989.

[18] A. Shamir. How to share a secret. Commun. ACM, 22:612–613,
November 1979.

[19] K. Srinathan, A. Narayanan, and C. Rangan. Optimal Perfectly Secure
Message Transmission. In: Proc. Crypto ’04, pages 545–561, 2004.

[20] Y. Wang and Y. Desmedt. Secure communication in multicast chan-
nels: the answer to Franklin and Wright’s question. J. of Cryptology,
14(2):121–135, 2001.

Yongge Wang Dr. Yongge Wang received his PhD
degree from University of Heidelberg of Germany.
Since then, Dr. Wang has worked in the industry for
a few years until he joined UNC Charlotte in 2002.
In particular, Dr. Wang has worked in Certicom as a
cryptographic mathematician specializing in efficient
cryptographic techniques for wireless communica-
tions. Dr. Wang has been actively participated in
and contributed to the standards bodies such as
IETF, W3C XML Security protocols, IEEE 1363
standardization groups for cryptographic techniques,

and ANSI T11 groups for SAN network security standards. Dr. Wang is the
inventor of Remote Password Authentication protocols SRP5 which is an
IEEE 1363.2 standard. Dr. Wang has also worked with Cisco researchers and
American Gas Association researchers to design security protocols for the
SCADA industry.

Yvo Desmedt Dr. Yvo Desmed received his Ph.D.
(Summa cum Laude) from the University of Leuven,
Belgium (1984). He is presently the BT Chair of
Information Security at University College London,
UK. He is also a courtesy professor at Florida
State University. His interests include cryptography,
network security and computer security. He was
(co-)program chair of ICITS 2007, CANS 2005,
PKC 2003, the 2002 ACM Workshop on Scientific
Aspects of Cyber Terrorism and Crypto ’94. He is
editor-in-chief of the IEE Proceedings of Informa-

tion Security, editor of the Journal of Computer Security, of Information
Processing Letters and of Advances in Mathematics of Communications. He
has given invited lectures at several conferences and workshop in 5 different
continents. He has authored over 150 refereed papers.

