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Abstract. Since Yao introduced the garbled circuit concept in 1980s, it has been
an open problem to design efficient reusable garbled Turing machines/circuits.
Recently, Goldwasser et al and Garg et al answered this question affirmatively by
designing reusable garbled circuits and reusable garbled Turing machines. Both
of these reusable garbling schemes use fully homomorphic encryption (FHE)
schemes as required building components. Here, we use multilinear maps to
design a reusable Turing machine garbling scheme that will not need any FHE
schemes. Though it is not clear whether our multilinear map based garbling ap-
proach could be more efficient than FHE based garbling approach, the goal of
this paper is to develop alternative techniques for resuable garbling schemes to
stimulate further research in this direction.

1 Introduction

Yao [24] introduced the garbled circuit concept which allows computing a function f
on an input x without leaking any information about the input x or the circuit used for
the computation of f(x). Since then, garbled circuit based protocols have been used
in numerous places and it has become one of the fundamental components of secure
multi-party computation protocols. Yao’s garbled circuits could be used to evaluate the
circuit on one input value only.

Since Yao’s work in 1980s, it has been an open problem to design efficient reusable
garbled Turing machines. Traditionally, a Turing machine M is first converted to a
circuit CM which is then converted to a garbled circuit CM using Yao’s technique.
However, using a garbled circuit to evaluate an algorithm on encrypted data takes the
worst-case runtime of the algorithm on all inputs of the same length since Turing ma-
chines are simulated by circuits via unrolling loops to their worst-case runtime, and via
considering all branches of a computation. It is preferred that the runtime of the garbled
algorithm on garbled input x (of x) should be approximately the same as that of the cor-
responding un-garbled algorithm on input x. To be more specific, the open problem is
to design garbled Turing machines that are efficient from following two aspects: (1) the
garbled Turing machine M has smaller size than CM ; (2) For each input x, the evalua-
tion of M on x takes approximately the same time that M takes on x. In this paper, we
answer this open problem affirmatively by showing that for each Turing machine M ,
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we can construct a reusable garbled Turing machine M approximately the same size of
M without using fully homomorphic encryption schemes.

Recently, Goldwasser et al [17] and Garg et al [12] constructed reusable garbled
circuits by using techniques of computing on encrypted data such as fully homomorphic
encryption (FHE) schemes and attribute-based encryption (ABE) schemes for arbitrary
circuits. Goldwasser et al [16] also constructed reusable garbled Turing machines by
employing techniques of FHE, witness encryption (WE) schemes, and the existence of
SNARKs (Succinct Non-interactive Arguments of Knowledge). It would be interesting
to know whether one can design reusable garbled Turing machines without using FHE
schemes.

Using Garg et al’s indistinguishability obfuscators for NC1 [12], this paper designs
a Turing machine garbling scheme without using FHE schemes. Though it is not clear
whether multilinear maps based indistinguishability obfuscators could be more efficient
than FHE, the goal of this paper is to develop alternative techniques for resuable gar-
bling schemes to stimulate further research in this direction. The techniques that we
used to construct garbled Turing machines could also be used to construct indistin-
guishability obfuscators for all polynomial size circuits without FHE schemes. Though
it has been shown (see, e.g., [1]) that several proposed cryptographic multilinear map
construction techniques are insecure, there has been a promising trend (see, e.g., Huang
[18,19]) of using Weil descent to design secure trilinear maps. If the security of these
Weil descent based trilimear maps could be verified, they should be sufficient for our
garbled Turing machine design.

Independently of this work, Koppula, Lewko, and Waters [21] recently designed
indistinguishability obfuscation for Turing machines using Garg et al’s indistinguisha-
bility obfuscators, one-way functions and injective pseudo random generators. Some
other recent related works on iterated circuit based garbling schemes could be found in
Lin and Pass [22], Bitansky, Garg, and Telang [6], Canetti and Holmgren [10], Garg,
Lu, Ostrovsky, and Scafuro [14], and Cannetti, Holmgren, Jain, and Vaikuntanathan
[9]. It should also be noted that Boyle, Chung, and Pass [7] and Ananth, Boneh, Garg,
Sahai, and Zhandry [2] showed how to transform Garg et al’s indistinguishability ob-
fuscators into one that operates on Turing machines with a strong security assumption
called differing input obfuscation.

We conclude this section with the introduction of some notations. A Turing machine
is defined as a 5-tuple M = 〈Q,Γ, δ, q0, qF 〉 with the properties:

– Q is a finite, non-empty set of states.
– Γ is a finite, non-empty set of tape alphabet symbols. Among symbols in Γ, a spe-

cial symbol B ∈ Γ is the blank symbol.
– q0 ∈ Q is the initial state, and qF ∈ Q is the final accepting state.
– δ : (Q \ {qF }) × Γ → Q × Γ × {L,R} is the transition function, where L is left

shift, R is right shift.
A Turing machine M is called oblivious (OTM) if there exists a function s(t) such

that M ’s head is at cell position s(t) at time t regardless of M ’s input values. Since
every T (n)-time bounded Turing Machine can be simulated by anO(T (n) log(T (n)))-
time bounded OTM (see, Pippenger and Fischer [23]) all along this paper all TMs are
oblivious.



For our garbled Turing machine M , it takes approximately the same time for M to
stop on an encrypted input x̄ as that the un-garbledM to stop on the un-encrypted input
x. If the running time of Turing machines on specific inputs needs to be protected, then
one can easily modify Turing machines in such a way that it takes the same time to stop
on all inputs of the same length. The details are omitted in this paper.

For a string x ∈ Γ∗, we use x[i] to denote the ith element of x. That is, x =
x[0] · · ·x[n−1] where n is the length of x. We use x ∈R Γ to denote that x is randomly
chosen from Γ with the uniform distribution. We use κ to denote the security parameter,
p(·) to denote a function p that takes one input, and p(·, ·) to denote a function p that
takes two inputs. A function f is said to be negligible in an input parameter κ if for all
d > 0, there exists n0 such that for all κ > n0, f(κ) < κ−d. For convenience, we write
f(κ) = negl(κ). Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N , are said to be
computationally indistinguishable if for all probabilistic polynomial-time algorithm D,
we have

|Prob[D(Xκ, 1
κ) = 1]− Prob[D(Yκ, 1

κ) = 1]| = negl(κ).

Throughout the paper, we use probabilistic experiments and denote their outputs us-
ing random variables. For example, Expreal

E,A(1κ) represents the output of the real ex-
periment for scheme E with adversary A on security parameter κ. Throughout the
paper, E = (E.KeyGen, E.Enc, E.Dec) denotes a semantically secure symmetric-key en-
cryption scheme and PK = (PK.KeyGen, PK.Enc, PK.Dec) denotes a semantically secure
public-key encryption scheme.

The structure of this paper is as follows. In Section 2, we briefly present the intu-
ition for our construction of reusable garbled Turing machines. Section 3 reviews the
reusable circuit garbling scheme for NC1 circuits. Section 4 presents the construction
of reusable garbled Turing machines with ABE2. Section 5 presents the construction of
reusable garbled Turing machines without ABE2.

2 Overview of our construction

In this section, we describe the intuition underlying our constructions. Assuming the
hardness of multilinear Jigsaw puzzles (that is, in the generic multilinear encoding
model), Garg et al [12] constructed functional encryption schemes for NC1 circuits
with succinct ciphertexts. Garg et al then extended their results to all polynomial size
circuits using fully homomorphic encryption (FHE) schemes. As a corollary, for each
circuit C ∈ NC1, one can construct a reusable garbled circuit C without using FHE
schemes. After Garg et al’s [12] work, several other obfuscators for complexity class
NC1 have been proposed. For example, Brakerski and Rothblum [8] and Barak et al
[3] designed virtual black-box obfuscators for NC1 without using FHE.

In the following, we present our idea of constructing reusable Turing machines gar-
bling schemes without using FHE schemes. This construction can also be used to design
succinct ciphertext functional encryption schemes for all Turing machines without em-
ploying FHE schemes. Based on Pippenger and Fischer’s results [23], we assume that
the given Turing machine M is oblivious. In order to garble a Turing machine M , the
transition function δ of M is converted to a circuit Cδ .



The circuit Cδ takes three inputs: the current head tape symbol b, the current state q
of M , and a special session control tape that contains the session information and seed
for pseudorandom generators. This session control tape is used to provide session infor-
mation for Cδ to check whether the current head tape symbol and the current state ofM
are consistent. There are several reasons for including this additional tape. For example,
it could be used to prevent the adversary from feeding tape symbols and Turing machine
states from one execution of M(x) to another execution of M(y) and to prevent the ad-
versary from replaying the execution of M(x) on an early or later stage of the tape cell
contents. Given these inputs, Cδ checks whether these inputs are consistent (e.g., all of
them contain the same random session identification string, the counters are consistent,
and the tape cell is the most recently updated one). If the inputs are consistent, Cδ finds
the matching transition rule and outputs the next head state q′ and changes the current
tape symbol to b′. Since Cδ will be converted to Garg et al’s reusable garbled circuit Cδ
and Cδ only accepts appropriately encoded inputs, both q′ and b′ need to be appropri-
ately encoded byCδ before output. Using information from the three inputs,Cδ updates
the session control tape and uses the encoding key (that is, the public key of a public key
encryption scheme, this key could either be included as part of the input to the circuit
Cδ or be built-in Cδ itself) for Garg et al’s NC1 circuit garbling scheme to encode the
session control tape, the tape symbol b′, and the state q′ respectively. The encoding pro-
cess consists of encrypting the corresponding values using two public keys at the same
time and constructing a statistically simulation sound NIZK proof that the two cipher
texts are the encryption of the same plain text3. Furthermore, if the output state is qF ,
Cδ may output the Turing machine state qF in clear text without encoding so that the
evaluator knows that the Turing machine M stops. Gentry et al [15] showed that it is
possible to check whether a memory cell value is the most recently updated one using
NC1 circuits, and Ishai et al [20] showed that general cryptographic primitives such
as encryptions and commitments could be constructed in NC1 assuming the existence
of NC0 pseudorandom generators. Thus Cδ could be easily constructed in NC1 with
reasonable assumptions. Indeed, Garg et al’s construction [12] requires the existence of
an NC1 decryption circuit for a public key encryption scheme. In a summary, circuit
Cδ could be constructed in NC1. Thus Garg et al’s approach [12] implies a reusable
garbled circuit Cδ for Cδ without FHE.

Depending on the application scenario, the evaluator may or may not need to de-
crypt the encrypted final output of the Turing machine execution M(x). For example,
if a client submits the garbled Turing machine to a cloud data server to carry out com-
putation on his encrypted data at the cloud, the cloud only needs to return the encrypted
output to the client without decryption. However, in functional encryption schemes or
other applications, the evaluator needs to learn the decrypted output M(x). In this case,
the innovative ideas by Goldwasser et al [16] can be used to decrypt the output. That is,
an ABE2 scheme for Turing machines is used to provide keys for Yao’s one-time garbled
circuit to decrypt the output. The details are presented in Section 4.

3 Note that if we use recent virtual black-box obfuscators by Brakerski and Rothblum [8] and
Barak et al [3], then it is sufficient to encode the input using one public key and no NIZK proof
is needed.



Attribute-Based Encryption scheme ABE2 for Turing machines are relatively slow.
In order to improve the efficiency, we can design another reusable garbled circuit to de-
crypt the encrypted output M(x). For this approach, special caution needs to be taken.
For example, an active adversary may manipulate the encoded input tape x̄ by swap-
ping/repeating tape cells for x̄ to obtain a valid encoded tape for x′ 6= x. The adversary
may then runM on x̄′ to obtainM(x′) and run the reusable decryption circuit to decrypt
M(x′). In order to address these challenges, we use Chaitin’s universal self-delimiting
Turing machines [11]. The input to a self-delimiting Turing machine must be encoded
in a prefix-free domain. Without proper encoded prefix-free input, the self-delimiting
Turing machine would not enter the qF state. secure message authentication tags for
inputs. Furthermore, we also revise the Turing machine in such a way that before en-
tering the state qF , it selects a random secret key sko and encrypts the output M(x).
That is, the output tape contains encoded sko||E.Enc(sko,M(x)). An NC1 circuit Cd
is constructed to decrypt the output tape to sko||E.Enc(sko,M(x)) first and then use
sko to decrypt the actual output M(x). Since such kind of circuits exist in NC1, Garg
et al’s approach [12] can be used to obtain a reusable garbled circuit Cd. The detailed
construction of Cd is presented in Section 5.

In a summary, for each evaluation of a Turing machine M on an input x, Tur-
ing machine owner pads each bit x[i] with appropriate session control information to
x[i]||sessionb||i||0 and uses encoding keys for Garg’s NC1 reusable garbling scheme
to encode it to RGCnc1 .Enc(gsk, x[i]||sessionb||i||0) as the content of the i-th tape cell.
The padded suffix 0 denotes that this cell value is an input value. When a cell value is
modified at Turing machine step j, the value j is placed in the suffix. The Turing ma-
chine owner also encodes the session control information (e.g., session and random
seeds) and provides them in the session control tape and encodes the Turing machine
initial state q0. The evaluator uses Cδ to simulate the Turing machine M and uses an
ABE2 scheme or another reusable garbled circuit to decrypt the output.

3 Reusable garbled circuits for NC1

In this section, we review necessary techniques that are required for our construction.
We first present the formal definition of one-time and reusable garbling schemes for
circuits and Turing machines.

Definition 1. LetM = {Mn}n∈N be a family of circuits/Turing machines such that
Mn is a set of functions that take n-bit inputs. A garbling scheme forM is a tuple of
probabilistic polynomial time algorithms GS = (GS.Garble, GS.Enc, GS.Eval) with the
following properties

– (M, gsk) = GS.Garble(1κ,M) outputs a garbled circuit/Turing machine M and
a secret key gsk for M ∈Mn on the security parameter input κ.

– cx = GS.Enc(gsk, x) outputs an encoding cx for an input x ∈ {0, 1}∗.
– y = GS.Eval(M, cx) outputs a value y which should equal to M(x).

The garbling scheme GS is correct if the probability that GS.Eval(M, cx) 6= M(x)
is negligible. The garbling scheme GS is efficient if the size of M is bounded by a
polynomial and the run-time of cx = GS.Enc(gsk, x) is also bounded by a polynomial.



Throughout this paper, we will use GT = (GT.Garble, GT.Enc, GT.Eval) and GC =
(GC.Garble, GC.Enc, GC.Eval) to denote a garbling scheme for Turing machines and a
garbling scheme for circuits respectively. Similarly, we will use RGT = (RGT.Garble,
RGT.Enc, RGT.Eval) and RGC = (RGC.Garble, RGC.Enc, RGC.Eval) to denote reusable
garbling schemes for Turing machines and circuits respectively.

The security of garbling schemes is defined in terms of input and circuit privacy
in the literature. The following security definition for one-time garbling schemes based
on Bellare, Hoand, and Rogaway [4] captures the intuition that for any circuit or input
chosen by the adversary, one can simulate the garbled circuit and the encoding based on
the computation result in polynomial time. In the definition, the variable α represents
any state that A may want to give to D.

Definition 2. (Input and circuit privacy for one-time garbling schemes) A garbling
scheme GS for a family of circuits/Turing machine M is said to be input and circuit
private if there exists a probabilistic polynomial time simulator SimGS such that for all
probabilistic polynomial time adversaries A and D and all large κ, we have∣∣∣Prob[D(α, x,M,M, c) = 1|REAL]− Prob[D(α, x,M, M̃, c̃) = 1|SIM]

∣∣∣ = negl(κ)

where REAL and SIM are the following events

REAL :
(x,M,α)← A(1κ)
(M, gsk)← GS.Garble(1κ,M)
cx ← GS.Enc(gsk, x)

SIM :
(x,M,α)← A(1κ)

(M̃, c̃x)← SimGS(M(x), 1max{κ,|M |,|x|})

The privacy for reusable garbling schemes is defined also in terms of circuit and
input privacy and the reader is referred to Goldwasser et al [17] for details.

Definition 3. (Private reusable garbling schemes, adapted from Goldwasser et al [17])
Let RGS be a reusable garbling scheme for a family of Turing machines/circuitsM =
{Mn}n∈N and M ∈Mn be a Turing machine/circuit with n-bits inputs. For a pair of
probabilistic polynomial time algorithms A = (A0, A1) and a probabilistic polynomial
time simulator S = (S0, S1), define two experiments:

ExprealRGS,A(1κ) :

(M, stateA) = A0(1κ)
(sk,M) = RGS.Garble(1κ,M)

α = A
RGS.Enc(sk,·)
1 (M,M, stateA)

ExpidealRGS,A,S(1κ) :

(M, stateA) = A0(1κ)

(M̃, stateS) = S0(1κ,M)

α = A
O(·,M)[[stateS ]]
1 (M,M̃, stateA)

In the above experiments,O(·,M)[[stateS ]] is an oracle that on input x fromA1, runs
S1 with inputs 1|x|, M(x), and the latest state of S; it returns the output of S1 (storing
the new simulator state for the next invocation). The garbling scheme RGS is said to
be private with reusability if there exists a probabilistic polynomial time simulator S
such that for all pairs of probabilistic polynomial time adversaries A = (A0, A1), the
following two distributions are computationally indistinguishable:{

ExprealRGS,A(1κ)
}
κ∈N ≈c

{
ExpidealRGS,A,S(1κ)

}
κ∈N (1)



The recent virtual black-box obfuscators for NC1 by Brakerski-Rothblum [8] and
Barak et al [3] require generic multilinear encoding model. Though Garg et al’s [12] in-
distinguishability obfuscator forNC1 is constructed using generic multilinear encoding
also, it does not rule out the possibility of constructing indistinguishability obfuscators
in the plain model with weaker assumptions. Garg et al [12] showed the following the-
orem.

Theorem 1. Assuming the existence of an indistinguishability obfuscator, there is a
garbling scheme RGCnc1 for NC1 circuits that is secure according to the definition in
Goldwasser et al [17].

Based on witness encryption (WE) schemes by Garg et al [13] and the existence of
SNARKs (Succinct Non-interactive Arguments of Knowledge) by Bitansky et al [5],
Goldwasser et al [16] designed attribute-based encryption (ABE) schemes for Turing
machines4. The single-outcome ABE schemes for Turing machines in [16] could be
converted to two-outcome attribute-based encryption schemes (ABE2) for Turing ma-
chines using the techniques from Goldwasser et al [17].

Goldwasser et al [17] introduced the following concept of two-outcome attribute-
based encryption schemes (ABE2) for Turing machines.

Definition 4. A two-outcome attribute-based encryption scheme ABE2 for a class of
Turing machinesM is a tuple of four algorithms (ABE2.Setup, ABE2.Enc, ABE2.KeyGen,
ABE2.Dec):

– (mpk, msk) = ABE2.Setup(1κ): On the security parameter input 1κ, outputs the
master public key mpk and the master secret key msk.

– skM = ABE2.KeyGen(msk,M): On input msk and a Turing machine M , outputs a
secret key skM corresponding to M . Note that M is public.

– c = ABE2.Enc(mpk, x, b0, b1): On input the master public key mpk, an attribute
x ∈ {0, 1}∗, and two messages b0, b1, outputs a ciphertext c.

– bi = ABE2.Dec(skM , c): On input a secret key skM for the Turing machine M and
a ciphertext c, outputs bi if M(x) = i for i = 0, 1.

Correctness (informal). The correctness of an ABE2 scheme means ABE2.Dec(skM , c)
fails with a negligible probability (for a formal definition, it is referred to [17]).

The security of an ABE2 scheme means that if one has the secret key skM for a
Turing machine M , then one can decrypt one of the two encrypted messages based on
the value of M(x) where x is the attribute, but learns zero information about the other
message. The formal definition could be found in Goldwasser et al [17].

Formally, the security can be defined as follows.

Definition 5. (Goldwasser et al [17]) Let ABE2 be a two-outcome attribute-based en-
cryption scheme for a class of Turing machinesM. Let A = (A1, A2, A3) be a tuple of
probabilistic polynomial time adversaries. Define the experiment ExpABE2(1κ):
1. (mpk, msk) = ABE2.Setup(1κ)
2. (M, state1) = A1(mpk)
3. skM = ABE2.KeyGen(msk,M)

4 Note that the correctness definition of Definition 3 for ABE in [16] is messed up.



4. (a, a0, a1, x, state2) = A2(state1, skM ) where a, a0, a1 are bits
5. Choose a random bit b and let

c =

{
ABE2.Enc(mpk, x, a, ab), if M(x) = 0,
ABE2.Enc(mpk, x, ab, a), otherwise.

6. b′ = A3(state2, c). If b = b′, then output 1, else output 0.

The scheme is said to be a single-key fully-secure two-outcome ABE2 if for all proba-
bilistic polynomial time adversaries A and for all sufficiently large security parameters
κ, we have

Prob[ExpABE2,A(1κ) = 1] ≤ 1/2 + negl(κ).

The scheme is said to be single-key selectively secure if A needs to provide x before
receiving mpk.

4 Reusable garbled Turing machines with ABE2

The construction of a garbling scheme RGT = (RGT.Garble, RGT.Enc, RGT.Eval) for
Turing machines M proceeds as follows.

(gsk,M) = RGT.Garble(1κ,M):

– sk = E.KeyGen(1κ), (pski, ppki) = PK.KeyGen(1κ) for i = 0, 1.
– Let EM = E.Enc(sk,M) and sk = PK.Enc(ppk0, sk).
– Let UM be an oblivious universal Turing machine and let s(t) be the head position

function for UM . On input x, UM first decrypts sk = PK.Dec(psk0, sk) and M =
E.Dec(sk, EM ). UM then runs M on x to output M(x).

– Let δ be the transition function of UM and Cδ ∈ NC1 be the following circuit:



Input: head sate q||sessionq||jq , tape cell b||sessionb||jc||jb, and control
tape ctape = ppk0||ppk1||state||sessions||jq .
1. use information from sessions to extract the current Turing machine step
j1, expected current head position j2 = s(j1), and the most recent time
j3 that the cell jc has been updated.

2. if j1 6= jq + 1 or j2 6= jc or j3 6= jb, go to step 11.
3. if sessions, sessionb, and sessionq are inconsistent, go to step 11.
4. if q = qF , output the state qF in clear and exit.
5. if q = qnoop, go to step 11.
6. compute the next state and tape symbols (q′, b′) = δ(q, b).
7. update ideal cipher E state, public key cipher PK state, and the values in

sessions, sessionb, sessionq , and state.
8. let eq

′

i = PK.Enc(ppki, q
′||sessionq||j1) for i = 0, 1, and πq

′
be a statis-

tically simulation sound non-interactive zero knowledge (NIZK) proof for
the following NP statement: eq

′

0 and eq
′

1 are encryptions of a same message
using public keys ppk0 and ppk1.

9. Similarly, compute (eb
′

0 , e
b′

1 , π
b′) for tape cell b′||sessionb||jc||j1 and

(ectape0 , ectape1 , πctape) for ctape = ppk0||ppk1||state||sessions||j1
10. write (eb

′

0 , e
b′

1 , π
b′) to tape cell, output next state (eq

′

0 , e
q′

1 , π
q′), and update

control tape as (ectape0 , ectape1 , πctape). Exit.
11. let q′ = qnoop, b′ = 0, and go to step 8.

– Let Cδ = RGCnc1 .Garble(1κ, ppk0, ppk1, psk0, Cδ). Here we provide the parame-
ters ppk0, ppk1, and psk0 to RGCnc1 .Garble to overwrite the corresponding internal
key generation process within RGCnc1 .Garble.

– Let UM = (s(t), Cδ) be a Turing machine that uses Cδ to simulate the transition
function δ of UM .

– Let ω = ω(κ) be the length of the total garbled outputs in theUM under the security
parameter κ.

– Run ABE2.Setup(1κ) algorithm ω times: (mpki, mski)← ABE2.Setup(1κ) for i <
ω and let

msk = (msk0, · · · , mskω−1) and mpk = (mpk0, · · · , mpkω−1).

– Let U
i

M (·) be the ith bit of the output of running UM on an encoded input.
– Run ABE2.KeyGen(msk, ·) for each of the functionU

i

M (·) under the different master
secret keys to construct secret keys:

gMi ← ABE2.KeyGen(mski, U
i

M (·)) for i < ω.

– Output M = (gM0, · · · , gMω−1) and gsk = (ppk0, ppk1, psk0, mpk).
cx = RGT.Enc(gsk, x):

– Generate state uniformly at random for the input string x.
– Update session identification values sessions, sessionb, sessionq .
– For each input tape cell j, let eji = PK.Enc(ppki, x[j]||sessionb||j||0) for i = 0, 1,

and πj be a statistically simulation sound non-interactive zero knowledge (NIZK)



proof for the following NP statement: ej0 and ej1 are encryptions of a same message
using public keys ppk0 and ppk1.

– Similarly, compute (eq00 , e
q0
1 , π

q0) for the initial head state q0||sessionq||0 and
(ectape0 , ectape1 , πctape) for ctape = ppk0||ppk1||state||sessions||0.

– Let c =
{

(eq00 , e
q0
1 , π

q0), (ectape0 , ectape1 , πctape), (ej0, e
j
1, π

j) : 0 ≤ j ≤ n− 1
}

.

– Let Cd ∈ NC1 be the following circuit:

Input: encoded output tape otape and encoded control tape ctape.
1. decrypt output tape (otape, sessionb) = PK.Dec(psk0, otape) and cur-

rent control tape (state, sessions) = PK.Dec(psk0, ctape).
2. if sessions and sessionb are inconsistent, exit.
3. write otape to output tape and exit.

– Run Yao’s one-time garbled circuit generation algorithm to produce a garbled cir-
cuit Λ: {0, 1}ω → {0, 1} together with 2ω labels Lbi for i < ω and b ∈ {0, 1}.(

Λ, {L0
i , L

1
i }ω−1i=0

)
= GC.Garble(1κ, Cd).

– Produce ABE2 ciphertexts c0, · · · , cω−1 as follows:

ci ← ABE2.Enc(mpki, c, L
0
i , L

1
i ) for i < ω.

– Output the cipher texts cx = (Λ, c0, · · · , cω−1).
M(x) = RGT.Eval(M, cx):

– Run ABE2 decryption algorithm on ciphertexts c0, · · ·, cω−1 to calculate the labels
for Yao’s garbled circuit Λ for di = M

i
(cx):

Ldii ← ABE2.Dec(gMi, ci) for i < ω

– Evaluate the garbled circuit Λ with labels Ldii to compute the output M(x)

M(x) = GC.Eval(Λ, Ld0i , · · · , L
dω−1

ω−1 )

Proof of security

The correctness and efficiency of the reusable Turing machine garbling scheme RGT in
the preceeding paragraph is straightforward. In the following, we show that the scheme
RGT is private with reusability according to the definition in Goldwasser et al [17].

Assume that a Turing machineM is selected with the security parameter κ. We need
to construct a simulator S = (S0, S1) such that (1) holds for the reusable garbled Turing
machine M = (gM0, · · · , gMω−1), assuming that there are a simulator Sδ = (Sδ,0, Sδ,1)

satisfying the security definition in Goldwasser et al [17]. reusable garbled circuits Cδ
and a simulator SimGS satisfying Definition 2 for Yao’s one-time garbling scheme.

To generate a simulated garbled Turing machine M̃ = (g̃M0, · · · , g̃Mω−1) for the
Turing machine M , S0 runs the following procedures:
1. Generate fresh mpk and msk as in RGT.Garble process.
2. Run simulators Sδ to generate a reusable garbled circuit C̃δ .



3. Run ABE2.KeyGen(msk, ·) to generate M̃ = (g̃M0, · · · , g̃Mω−1).
During the simulation, S1 receives the latest simulator’s state, 1|x|, C̃δ , and a Turing

machine outputM(x) for some input xwithout seeing the value of x. S1 needs to output
a simulated encoding c̃ = (Λ̃, c̃0, · · · , c̃ω−1) for the RGT.Eval process without access to
Cd. Let SimGS be the simulator from Definition 2 for Yao’s one-time garbling scheme.
Run SimGS to produce a simulated garbled circuit Λ̃ for the circuit Cd together with the
simulated encoding consisting of ω labels L̃i for i = 0, · · · , ω − 1. That is, we have(

Λ̃, L̃0, · · · , L̃ω−1
)

= SimGS(1
κ,M(x), 1ω).

S1 can invoke the above simulation since it knows M(x) and the size of input to Cd
(that is, the output size of C̃δ). S1 can then produce the simulated ABE2 ciphertexts
c̃0, · · · , c̃ω−1 as follows:

c̃i ← ABE2.Enc(mpki, c̃x, L̃i, L̃i) for i < ω.

Note that we used the label L̃i for two times. In a summary, S1 can now output the
simulated encoding (Λ̃, c̃0, · · · , c̃ω−1).

Now it suffices to show that the simulation satisfies the security definition in Gold-
wasser et al [17]. for any adversary A = (A0, A1). Without loss of generality, we may
assume that A1 output α equals to its entire view. That is, all information that A1 has
received during the protocol run. Note that if we could prove that the real and ideal
experiment outputs are computationally indistinguishable with this kind of output, it
will be computationally indistinguishable with any other kind of outputs since A1 is
a probabilistic polynomial time algorithm. That is, any output should be probabilistic
polynomial time computable from this view. In the following, we define five games
first.
Game 0: The ideal game ExpidealRGT,A,S(1κ) of the security definition in Goldwasser et al
[17] with simulator S. The output distribution for this game is:

M, gsk, stateA, ABE2.KeyGen(msk, ·),{
xi, c̃xi

, SimGarble(1
κ,M(xi), 1

ω),
{
ABE2.Enc(mpki, c̃xi

, L̃i,j , L̃i,j)
}ω−1
j=0

}t−1
i=0

Game 1: The same as Game 0 except that the Turing machine M is replaced with the
reusable garbled circuit Cδ and the circuit Cd. That is, the output distribution for this
game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),{
xi, c̃xi , SimGarble(1

κ,M(xi), 1
ω),
{
ABE2.Enc(mpki, c̃xi , L̃i,j , L̃i,j)

}ω−1
j=0

}t−1
i=0

Game 2: The same as Game 1 except that the simulated input encoding c̃xi is replaced
with the actual encoding cxi of xi by encoding xi using gsk. Note that we keep c̃xi

unchanged within the ABE2.Enc procedure. That is, the output distribution for this game
is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),{
xi, cxi

, SimGarble(1
κ,M(xi), 1

ω),
{
ABE2.Enc(mpki, c̃xi

, L̃i,j , L̃i,j)
}ω−1
j=0

}t−1
i=0



Game 3: The same as Game 2 except the simulated garbled circuit Λ̃ is replaced with
the real garbled circuit Λ:

(
Λ, {L0

j , L
1
j}
ω−1
j=0

)
= GC.Garble(1κ, Cd). The output distri-

bution for this game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),{
xi, cxi , GC.Garble(1κ, Cd),

{
ABE2.Enc(mpki, c̃xi , L̃i,j , L̃i,j)

}ω−1
j=0

}t−1
i=0

Game 4: The same as Game 3 except that the ABE2.Enc ciphertext is replaced with the
real ABE2 ciphertext. In other words, this is the real experiment ExprealRGT,A(1κ) of the
security definition in Goldwasser et al [17]. The output distribution for this game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),{
xi, cxi

, GC.Garble(1κ, Cd),
{
ABE2.Enc(mpki, cxi

, L0
i,j , L

1
i,j)
}ω−1
j=0

}t−1
i=0

We prove that the outputs of each pair of games are computationally indistinguish-
able in the following lemmas. Thus our reusable garbled circuits are circuit and input
private with reusability.

Lemma 1. Assume thatCδ is a secure reusable garbled circuit forCδ in the simulation-
based security model. Then the outputs of Game 0 and Game 1 are computationally
indistinguishable.

Proof (sketch). The proof is by contradiction. Assume that the outputs of Game 0
and Game 1 could be distinguished by a probabilistic polynomial time algorithm D.
Then one can use D to construct a probabilistic polynomial time distinguisher D1 to
show that Theorem 1 is not true. Details are omitted here. 2

Lemma 2. Assume that both ciphers E.Enc and PK.Enc are semantically secure. Then
the outputs of Game 1 and Game 2 are computationally indistinguishable.

Proof (sketch). Assume that there exist probabilistic polynomial time adversaries
A = (A1, A2) and a probabilistic polynomial time distinguisher D armed with A that
distinguishes outputs of Game 1 and Game 2 with a non-negligible probability. Then
one can use the standard hybrid argument to construct a probabilistic polynomial time
distinguisher D1 to distinguish the cipher texts cxi from the simulated cipher text c̃xi

with a non-negligible probability for some i0 = 0, · · · , t − 1. This is a violation that
both ciphers E.Enc and PK.Enc are semantically secure. 2

Lemma 3. Assume that the one-time garbling scheme is secure in the sense of Defini-
tion 2. Then the outputs of Game 2 and Game 3 are computationally indistinguishable.

Proof (sketch). Assume that there exist probabilistic polynomial time adversaries
A = (A1, A2) and a probabilistic polynomial time distinguisher D armed with A that
distinguishes outputs of Game 2 and Game 3 with a non-negligible probability. Then
one can build a probabilistic polynomial time distinguisherD1 to distinguish the outputs
of the simulator SimGarble and GC.Garble. This contradicts Definition 2. The details for
the construction of D1 are omitted here. 2



Lemma 4. Assume that the ABE2 scheme is secure in the sense of Goldwasser et al
[17]. Then the outputs of Game 3 and Game 4 are computationally indistinguishable.

Proof (sketch). Assume that there exist probabilistic polynomial time adversaries
A = (A1, A2) and a probabilistic polynomial time distinguisher D armed with A that
distinguishes outputs of Game 3 and Game 4 with a non-negligible probability. Then
one can build a probabilistic polynomial time adversary A = (A1, A2, A3) such that

Prob[ExpABE2,A(1κ) = 1] > 1/2 + negl(κ).

This contradicts the security definition of ABE2. Details for the construction of A are
omitted here. 2

Theorem 2. Assume that the one-time garbling scheme is secure, the ABE2 scheme is
secure, both ciphers E.Enc and PK.Enc are semantically secure, and RGCnc1 is secure
according to Definition 2. Then the reusable garbling scheme RGT in Section 4 is secure
according to the security definition in Goldwasser et al [17].

Proof. This follows from Lemmas 1, 2, 3, and 4. 2

5 Reusable garbled Turing machines without ABE2

In Section 4, we used Yao’s one-time garbled circuits for Cd and Attribute Based En-
cryption (ABE2) schemes for Turing machines to decrypt the garbled Turing machine
output UM (x). ABE2 cipher text is relatively expensive to construct and the size of
Yao’s one-time garbled circuit for Cd is too large to be included in each garbled input.
Thus it is preferred to use a reusable garbled circuit to decrypt the output of UM (x).
As mentioned in early sections, the challenge to use a garbled version Cd directly is
that the adversary may use Cd to calculate M(x′) for input x′ whose encoding is not
provided by the Turing machine owner. To address these challenges, we use secure
message authentication tags.

Let MAC = (MAC.KeyGen, MAC.Enc, MAC.Veri) be a secure message authentication
scheme. The Turing machine M is revised to a new Turing machine Mmac as follows.
The input to Mmac is first authenticated using a MAC scheme key and then encrypted us-
ing the semantically secure ideal cipher. That is, Mmac takes an input in format of x̄ =
E.Enc(skmac, x||tag) where x is the supposed input to M and tag = MAC.Enc(ask, x).
On an input x̄, Mmac uses the built-in key skmac to decrypt (x, tag) = E.Dec(skmac, x̄)
and uses the built-in key ask to verify that MAC.Veri(ask, x, tag) is true. If the verifi-
cation fails, Mmac enters qnoop state and keeps doing nothing until it stops. Otherwise,
Mmac computes the value of M(x), chooses a random key sko = E.KeyGen(1κ) and
outputs Mmac(x̄) = sko||E.Enc(sko,M(x)).

The garbling scheme RGT1 = (RGT1.Garble, RGT1.Enc, RGT1.Eval) for Turing ma-
chines M without ABE2 is then constructed as follows.
(gsk,M) = RGT1.Garble(1κ,M):

– skmac = E.KeyGen(1κ), ask = MAC.KeyGen(1κ), and (pski, ppki) = PK.KeyGen(1κ)
for i = 0, 1.



– Construct Mmac from M .
– Define UMmac

and design the reusable garble garbled circuit Cδ for UMmac
’s transi-

tion function δ as in the process RGT.Garble(1κ, UMmac
) of Section 4. Let UMmac

=
(s(t), Cδ) be the resulting Turing machine.

– Let Cd ∈ NC1 be the following circuit:

Input: UMmac
’s decrypted output tape (otape, sessionb) and decrypted con-

trol tape (state, sessions).
1. if sessions and sessionb are inconsistent then exit.
2. let (sko, ȳ) = otape.
3. compute y = E.Dec(sko, ȳ) and output y.

– Let Cd = RGCnc1 .Garble(1κ, ppk0, ppk1, psk0, Cd). Here we provide the param-
eters ppk0, ppk1, and psk0 to RGCnc1 to overwrite the corresponding internal key
generation process within RGCnc1 .Garble. By overwriting the key generation pro-
cess for RGCnc1 , the output of UMmac

is in the correct encoding format according to
RGCnc1 .Enc and is ready for Cd to process.

– Output M = (s(t), Cδ, Cd) and gsk = (ppk0, ppk1, psk0, skmac, ask).

cx = RGT1.Enc(gsk, x):
– Let x̄ = E.Enc(skmac, x||MAC.Enc(ask, x)).
– Let cx be constructed for x̄ as in the process RGT.Enc(gsk, x̄).

M(x) = RGT1.Eval(M, cx):
– Run the Turing machine UMmac

= (s(t), Cδ) on input cx until it stops.
– Run Cd on the output tape and control tape of UMmac

to obtain M(x).
Comments: We have two comments for the construction of RGT1.

– The circuit Cd in RGT1 takes the entire tape as input and decrypts it at the same
time. In practice, it may be more efficient to define Cd in a way that it only takes
one cell and decrypts the cell separately. In order to achieve this, Turing machine
Mmac needs to be revised further so that the output cells are encrypted separately.

– For the convenience of presenting constructions of RGT and RGT1 in a compatible
way, we constructed Cδ and Cd separately. Indeed, for the construction of RGT1, Cδ
and Cd can be defined as one circuit which is then garbled using Garg et al’s NC1

garbling scheme.
We can then prove the following theorem in a similar way as that of Theorem 2.

The proof is omitted in this extended abstract.

Theorem 3. Assume that the one-time garbling scheme GC is secure, both ciphers E.Enc
and PK.Enc are semantically secure, the message authentication scheme MAC is secure,
and RGCnc1 is secure according to Definition 2. Then the reusable garbling scheme RGT1
for Turing machines is secure according to the security definition in Goldwasser et al
[17].

6 Discussions and oblivious Turing machines

In the construction of RGT1, we used a secure message authentication scheme to protect
adversaries from swapping/inserting/deleting/duplicating input tape cells. Some other



techniques could also be used to achieve this same goal. For example, one may use
Chaitin’s universal self-delimiting Turing machines [11]. A universal self-delimiting
Turing machine U takes the input px and outputs U(px) = Mp(x) where p is the
encoding of a self-delimiting Turing machineMp. For a self-delimiting Turing machine
Mp, ifMp(x) is defined, thenMp(y) is not defined for all strings y with y being a prefix
of x or x being a prefix of y. Before Turing machine stops, it needs to mark each cell
on the output tape as final by inserting a special symbol such as FIN to each cell on the
output tape. The circuit Cd would only decrypt cells marked as final.

It should also be noted that the black cell “B” could be encoded in advance so that
for each input, the Turing machine owner does not need to encode the entire working
tape cells. The self-delimiting Turing machines could be used to defeat the attacks that
the adversary copies some input cells to some“B” cells and potentially runs the garbled
Turing machine on inputs that are not provided by the machine owner.

In our construction of RGT and RGT1, oblivious Turing machines are used to deter-
mine the next cell that the Turing machine needs to process. If Turing machine head
movement pattern does not need to be protected, this requirement could be dropped
since the circuit Cδ could output the head movement symbol “R” or “L” in plain text.

In Goldwasser et al’s garbling scheme [16], the owner of a Turing machine M first
converts M to an oblivious Turing machine MO using the Pippenger-Fischer trans-
formation [23], where an oblivious Turing machine is a Turing machine whose head
movement is independent of the current cell content. From MO, a new Turing ma-
chine MFHE is constructed to perform the FHE evaluation of MO. The owner of the
Turing machine M gives MFHE to the evaluator. Each time when the Turing machine
owner wants the evaluator to calculate M(x), the Turing machine owner creates a ho-
momorphic encryption scheme public key hpk and a corresponding private key hsk.
Using the newly created public key hpk, the Turing machine owner calculates the ho-
momorphic encryption cipher texts cx = (Ehpk(x[0]), · · ·, Ehpk(x[n − 1])) for the in-
put x = x[0] · · ·x[n− 1] bit by bit and constructs a Yao’s one-time garbled circuit
D for decrypting the homomorphic encryption scheme by integrating the private key
hsk within D. The Turing machine owner then gives (cx, D, hpk) to the evaluator. The
evaluator runs MFHE on cx homomorphically step by step. During the evaluation, each
cell of MO’s tape corresponds to the FHE ciphertext of MFHE’s cell value and MFHE

maintains the FHE ciphertext statei of MO’s current state. At step i, MFHE takes as
input the encrypted cell b̄ from the input tape that the head currently points at and the
current encrypted state statei. Then MFHE outputs an encrypted new state statei+1

and a new content b̄′. MFHE updates the current cell with b̄′ and then moves its head left
or right according to the oblivious head movement definition. Though [16] did not de-
scribe how to get the value (statei+1, b̄

′) from (statei, b̄). We assume that it uses the
straightforward circuit simulation of the Turing machine transition functions. That is, a
circuit Πδ with inputs (statei, b) and outputs (statei+1, b

′) is constructed fromMO’s
transition function δ and MFHE homomorphically evaluates Πδ to obtain (statei+1, b̄

′)
from (statei, b̄). After the evaluation, the evaluator obtains the homomorphic encryp-
tion ciphertextEhpk(M(x)) ofM(x). In order for the evaluator to decryptEhpk(M(x)),
the circuit owner uses an attribute based encryption scheme for Turing machines (con-
structed from the witness encryption scheme) to send corresponding labels for the gar-



bled circuit D so that the evaluator will be able to decrypt Ehpk(M(x)) to M(x). In the
above scheme, the Turing machineMO’s transition function is leaked via the circuit Πδ .
Though [16] provides no details on how to avoid this leakage, we assume that the au-
thors used the same approach as in Goldwasser et al [17] to protect the privacy of Turing
machine M ’s transition function. That is, MFHE is constructed for a universal oblivious
Turing machine UO and the description ofM is encrypted using an ideal cipher scheme
E such as AES. The evaluator only holds the encrypted version E.Enc(sk,M) of M .
For each evaluation of M on x, the Turing machine owner needs to give both Ehpk(x)
and Ehpk(sk) to the evaluator.

7 Conclusion

Using multilinear maps, Garg et al showed the existence of reusable garbling schemes
for NC1 circuits. By further using FHE schemes, Garg et al showed the existence
of reusable garbling schemes for all polynomial size circuits. This paper constructed
reusable garbling schemes for Turing machines (that is, for all polynomial size circuits
also) only assuming the existence of secure multilinear maps. Though it is not clear
whether multilinear maps based indistinguishability obfuscators could be more effi-
cient than FHE, the goal of this paper is to develop alternative techniques for resuable
garbling schemes to stimulate further research in this direction.
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