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ABSTRACT

AND/OR graphs and minimum-cost solution graphs have been studied extensively
in artificial intelligence (see, e.g., Nilsson [14]). Generally, the AND/OR graphs are
used to model problem solving processes. The minimum-cost solution graph can be
used to attack the problem with the least resource. However, in many cases we want to
solve the problem within the shortest time period and we assume that we have as many
concurrent resources as we need to run all concurrent processes. In this paper, we will
study this problem and present an algorithm for finding the minimum-time-cost solution
graph in an AND/OR graph. We will also study the following problems which often
appear in industry when using AND/OR graphs to model manufacturing processes or
to model problem solving processes: finding maximum (additive and non-additive) flows
and critical vertices in an AND/OR graph. A detailed study of these problems provide
insight into the vulnerability of complex systems such as cyber-infrastructures and energy
infrastructures (these infrastructures could be modeled with AND/OR graphs). For an
infrastructure modeled by an AND/OR graph, the protection of critical vertices should
have highest priority since terrorists could defeat the whole infrastructure with the least
effort by destroying these critical points. Though there are well known polynomial time
algorithms for the corresponding problems in the traditional graph theory, we will show
that generally it is NP-hard to find a non-additive maximum flow in an AND/OR graph,
and it is both NP-hard and coNP-hard to find a set of critical vertices in an AND/OR
graph. We will also present a polynomial time algorithm for finding a maximum additive
flow in an AND/OR graph, and discuss the relative complexity of these problems. a
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1. Introduction
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Structures called AND/OR graphs are useful for depicting the activity of pro-

duction systems (see, e.g., Nilsson [14]). Wang, Desmedt, and Burmester [19] used

AND/OR graphs to make a critical analysis of the use of redundancy to achieve net-

work survivability in the presence of malicious attacks. That is, they used AND/OR

graphs to model redundant computation systems consisting of components which

are based on computations with multiple inputs. Roughly speaking, an AND/OR

graph is a directed graph with two types of vertices, labeled ∧-vertices and ∨-

vertices . The graph must have at least one input (source) vertex and one output

(sink) vertex. In this case, processors which need all their inputs in order to oper-

ate could be represented by ∧-vertices, whereas processors which can choose (using

some kind of voting procedure) one of their “redundant” inputs could be represented

by ∨-vertices. It should be noted that our following definition is different from the

standard definitions in artificial intelligence (see, e.g., [14]). That is, the directions

of the edges are opposite. The reason is that we want to use the AND/OR graphs

to model redundant computation systems too.

Definition 1 An AND/OR graph G(V∧, V∨, INPUT, output; E) is a graph with a

set V∧ of ∧-vertices, a set V∨ of ∨-vertices, a set INPUT ⊂ V∧ of input vertices,

an output vertex output ∈ V∨, and a set of directed edges E. The input vertices

have no incoming edges and the output vertex has no outgoing edges.

Assume that an AND/OR graph is used to model a redundant computation

system or a problem solving process. Then, information (for example, mobile codes)

must flow from the input vertices to the output vertex. And a valid computation

in an AND/OR graph can be described by a solution graph.

Definition 2 Let G(V∧, V∨, INPUT, output; E) be an AND/OR graph. A solution

graph P = (VP , EP ) is a minimum subgraph of G satisfying the following conditions.

1. output ∈ VP .

2. For each ∧-vertex v ∈ VP , all incoming edges of v in E belong to EP .

3. For each ∨-vertex v ∈ VP , there is exactly one incoming edge of v in EP .

4. There is a sequence of vertices v1, . . . , vn ∈ VP such that v1 ∈ INPUT ,

vn = output, and (vi→vi+1) ∈ EP for each i < n.

We use circles to denote ∧-vertices and squares to denote ∨-vertices. For the

AND/OR graph in Figure 1 with INPUT = {A, B, C}, V∧ = {A, B, C, F , G,

H}, V∨ = {D, E, I}, and output = {I}, P = {Vp, EP } is a solution graph where

VP = {A, D, F, I} and EP = {A→ F, A→ D, D → F, F → I}

Wang, Desmedt, and Burmester [19] have studied the problem of finding vertex

disjoint solution graphs in an AND/OR graph. Specifically, they have showed that

it is NP-hard to find vertex disjoint solution graphs in an AND/OR graph. These

problems are mainly related to that of achieving dependable computation using

redundancy.

Minimum-cost solution graphs have been studied extensively in artificial intelli-

gence and many heuristic algorithms for finding minimum-cost solution graphs have
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Fig. 1. An AND/OR graph

been presented (see, e.g., [1, 4, 5, 10, 11, 12, 13, 14, 15]). When a problem solving

process is modeled by an AND/OR graph, the minimum-cost solution graph can

be used to attack the problem with the least resource. However, in many cases

we want to solve the problem within the shortest time period and we assume that

we have as many concurrent resources as we need to run all concurrent processes.

In Section 2, we will study this problem and present an algorithm for finding the

minimum-time-cost solution graph in an AND/OR graph.

Maximum-flow minimum-cut theorem (see, e.g., [2, 6, 7, 9, 18]) has played an

important role in the study of networks. For example, it is used to direct the traffic

in networks such as the Internet (see, e.g., [2]). However, this theorem is only for

networks that have one kind of vertices: ∨-vertices (that is, directed graphs). And it

is not applicable for networks which can be modeled by AND/OR graphs. Indeed, in

artificial intelligence and distributed computation systems, the realization of many

important projects (such as the construction of a dam, of a shopping center, of a

housing estate or of an aircraft; the carrying out of a sequence of manufacturing

steps; the programming of a test flight of an aircraft; etc.) are dependent on the

computations with multiple inputs and many problems in the realization are that

of finding maximum flows in AND/OR graphs.

A detailed study of maximum flows and critical vertices in AND/OR graphs pro-

vide insight into the vulnerability of complex systems such as cyber-infrastructures

and energy infrastructures (these infrastructures could be modeled with AND/OR

graphs). For an infrastructure modeled by an AND/OR graph, the protection of

critical vertices should have highest priority since terrorists could defeat the whole

infrastructure with the least effort by destroying these critical points.

In this paper, we will consider the following problem: is there an equivalent the-

orem of maximum-flow minimum-cut theorem for AND/OR graphs? That is, does

there exist a polynomial time algorithm for finding maximum flows in AND/OR

graphs? We will show that this problem is NP-hard. We will also consider the

problems of finding critical vertices in AND/OR graphs and show these problems

are even “harder”, that is, they lie in the second level of the polynomial time hier-

archy, which is believed to be harder than NP-complete problems. However, if we

modify the flow structure and make it additive, as Martelli and Montanari [12, 13]

did for cost structures, then we will have a polynomial time (heuristic) algorithm

for finding maximum additive flows in AND/OR graphs.
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The organization of the paper is as follows. We first present in Section 2 a

polynomial time algorithm for finding a minimum-time-cost solution graph in an

AND/OR graph. In Section 3 we discuss the problem of finding maximum flows

in AND/OR graphs and prove the NP-hardness of several problems. Section 4 is

devoted to the problem of finding critical vertices in an AND/OR graph. Several

problems related to critical vertices are shown to be “harder”, that is, they lie in the

second level of the polynomial time hierarchy. In Section 5 we present a polynomial

time algorithm for finding maximum additive flows in AND/OR graphs.

We will use (fairly standard) notions of complexity theory. We refer the reader

to [8] for definitions of these. Here we only give an informal description of a few

notions. A polynomial time many one reduction (denoted by ≤p
m) from a problem

A to another problem B is a polynomial time computable function f with the

property that f(x) ∈ B if and only if x ∈ A for all inputs x. A polynomial time

Turing reduction (denoted by ≤p
T ) from a problem A to another problem B is a

polynomial time oracle Turing machine M with the property that, for any input x,

the Turing machine M with access to the oracle B will decide in polynomial time

whether x ∈ A. For a complexity class C and a problem A ∈ C, by saying that A is

C-complete we mean that every problem in C can be reduced to A by a polynomial

time many one reduction.

2. Minimum-time-cost solution graphs and PERT graphs

The shortest path problem and maximum flow problem are among the oldest

problems in graph theory (see, e.g., [6, 9, 18]). They appear either directly, or

as subsidiary problems, in many applications. Amongst others, we can mention

the following: vehicle routing problems, some problems of investment and of stock

control, many problems of dynamic programming with discrete states and discrete

time, network optimization problems, and the problem of a continuous electrical

current through a network of dipoles. However, as showed in [19], traditional graphs

do not present a model for all problems in practice, e.g., it is always the case that

a processor needs more than one type of inputs. AND/OR graphs seem to be a

possible candidate for modeling these problems with multiple inputs. For a given

AND/OR graph G(V∧, V∨, INPUT, output; E), if we associate with each edge e ∈ E

a rational number l(e) called the length of the edge, then we can define a minimum-

cost solution graph of G to be a solution graph P (VP , EP ) in G whose total length

l(P ) =
∑

e∈EP

l(e)

is a minimum. In addition to its important applications in artificial intelligence (see,

e.g., [14, 15]), minimum-cost solution graphs have many practical applications in dis-

tributed computation systems with multiple inputs, because length l(e) may equally

well be interpreted as being a cost of transportation along e, the time through e, and

so on. Chang and Slagle [5] have proposed a heuristic search algorithm for finding

minimum-cost solutions in an AND/OR graph, but it was subsequently shown by

Sahni [16] that with above definition of the cost, this problem is NP-hard. Thus
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their algorithm cannot be implemented efficiently in practice. By modifying the

cost structure and making it additive, Martelli and Montanari [12, 13] were able to

formulate a polynomial time “marking” (with or without heuristic functions) algo-

rithm AO∗ for AND/OR graphs (see also [1, 4, 10, 11] for more discussions on the

heuristic algorithm AO∗). Roughly speaking, in the new cost structure, the cost of

one edge may be counted as many times as it will be used in the unfolded AND/OR

tree of the solution graph.

In the practice of distributed computation systems, many systems can be mod-

eled by AND/OR graphs with only one ∨-vertex, that is, the output vertex is the

only ∨-vertex. For such kind of AND/OR graphs, it is easy to find minimum-cost

solutions in them with respect to the above “non-additive” cost definition.

Theorem 1 There is a polynomial time algorithm to find a minimum-cost solution

graph in an AND/OR graph with only one ∨-vertex.

Proof. Given an AND/OR graph G with only one ∨-vertex, it is straightforward

that there are at most k solution graphs in it, where k is the number of incoming

edges of the ∨-vertex output. Hence it is easy to find a minimum-cost solution graph

in it by an exhaustive search. 2

The minimum-cost solution graph can be used to attack, with the least resource,

problem solving processes that can be modeled by an AND/OR graph. However,

in many cases we want to solve the problem within the shortest time period and we

assume that we have as many concurrent resources as we need to run all concurrent

processes. In the following, we present an algorithm for finding minimum-time-cost

solution graphs in acyclic AND/OR graphs.

First we present the definition of PERT digraphs (Program Evaluation and

Review Technique). A PERT digraph is an AND/OR graph G(V∧, V∨, INPUT ,

output; E) with the following properties:

1. INPUT = {in} has only one element.

2. G has no directed circuits.

3. G has only one ∨-vertex output and output has only one incoming edge.

4. Every vertex v ∈ V∧ is on some directed path from in to output.

PERT digraphs have been used to model the central scheduling problems (see,

e.g., [2, 6, 9]). A PERT digraph has the following interpretation. Every edge rep-

resents a process. All the processes which are represented by edges of in+, can be

started right away. For every vertex v, the processes represented by edges of v+ can

be started when all the processes represented by edges of v− are completed. Note

that we use v− and v+ to denote the incoming and outgoing edges of v respectively.

For a given PERT digraph, we want to know how soon the whole project can be

completed; that is, what is the shortest time, from the moment the processes rep-

resented by in+ are started, until the process represented by output− is completed.

We assume that the resources for running the processes are unlimited. For this

problem to be well defined let us assume that each e ∈ E has an assigned length
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l(e), which specifies the time it takes to execute the process represented by e. The

minimum completion time can be found by the following algorithm:

1. Assign in the label λ(in)← 0. All other vertices are “unlabeled”.

2. Find a vertex, v, such that v is unlabeled and all edges of v− emanate from

labeled vertices. Assign

λ(v) ← max
e=(u→v)

{λ(u) + l(e)}.

3. If v = output, halt; λ(output) is the minimum completion time. Otherwise,

go to Step 2.

For more discussions on the above algorithm it is referred to [2, 6, 9].

We define a redundant PERT digraph to be an AND/OR graph with the following

properties:

1. INPUT = {in} has only one element.

2. G has no directed circuits.

3. Every vertex v ∈ V∧ ∪ V∨ is on some directed path from in to output.

As in a PERT digraph graph, every edge in a redundant PERT digraph rep-

resents a process. All the processes which are represented by edges of in+, can

be started right away. For every ∨-vertex v, the processes represented by edges

of v+ can be started when any one of the processes represented by edges of v− is

completed. And for every ∧-vertex v, the processes represented by edges of v+ can

be started when all the processes represented by edges of v− are completed.

Our problem deals with the question of finding a solution graph in a redundant

PERT digraph such that the minimum completion time of the solution graph is

a minimum. That is, if we have enough resources to run these processes concur-

rently, then we can solve the problem within the shortest time period. Such kind

of minimum-time-cost solution graphs can be found by the following algorithm.

1. Assign in the label λ(in)← 0. All other vertices are “unlabeled”.

2. Find a vertex, v, such that v is unlabeled and all edges of v− emanate from

labeled vertices. If v is an ∧-vertex, then assign

λ(v) ← max
e=(u→v)

{λ(u) + l(e)};

Otherwise assign

λ(v) ← min
e=(u→v)

{λ(u) + l(e)};

3. If v = output, halt; λ(output) is the minimum completion time of the minimum-

time-cost solution graph. Otherwise, go to Step 2.
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In Step 2, the existence of a vertex v, such that all the edges of v− emanate from

labeled vertices is guaranteed by Condition (2) and (3) of the definition for a redun-

dant PERT digraph: If no unlabeled vertex satisfies the condition then for every

unlabeled vertex, v, there is an incoming edge which emanates from another unla-

beled vertex. By repeatedly tracing back these edges, one finds a directed circuits.

Thus if such vertex is not found then we conclude that either Condition (2) or (3)

does not hold.

It is easy to prove, by induction on the order of the labeling, that λ(output) is

the minimum completion time of the minimum-time-cost solution graph.

Once the algorithm terminates, by going back from output to in, via the edge

which determined the label of the vertex, we can trace the minimum-time-cost

solution graph. Clearly, they may be more than one minimum-time-cost solution

graph.

3. The maximum flow problem in an AND/OR graph

Given an AND/OR graph G(V∧, V∨, INPUT, output; E), a capacity function c

associated with G is a positive integral function defined on edges of G. A flow f in

G is a positive integral function defined on edges of G with the following properties:

for all e ∈ E,

0 ≤ f(e) ≤ c(e),

for all v ∈ V∨,
∑

e∈v−

f(e) =
∑

e∈v+

f(e) (1)

where v− is the set of incoming edges of v and v+ is the set of the outgoing edges

of v, and for all v ∈ V∧,

∀e1, e2 ∈ v−(f(e1) = f(e2)) and ∀e1 ∈ v−∀e2 ∈ v+(f(e2) ≤ f(e1)). (2)

For a vertex v ∈ V∨ ∪ V∧, the amount of flow into v is defined to be the value
∑

e∈v− f(e). For a flow f in the AND/OR graph G, the total flow Ff (G) is defined

to be the amount of flow into the output vertex output. And we will use Fc(G) to

denote the maximum of Ff (G) for all flows f in G, that is, Fc(G) = max{Ff (G) : f

is a flow in G}.

Applications of the theory of flows in AND/OR graphs are extremely numerous

and varied. For example, the optimal design and expansion of computation systems

with multiple inputs, and the optimal design of a production manufacturing pro-

cess. Though there are polynomial time algorithms for finding maximum flows in

traditional graphs, we will show that the equivalent problem for AND/OR graphs is

NP-hard. Specifically, we will show that the following problem MFAO is NP-hard.

MFAO (i.e., Maximum Flows for AND/OR Graphs).

Instance: An AND/OR graph G, a capacity function c associated with G, and a

positive integer k.

Question: Does there exist a flow f in G such that the total flow Ff (G) is at least

k?
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Theorem 2 MFAO is NP-complete.

Proof. It is clear that MFAO ∈ NP. Hence it suffices to reduce the following

NP-complete problem MI to MFAO.

MI (i.e., Maximum Independent set).

Instance: A graph G(V, E), and a positive integer k.

Question: Does there exist an independent set V ′ ⊆ V of G such that |V ′| ≥ k,

that is, any two vertices of V ′ is not connected by an edge in E?

The input G = (VG, EG), to MI, consists of a set of vertices VG = {v1, . . .,

vn} and a set of edges EG. In the following we construct an AND/OR graph

MG(V∧, V∨, INPUT, output; E) and a capacity function c(e) = 1 (e ∈ E) (the

input to MFAO) such that there is an independent set of size k in G if and only if

there is a flow f in MG such that the total flow Ff (MG) is at least k.

Let INPUT = {Ii, Ii,j : i, j = 1, . . . n}, V∨ = {output} ∪ {ui,j : i, j = 1, . . . n},

V∧ = INPUT ∪ {ui : i = 1, . . . , n}, and E be the set of the following edges.

1. For each i = 1, . . . , n, there is an edge Ii→ui.

2. For each pair i, j = 1, . . . , n, there is an edge Ii,j→ui,j .

3. For each pair i, j = 1, . . . , n, such that the unordered pair (vi, vj) ∈ EG, there

are four edges ui,j→ui, ui,j→uj , uj,i→ui, and uj,i→uj .

4. For each i, there is an edge ui→output.

And the capacity function is defined by letting c(e) = 1 for all e ∈ E. Now it is easy

to see that, for any flow f in MG, if both f(ui→output) = 1 and f(uj→output) = 1

(i 6= j ≤ n), then (vi, vj) /∈ EG. Hence there is a flow f in MG such that the total

flow Ff (MG) equals to k if and only if there is an independent set of size k in G.

2

Indeed, MFAO is NP-complete for k = 1 (i.e., k is not a part of the input).

Theorem 3 MFAO is NP-complete for k = 1.

Proof. It is clear that MFAO ∈ NP. In order to prove that MFAO is NP-

hard for k = 1, we first define the NP-complete problem 3SAT as follows. Let

X = {x1, x2, . . . , xn} be a finite set of variables. A literal is either a variable xi or

its complement x̄i. Thus, the set of literals is L = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}.

A clause C is a 3-element subset of L. We are given a set of clauses C1, C2, . . . , Cm,

each of which consists of 3 literals. The question is whether the set of variables

can be assigned values T (true) or F (false), so that each clause contains at least

one literal with a T value. A clause is satisfied under an assignment if the clause

contains at least one literal with a T value. The concise statement of 3SAT is,

therefore, the following:

Instance: A set of clauses.

Question: Is there an assignment of the literals such that all the clauses are satisfied?

Now we reduce the NP-complete problem 3SAT to with k = 1.
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The input C, to 3SAT , consists of clauses C1, C2, . . . , Cm, each a 3-element

subset of the set of literals L = {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. In the following

we construct an AND/OR graph g(C) and a capacity function c with the property

that: C is satisfiable if and only if there is a flow f in g(C) such that the total flow

Ff (g(C)) in g(C) is 1.

For each variable xi we construct two ∧-vertices vi and v̄i and one ∨-vertex ui,

as shown in Figure 3. For the reason of convenience, we use hexagons to denote

∧-vertices and rectangles to denote ∨-vertices. There is an input vertex in which is

connected by an edge to u0 which is connected again by two edges to the vertices

v1 and v̄1 respectively. The vertices for variables are connected in series: for i < n,

both vi and v̄i are connected by edges to ui, and ui is connected by edges to vi+1

and to v̄i+1. un is connected by an edge to the ∧-vertex uc. In addition, there are

∨-vertices c1, c2, . . . , cm and ∧-vertices d1, d2, . . . , dm. For each i ≤ m, there is an

edge from ci to di and an edge from di to the ∧-vertex uc. For each occurrence of

xi (x̄i), there is an edge from vi (v̄i) to the vertex cj , the clause in which it occurs.

Lastly, there is one edge from uc to the output vertex output. The capacity function

c is defined by letting c(e) = 3 for e = (ci, di) (i = 1, . . . , m) and c(e) = 1 for all

other e ∈ Eg(C).

in u0

v1

v1

u1

v2

v2

u2

vn

vn

un

c1 cm

ucout

d1
dm

...   ...   ... ...   ...   ...

...   ...

...   ...

Fig. 2. The AND/OR graph g(C)

It is easy to see that any flow f in g(C) will go through either vi or v̄i (but not

both) for each i ≤ n, and will go through each edge from cj (j ≤ m) to dj and then

to uc since uc is an ∧-vertex. Also, for each j ≤ m, f goes through exactly one edge

from some vertex vi or v̄i to the ∨-vertex cj .

Thus, if the answer to g(C), with respect to MFAO for k = 1, is positive, then

we can use the flow f to assign a satisfying assignment of the literals as follows: if f

goes through vi, assign xi = T , and if through v̄i, xi = F . In this case, the answer

to C, with respect to 3SAT , is also positive.

Conversely, assume that there is a satisfying assignment of the variables. If

xi = T , let f use vi; if xi = F , use v̄i. Now, let ξ be a ‘true’ literal in Cj . If ξ = xi

then let f uses the edge from vi to cj ; if ξ = x̄i, use the edge from v̄i to cj . Finally,
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use the m edges entering dj (j ≤ m), the m + 1 edges entering uc, and the edge

from uc to output to form the flow f . 2

In traditional graph theory, the problem of finding maximum flows in a graph is

closely related to the problem of deciding the connectivity of the graph. However,

Theorem 3 shows that there is a big difference between these two corresponding

problems in AND/OR graphs. Obviously, there is at least one solution graph in

the AND/OR graph g(C) (see Figure 3), but it may be the case that there is no

nonzero flow in it. The following example presents an AND/OR graph which has a

nonzero flow but does not have a solution graph in it.

Example 1 Let G be the AND/OR graph in Figure 1 and c be the capacity function

defined by letting c(e) = 1 for all e ∈ E. Define a flow f by letting f(v2→ v3) =

1, f(v3 → v2) = 1, f(v2→ output) = 1, f(v3 → output) = 1, f(v3 → v1) = 0, and

f(in→ v1) = 0. Then Ff (G) = 2 and it is clear that there is no solution graph in

G.

 in v1

v2 v3

out

Fig. 3. The AND/OR graph G

In Section 5, we will show that there is a polynomial time algorithm for finding

maximum flows in AND/OR graphs with only one ∨-vertex.

4. The problem of finding critical vertices in an AND/OR graph

In this section, we assume the familiarity with the complexity classes within

the Polynomial time Hierarchy like Σp
n and Πp

n. For more details, it is referred to

Stockmeyer [17].

Let us consider the following scenarios: A redundant computation system (or

a problem solving process) with multiple inputs (e.g., the electrical power distri-

bution systems, the air traffic control system, etc.) is modeled by an AND/OR

graph G with a capacity function c associated with it. And an adversary has the

power to destroy k processors (that is, k vertices of the graph G) of the system.

Then the adversary wants to know how to choose k vertices in the graph such that

the destruction of these vertices results in the largest damage to the system. In

another words, he wants to remove k vertices from the AND/OR graph such that

the maximum flows of the resulting AND/OR graphs (in this case, the flows coming

from the corrupted vertices are all 0) is a minimum. The designer of the system is

also concerned with this scenario because he wants to know how robust his system

is.

In order to state our problem more precisely, we first give two definitions. Given

an AND/OR graph G(V∧, V∨, INPUT, output; E) with a capacity function c and a
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vertex set U ⊆ (V∧∪V∨)\ (INPUT ∪{output}), the capacity function cU is defined

by

cU (e) =

{

0 if e is an outgoing edge of some vertex in U,
c(e) otherwise.

And for a number k > 0, a set of critical vertices with respect to both c and k is a

vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) with the following properties:

• |U | ≤ k.

• If FcU
(G) is the maximum (for the definition see the previous section) of all

total flows in G with respect to the capacity function cU then, for any other

vertex set U ′ ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) with |U ′| = k, FcU
(G) ≤

FcU′
(G), where FcU′

(G) is the maximum of all total flows in G with respect

to the capacity function cU ′ .

Hence the concise statement of our problem is the following: Given an AND/OR

graph G with a capacity function c and a positive integer k, how can one find a set

of critical vertices with respect to both c and k? We can show that this problem is

NP-hard. Indeed, we can prove that the problem of deciding whether a given set

of vertices is critical is in Πp
2 and is both NP-hard and coNP-hard.

CV (i.e., Critical Vertices).

Instance: An AND/OR graph G(V∧, V∨, INPUT, output; E) with a capacity func-

tion c, and a vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}).

Question: Is U a set of critical vertices with respect to both c and |U |?

It is clear that U is a set of critical vertices if and only if for all flows fU in G (with

respect to the capacity function cU ) and for all U ′ ⊆ (V∧∪V∨)\(INPUT∪{output})

of size |U |, there is a flow fU ′ in G (with respect to the capacity function cU ′) such

that FfU
(G) ≤ FfU′

(G). Hence CV is in Πp
2 = coΣp

2, that is, the second level of the

polynomial time hierarchy.

Theorem 4 CV is NP-hard.

Proof. It suffices to reduce the NP-complete problem 3SAT to CV. For each

input C to 3SAT , we construct an AND/OR graph g1(C) as in Figure 4, where the

box g(C) represents the AND/OR graph g(C) without the output vertex output

constructed in Theorem 3 (that is, the AND/OR graph g(C) in Figure 3). Define

the capacity function c for g1(C) by letting c(e) = 1 for all edges e ∈ Eg1(C). And

let U = {uc}.

in uc

w1

w

output w3 in1...   ...

g(C)

2

Fig. 4. The AND/OR graph g1(C)
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It is clear that FcU
(g1(C)) = 1. And if we let U ′ = {w3}, then a similar

argument as in the proof of Theorem 3 shows that C is satisfiable if and only if

FcU′
(g1(C)) = 2, and C is not satisfiable if and only if FcU′

(g1(C)) = 0.

Thus, if U is a set of critical vertices in g1(C), then C is satisfiable. Since if

C is not satisfiable, then FcU′
(g1(C)) = 0 < FcU

(g1(C)) = 1 and U is not a set of

critical vertices.

Conversely, assume that C is satisfiable, then it is straightforward that U is a

set of critical vertices. This completes our proof of the theorem. 2

Theorem 5 CV is coNP-hard.

Proof. It suffices to reduce the coNP-complete problem 3SAT to CV. For each

input C to 3SAT , let g1(C) be the AND/OR graph constructed in Theorem 4 (see

Figure 4), define the capacity function c for g1(C) by letting c(e) = 1 for all edges

e ∈ Eg1(C). And let U = {w3}.

Now a similar argument as in the proof of Theorem 3 shows that C is satisfiable

if and only if FcU
(g1(C)) = 2, and C is not satisfiable if and only if FcU

(g1(C)) = 0.

Thus, if U is a set of critical vertices in g1(C), then FcU′
(g1(C)) = 1 ≥ FcU

(g1(C)),

where U ′ = {uc}. Hence FcU
(g1(C)) = 0 and C is not satisfiable.

Conversely, assume that C is not satisfiable, then it is straightforward that U is

a set of critical vertices. This completes our proof of the theorem. 2

Corollary 1 If P6=NP, then CV belongs neither to NP nor to coNP.

Proof. This follows from Theorems 4 and 5. 2

Applications of critical vertices are varied. For example, in order to attack

a computation system modeled by an AND/OR graph with the least resource,

an adversary wants to choose a minimal set of critical vertices to corrupt (e.g.,

to bomb). And in order for a system designer to make the computation system

dependable, he should pay more attention to the processors corresponding to the

critical vertices.

It is often the case that a system designer wants to know how many faults a

system can tolerate, that is, he is interested in the following problem CVB.

CVB (i.e., Critical Vertices with a given Bound).

Instance: An AND/OR graph G(V∧, V∨, INPUT, output; E) with a capacity func-

tion c, two positive integers k and p.

Question: Does there exist a vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) in G

such that |U | ≤ k and FcU
(G) ≤ p?

It is clear that FcU
(G) ≤ p if and only if for all flow fU with respect to the

capacity function cU we have FfU
(G) ≤ p. Hence CVB belongs to the complexity

class Σp
2. In the following we will show that CVB is both NP-hard and coNP-hard.

We first introduce a restricted version SCV of CVB and show that the problem

SCV is NP-complete. Given an AND/OR graph G(V∧, V∨, INPUT, output; E), a

set U ⊆ (V∧∪V∨)\ (INPUT ∪{output}) is called a set of strictly critical vertices of

G if, for any solution graph P in G, P passes through at least one vertex of U . Note

that a set of strictly critical vertices is different from a vertex separator (though

related) defined in [3].

12



SCV (i.e., Strictly Critical Vertices).

Instance: An AND/OR graph G(V∧, V∨, INPUT, output; E) and a positive integer

k ≤ |(V∧ ∪ V∨) \ (INPUT ∪ {output})|.

Question: Does there exist a size k set of strictly critical vertices?

Theorem 6 SCV is NP-complete.

Proof. We first show that SCV ∈ NP. It suffices to show that there is a

polynomial time algorithm to decide whether a given set U of vertices is a set of

strictly critical vertices.

For a given set U of vertices, we define another vertex set U ′ by the following pro-

cedure. For the reason of simplicity, in the following we will denote by outgoing(U ′)

the set of all outgoing edges of vertices in U ′.

1. Let U ′ = U .

2. For each vertex v ∈ V∨\U ′ such that all incoming edges of v are in outgoing(U ′),

let U ′ = U ′ ∪ {v}. Go to Step 3.

3. If there is a vertex v ∈ V∧ \ U ′ such that at least one of the incoming edges

of v is in outgoing(U ′), then let U ′ = U ′ ∪ {v} and go to Step 2, otherwise

output U ′ and halt.

It is straightforward to check that U is a set of strictly critical vertices if and only

if the following condition does not hold:

• There is a sequence of vertices v1, . . . , vn /∈ U ′ such that v1 ∈ INPUT ,

vn = output, and (vi→vi+1) ∈ EP for each i < n.

This shows that SCV ∈ NP. Hence it suffices to reduce the following NP-complete

problem VC to SCV.

VC (i.e., Vertex Cover problem).

Instance: A graph G(V, E) and a positive integer k.

Question: Does there exist a vertex cover V ′ of G with |V ′| ≤ k, that is, a vertex

set V ′ ⊆ V such that any edge in E is incident to at least one vertex in V ′?

The input G = (VG, EG), to VC, consists of a set of vertices VG = {v1, . . . , vn}

and a set of edges EG = {e1, . . . , em} . In the following we construct an AND/OR

graph MG(V∧, V∨, INPUT, output; E) such that there is a vertex cover of size k in

G if and only if there is a size k set of critical vertices in MG.

Let INPUT = {Ii : i = 1, . . . n}, V∨ = {output}, V∧ = INPUT ∪ {ui : i =

1, . . . , n} ∪ {wi : i = 1, . . . , m}, and E be the set of the following edges.

1. For each i = 1, . . . , n, there is an edge Ii→ui.

2. For each i = 1, . . . , m, there are two edges ui1 → wi and ui2 → wi, where

ei = (vi1 , vi2 )

3. For each i = 1, . . . , m, there is an edge wi→output.

13



Now assume that {vi1 , . . . , vik
} is a vertex cover in G, then it is straightforward

that {ui1 , . . . , uik
} is a set of critical vertices in MG.

Conversely, assume that U is a set of critical vertices in MG. Let U ′ ⊆ VG be a

set of vertices defined by the following procedure.

1. Let U ′ = ∅.

2. For each i ≤ n such that ui ∈ U , let U ′ = U ′ ∪ {vi}.

3. For each i ≤ m such that wi ∈ U , let U ′ = U ′ ∪ {vj}, where vj is any vertex

in VG which is incident to ei.

And it is easy to see that U ′ is a vertex cover in G. 2

Actually, the proof of Theorem 6 also shows that the problem CVB is NP-hard.

Theorem 7 CVB is NP-hard.

Proof. Let G and MG be the graph and the AND/OR graph in the proof of

Theorem 6. Then it is straightforward to check that there is a vertex cover of size

k in G if and only if there is a set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) such that

|U | ≤ k and FcU
(MG) = 0. This completes our proof of the theorem. 2

Theorem 8 CVB is coNP-hard.

Proof. It suffices to reduce the coNP-complete problem 3SAT to CV. For each

input C to 3SAT , let g1(C) be the AND/OR graph constructed in Theorem 4 (see

Figure 4). Define a capacity function c for g1(C) by letting c(e) = 1 for all edges

e ∈ Eg1(C), and let k = 1 and p = 0.

Now a similar argument as in the proof of Theorem 5 shows that the following

conditions are equivalent.

1. C is not satisfiable.

2. There exists a vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) in g1(C) such

that |U | ≤ 1 and FcU
(g1(G)) ≤ 0 (that is, U = {w3} satisfies this property).

This completes our proof of the theorem. 2

Corollary 2 If P6=NP, then CVB belongs neither to NP nor to coNP.

Proof. This follows from Theorems 7 and 8. 2

The complexity of problems can be compared by reductions. If one problem

can be reduced with respect to some reduction to another problem, then the latter

problem has at least the complexity of the former problem, and the comparability

increases when the reduction becomes more restrictive. As an example, in the

polynomial time Turing reduction, an NP-complete optimization problem can be

reduced to the corresponding decision problem while this might not be possible in

the polynomial time many one reduction. Up to now in this paper, we have only

considered polynomial time many one reductions. We close this section by showing

that CV can be reduced to CVB by a polynomial time Turing reduction (we do not

know whether there is a polynomial time many one reduction between them).

Theorem 9 There is a polynomial time Turing reduction from CV to CVB.
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Proof. The input to CV consists of an AND/OR graph G(V∧, V∨, INPUT ,

output; E) with a capacity function c, and a vertex set U ⊆ (V∧ ∪V∨) \ (INPUT ∪

{output}). By Theorem 7, CVB is NP-hard. Hence using a standard polynomial

time Turing reduction from an optimization problem to its corresponding decision

problem, we can compute in polynomial time the value of FcU
(G) by an adaptive

oracle access to CVB. Now we distinguish the following two cases:

1. FcU
(G) = 0. Then U is a set of critical vertices.

2. FcU
(G) ≥ 1. Then U is not a set of critical vertices if and only if there is

a set of vertices U ′ ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) with the property

|U ′| = |U | and FcU′
(G) ≤ FcU

(G) − 1. For this case, with an adaptive access

to the oracle CVB, we can decide in polynomial time whether U is a set of

critical vertices.

This completes our proof of the theorem. 2

5. Maximum additive flows in an AND/OR graph

We have mentioned in Section 2 that after Sahni [16] proved the NP-hardness of

finding minimum-cost solution graphs in AND/OR graphs, Martelli and Montanari

[12, 13] modified the cost structure to be additive and got a (heuristic) polynomial

time algorithm AO∗. Based on the similar idea, we can make our definition of

flows in an AND/OR graph “additive” and then get a polynomial time algorithm

for finding maximum additive flows in AND/OR graphs. A careful analysis of the

proofs in Section 3 shows that the NP-hardness of the problems related to maximum

flows in AND/OR graphs is mainly due to the nondeterminism of ∨-vertices, that

is, each unit flow into an ∨-vertex leaves that vertex from only one outgoing edge

(cannot leave that vertex from several edges at the same time). Like the definition

of the additive cost of edges by Martelli and Montanari [12, 13], we can unfold

each ∨-vertex. That is, let the ∨-vertex have the copy function. More precisely, an

additive flow f in an AND/OR graph G is a flow function f defined on edges of G

with the equation (1) replaced by the following equation (3):

f(e′) ≤
∑

e∈v−

f(e) (3)

for all v ∈ V∨ and e′ ∈ v+. For an additive flow f in the AND/OR graph G,

the total additive flow F ′

f (G) is defined to be the amount of additive flow into the

output vertex output. And we will use F ′

c(G) to denote the maximum of F ′

f (G) for

all additive flow f in G, that is, F ′

c(G) = max{F ′

f (G) : f is an additive flow in G}.

Applications of the theory of additive flows in AND/OR graphs are varied. For

example, data in computer systems are easy to copy. The additive flow may be

interpreted that ∨-vertices in an AND/OR graph can “copy” data (note that in

some production process, “hardwares” can not be easily “copied”, hence can only

be modeled by non-additive flows).

Theorem 10 There is an efficient algorithm to compute the maximum additive

flows in AND/OR graphs.
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Proof. For a given AND/OR graph G and a capacity function c, we first recur-

sively define a function f on edges of G by the following procedure.

1. Let f(e) = c(e) for all e ∈ E.

2. If f(e) is an additive flow in G, then halt, otherwise go to Step 3.

3. For each vertex v ∈ V∨ such that the equation (3) does not hold, let mv =
∑

e∈v− f(e). For each vertex v ∈ V∧ such that the equation (2) does not hold,

let mv = min{f(e) : e ∈ v−}. And for all other vertices v let mv =∞.

4. Let v0 ∈ V∨∪V∧ be the vertex such that mv0 (defined in Step 3) is a minimum

(resolve ties arbitrarily).

5. We distinguish the following two cases.

• v0 ∈ V∨. For each e ∈ v+
0 , let f(e) = min{f(e), mv0}. Go to Step 2.

• v0 ∈ V∧. For each e ∈ v+
0 ∪ v−0 , let f(e) = min{f(e), mv0}. Go to Step 2.

By the choice of v0 in Step 4, it is easy to see that for each edge e, the values of

f(e) will change for at most once. Hence the above algorithm will stop in at most

(|E| + |V∨|+ |V∧|)2 steps with an additive flow function f . By the construction of

the additive flow f , it is straightforward to check that for any other additive flow

f ′, we have f ′(e) ≤ f(e) for all e ∈ E. It follows that F ′

c(G) =
∑

e∈output− f(e).

This completes our proof of the Theorem. 2

Corollary 3 For an AND/OR graph G with only one ∨-vertex and a capacity

function c, there is a polynomial time algorithm for finding the maximum (non-

additive) flow in it.

Proof. It is straightforward to check that, for an AND/OR graph G with only one

∨-vertex and a capacity function c, the maximum additive flow and the maximum

non-additive flow coincide. Hence the corollary follows from Theorem 10. 2

As in Section 4, we can also define the set of critical vertices for additive flows

and we denote by A-CV, A-SCV and A-CVB the corresponding versions of CV,

SCV and CVB respectively. Since SCV = A-SCV and there is a polynomial time

algorithm to compute the maximum additive flow in an AND/OR graph, we have

the following theorem.

Theorem 11 Both A-SCV and A-CVB are NP-complete, and A-CV ∈ coNP.

Proof. It follows directly from Theorem 10 and the definitions of these complexity

classes that both A-SCV and A-CVB belong to NP, and A-CV belongs to coNP.

Since SCV = A-SCV, by Theorem 6, A-SCV is NP-complete. It is straightfor-

ward to check that the proof of Theorem 7 also shows that A-CVB is NP-hard.

Hence A-CVB is NP-complete. 2

We close this section by showing that A-CV is polynomial time Turing complete

for NP. Note that we still do not know whether A-CV is NP-complete, that is,

whether A-CV is polynomial time many one complete for NP.

Theorem 12 A-CV is polynomial time Turing complete for NP.
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Proof. By Theorem 11, A-CV ∈ NP, hence it is sufficient to reduce the NP-

complete problem VC to A-CV by a polynomial time Turing reduction.

Given an input graph G(VG, EG) to VC, let MG be the AND/OR graph con-

structed in Theorem 6. Define a capacity function c by letting c(e) = 1 for all

e ∈ E. For any vertex set U ⊆ (V∨ ∪ V∧) \ (INPUT ∪ {output}), let f(U) be a set

of vertices defined by the following procedure:

1. Let f(U) = ∅.

2. For each i ≤ n such that ui ∈ U , let f(U) = f(U) ∪ {ui}.

3. For each i ≤ m such that wi ∈ U , let f(U) = f(U)∪{uj}, where j is a number

such that vj is any vertex in VG which is incident to ei.

It is straightforward to check that F ′

cf(U)
(MG) ≤ F ′

cU
(MG). Now using the

following procedure we can decide in polynomial time whether G(VG, EG) has a

vertex cover of size k.

1. Pick up any vertex set U ⊆ (V∨ ∪ V∧) \ (INPUT ∪ {output}) with |U | = k.

2. With the help of the oracle A-CV, decide whether f(U) is a set of critical

vertex with respect to the additive flow in MG, if the answer is yes, then go

to Step 3, otherwise go to Step 4.

3. If F ′

cf(U)
(MG) = 0, then G has a vertex cover {vi : ui ∈ f(U)} of size k,

otherwise G does not have such a vertex cover. Halt.

4. Use a standard polynomial time Turing reduction from an optimization prob-

lem to its corresponding decision problem to compute a size k vertex set

U ′ ⊆ (V∨ ∪ V∧) \ (INPUT ∪ {output}) such that F ′

cU′
(MG) < F ′

cf(U)
(MG).

Let U = U ′ and go to Step 2.

This completes our proof of the Theorem. 2

6. Comments and open problems

In this paper, we have discussed the problem of finding maximum flows and

the problem of finding critical vertices in an AND/OR graph. In particular, we

showed the hardness of several problems and compared their complexity. It should

be noted that though we stated our theorem for general AND/OR graphs, it is

straightforward to check that all our results hold for acyclic AND/OR graphs. As a

summary, Figure 5 describes the relationship among the problems we have discussed

graphically. The arrows describes the knowledge of the existence of polynomial time

many one reductions.

The following interesting problems remain open yet.

1. Is CVB Σp
2-complete?

2. Can CVB be polynomial time Turing reduced to CV?
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Figure 5: The relationships

3. Is CV Πp
2-complete?

4. Is A-CV coNP-complete?

5. Can CVB be polynomial time Turing reduced to 3SAT ?

We conjecture that the answers to the above questions are all negative unless the

polynomial time hierarchy collapses. In addition, it is interesting to show the exact

relationship between CV and CVB?
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