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Abstract

In this paper, we use the concept of edge-colored graphs to model homogeneous faults in networks. We then use
this model to study the minimum connectivity (and design) requirements of networks for being robust against ho-
mogeneous faults within certain thresholds. In particular, necessary and sufficient conditions for most interesting
cases are obtained. For example, we will study the following cases: (1) the number of colors (or the number of
non-homogeneous network device types) is one more than the homogeneous fault threshold; (2) there is only one
homogeneous fault (i.e., only one color could fail); and (3) the number of non-homogeneous network device types is

less than five.
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1. Background and edge-colored graph

In network communications, the communication
could fail if some nodes or some edges are broken.
Though the failure of a modem could be considered the
failure of a node, we can model this scenario also as the
failure of the communication link (the edge) attached
to this modem. Thus it is sufficient to consider edge
failures in communication networks. It is also impor-
tant to note that several nodes (or edges) in a network
could fail at the same time. For example, all brand X
routers in a network could fail at the same time due to
a platform dependent computer worm (virus) attack. In
order to design survivable communication networks, it
is essential to consider this kind of homogeneous faults
for networks. Existing works on network quality of ser-
vices have not addressed this issue in detail and there
is no existing model to study network reliability in this
aspect. In this paper, we use the edge-colored graphs
which could be used to model homogeneous faults in
networks. The model is then used to optimize the de-
sign of survivable networks and to study the minimum
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connectivity (and design) requirements of networks for
being robust against homogeneous faults within certain
thresholds.

Definition 1. An edge-colored graph is a tuple
G(V,E,C, f), with V the node set, E the edge set,
C the color set, and f a map from E onto C. The
structure

Zoy={Z:Z CEand |f(Z)| <t}.

is called a t-color adversary structure. Let A,B € V
be distinct nodes of G. A, B are called (t + 1)-color
connected for t > 1 if for any color set Cy C C' of size
t, there is a path p from A to B in G such that the edges
on p do not contain any color in Cy. An edge-colored
graph G is (t+1)-color connected if and only if any two
nodes A and B in G are (t + 1)-color connected.

The interpretation of the above definition is as fol-
lows. In a network, if two edges have the same color,
then they could fail at the same time. This may happen
when the two edges are designed with same technolo-
gies (e.g., with same operating systems, with same ap-
plication software, with same hardware, or with same
hardware and software). If an edge-colored network is
(t + 1)-color connected, then the network communica-
tion is robust against the failure of edges of any ¢ colors
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(that is, the adversary may tear down any ¢ types of de-
vices).

In practice, one communication link may be attached
to different brands of network devices (e.g., routers,
modems) on both sides. For this case, the edge can have
two different colors. If any of these colors is broken, the
edge is broken. Thus from a reliability viewpoint, if one
designs networks with two colors on the same edge, the
same reliability/security can be obtained by having only
one color on each edge. In the following discussion, we
will only consider the case with one color on each edge.
Meanwhile, multiple edges between two nodes are not
allowed either.

We are interested in the following practical questions.
For a given number n of nodes in V (i.e., the num-
ber of network nodes), a given number y of the colors
(e.g., the number of network device types), and a given
number ¢, how can we design a (¢t + 1)-color connected
edge-colored graph G(V, E) with minimum number m
of edges? In another word, how can we use minimum
resources (e.g., communication links) to design a net-
work that will keep working even if ¢ types of devices
in the network fail?

For practical network designs, one needs first to have
an estimate on the number of homogeneous faults. For
example, the number ¢ of brands of routers that could
fail at the same time. Then it is sufficient to design a
(t + 1)-color connected network with v = ¢ + 1 colors
(e.g., with ¢ 4 1 different brands of routers). Necessary
and sufficient conditions for this kind of network design
will be obtained in this paper.

Another important issue that should be taken into
consideration in practical network designs is that the
number v of colors (e.g., the number of brands for
routers) is quite small. For example, v is normally less
than five. Necessary and sufficient conditions for net-
work designs with v < 5 and with optimized resources
will be obtained in this paper. Note that for cases with
small v, we may have v > ¢ + 1.

The outline of the paper is as follows. Section 3 de-
scribes the necessary and sufficient conditions for the
case of v = ¢ + 1 without optimizing the number of
edges in the networks. Section 4 gives a necessary con-
dition for edge-colored networks in terms of optimized
number of edges. Section 5 shows that the necessary
conditions in Section 4 are also sufficient for the most
important three cases: (1) y = t+1; (2) t = 1; and
(3) v < 5. Section 6 shows that it is coNP-hard to de-
termine whether a given edge-colored graph is (¢ + 1)-
connected, and we conclude the paper by presenting a
few resutls related to disjunct set systems in Section 7.

2. Related works

Though edge-colored graph is a new concept which
we used to model network survivability issues, there are
related research topics in this field. For example, edge-
disjoint (colorful) spanning trees have been extensively
studied in the literature (see, e.g., [1]). These results
are mainly related to our discussion in the next section
for the case of v = ¢ + 1. An edge-colored graph G is
proper if whenever two edges share an end point they
carry different colors. A spanning tree for an edge-
colored graph is called colorful if no two of its edges
have the same color. Two spanning trees of a graph are
edge disjoint if they do not share common edges. For
a non-negative integer s, let K denote the complete
graph on s vertices. A classical result from Euler (see
[1]) shows that the edges of K, can be partitioned into
n isomorphic spanning trees (paths, for example) and
each of these spanning trees can easily be made color-
ful, but the resulting edge-colored graph usually fails to
be proper.

Though it is important to design edge-colored graphs
with required security parameters, for several scenarios
it is also important to calculate the robustness of a given
edge-colored graphs. Roskind and Tarjan [7] designed a
greedy algorithm to find (¢ + 1) edge disjoint spanning
trees in a given graph. This is related to the question of
(t + 1)-color connectivity for the case of v = ¢+ 1. We
are not aware of any approximate algorithms for decid-
ing (¢ + 1)-color connectivity of a given edge-colored
graph. Indeed, we will show that this problem is coNP-
hard.

3. Necessary and sufficient conditions for special
cases

In this section, we show necessary and sufficient con-
ditions for some special cases.

Lemma 2. An edge-colored graph G(V,E,C,f) is
(t + 1)-color connected if and only if, for all iy, is, . . .,
iv—t < (VB UE;, U---UE; _,)is a connected
graph, where Ey, Es, ..., E, is a partition of E under
the ~y different colors.

As we have mentioned in the previous section, the
Euler’s result claims that K5,, can be partitioned into n
spanning trees. Thus, by Lemma 2, we have the follow-
ing theorem.

Theorem 3. (Euler) For n = 2+, there is a coloration
G(V,E,C, f) of K, such that G is (v — 1)-color con-
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In the following, we extend Theorem 3 to the general
case of n > 2.

Lemma 4. Forn > 2~ and vy > 2, there exists a graph
G(V,E)with V| =n,|E| =~v(n—1),and E = E1 U
E> U ---U E, such that the following conditions are
satisfied:

1. G(V, E;) is a connected graph for all 0 < i < ~;
2. E;NE;j=0foralli#j <-.

Proof. We prove the Lemma by induction on n and ~.
For n = 2 and v = 1, the Lemma holds obviously.
Assume that the Lemma holds for ng > 2~.

In the following, we show that the Lemma holds for
n=no+ 1,y ="andforn =ng+ 2,y = + 1.
Let G(Vp, Ep) be the graph with |Vo| = no, |Eo| =
Yo(no — 1), and Ey = EY U E U --- U ES, such that
the conditions in the Lemma are satisfied.

For the case of n = ng + 1 and v = 7y, let
V = Vy U {u} where u is a new node that is not in
Vo, and let £y = E? U {(’U,7 Ul)}, Ey = Eg U {(’U,7 Ug)},

w By = ES U {(u, uqy,)} where uy, ug, . .., uy, are
distinct nodes from Vj. It is straightforward to show
that |V| = n, |E| = v(n — 1), G(V, E;) is a connected
graph, and E; N E; = () for all i # j < ~. Thus the
Lemma holds for this case.

For the case of n = ng + 2 and v = 7y + 1, let
V = Vi U {u, v} where u, v are new nodes that are not
in Vy, and define Ey, ..., E, as follows.

1. Set E;, = () and U = (), where U is a temporary

variable.
2. Define Ey:
(a) Select an edge (v1,v2) € EY.
(b) Let B

(E? \ {(Ul’UQ)}) U{(Ula u), (u,v), (Ua'U?)}'

(c) Let By, = E, U {(v,v1), (v1,v2), (v2,u)}
and U = U U {vy,v2}.

3. Define E; for 2 < i < ~p:

(a) Select vo; 1, v9; ¢ U.

(b) Let Ez = E? @] {(U,’Ugifl), (’U, UQ»L')}.

(¢c) Let £, = E, U {(’U,Ugifl),(u,vgi)} and
U=UU {Ugi_l,vm‘}.

It is straightforward to show that |V | = n, |E;| = (n —
1) (thus |E| = y(n—1)), G(V, E;) is a connected graph,
and E; N Ej = () for all ¢ # j < ~. This completes the
proof of the Lemma. Q.E.D.

Theorem 5. Given n,~,t with v = t + 1, there
exists a (t + 1)-color connected edge-colored graph
G(V,E,C, f) with |V| = n and |C| = ~ if and only
ifn > 2.

Proof. By Lemma 2, a (¢ + 1)-color connected edge-
colored graph G(V, E, C, f) with |V| = n and |C| =
~ = t+ 1 contains at least v(n — 1) edges. Meanwhile,
G(V,E,C, f) contains at most n(n — 1)/2 edges. Thus
for n < 2, we have n(n — 1)/2 < y(n — 1). In other
words, for n < 2+, there is no (¢t 4+ 1)-color connected
edge-colored graph G(V, E,C, f) with |V| = n and
|C| =+ =t + 1. Now the theorem follows from Lem-
mas 2 and 4. Q.ED

4. Necessary conditions for general cases

First we note that for an edge-colored graph G to be
(t 4+ 1)-color connected, each node must have a degree
of at least t+1. Thus the total degree of an n-node graph
should be at least n(¢t + 1). This implies the following
lemma.

Lemma 6. Fory >t+1> 1, and a (t+ 1)-color con-
nected edge-colored graph G(V, E, C, f) with |V| = n,
|E| = m, and |C| = =, we have 2m > (t + 1)n.

In the following, we use cover free family concepts to
study the necessary conditions for edge-colored graphs
connectivity.

Definition 7. Let X be a finite set with |X| = m
and F be a set of mutually disjoint subsets of X with
|F| = ~. Then (X, F) is called an (m,y)-partition of
X if X = Uper P. Let n,t be positive integers. An
(m, ~y)-partition (X, F) is called a (t;n — 1)-cover free
family (or (t;n — 1)-CFF(m,~)) if, for any t elements
By, ...,B; € F, we have that

(U2

It should be noted that our above definition of cover-
free family is different from the generalized cover-free
family definition for set systems in the literature. In
[8], a set system (X,F) is called a (w,t;n — 1)-
cover free family if for any w blocks Aj,..., A, €
F and any t blocks Bi,...,B; € JF, one has
|(M¥_yA45) \ (U_,B;)| > n — 1. Specifically, there
are two major differences between our (m, «y)-partition
system and the set systems in the literature.

>n—1 or >n—1

N\ B)

1. For a set system (X, F), F may contain repeated
elements.

2. For a set system (X, F), the elements in F are not
necessarily mutually disjoint.



It is straightforward to show that an edge-colored
graph G is (t + 1)-color connected if and only if for any
color set C; C C of size t, after the removal of edges
in G with colors in C;, GG remains connected. Assume
that G contains n nodes. Then a necessary condition
for connectivity is that G contains at least n — 1 edges.
From this discussion, we get the following lemma.

Lemma 8. For an edge-colored graph G(V, E,C, f),
with |V | = n, |E| = m, |C| = v, a necessary condition
for G(V,E,C, f) to be (t + 1)-color connected is that
the (m,~y)-partition (X, F) is a (t;n — 1)-CFF(m,~)
with X = Eand F = {E. : ¢ € C} where E, = {e :
fle)=c,e€ E}.

In the following, we analyze lower bounds for the
number m of edges for the existence of a (¢;n — 1)-
CFF(m, ). For a set partition (X, F) and a positive

integer ¢, let
t
X\ (U Bi)
i=1

It is straightforward to see that a (m,y)-partition
(X,F) is a (t;n — 1)-CFF(m,~) if and only if
wX, F;t) >n—1.

Given positive integers m, v, t, let

w(X, Fit) = min{

p(m, y;t) = max (X, F;t)

(m,v)-partition (X,F)
From the above discussion and Lemma 6, we have the
following theorem.

Theorem 9. Let m,~,t be given positive integers.
wim,v;t) > n—1and 2m > (t + 1)n are necessary
conditions for the existence of a (t+ 1)-color connected
edge-colored graph G(V, E, C, f), with |V | = n, |E| =
m, |C] = 1.

Theorem 10. Let m,~y,t be given positive integers. We
have

Loift 2 m—[2 ]y, then p(m, y;t) = (y—=1t)- | 7]
] -y, then p(m,y;t) = (v —t) -

L’;‘J+(m—[’;‘J~v—t).

Proof. For a given (m,~)-partition (X,F), let
By, ..., B, be an enumeration of elements in F such
that |B;| < |B;41] for all i < . It is straightforward
to show that (X, F;t) = Y27 |Bi|. Thus u(m, y;t)
takes the maximum value if Z;’;lt | B;| is maximized. It
is straightforward to show that this value is maximized
when the (m, y)-partition (X, F) satisfies the following
conditions:

IBl,...,BtE]:}

1. |Bi| = L%J fori <y — (m— L%j ~7),and
2. |Bi| = %] +1fory >i>~y— (m— 1] ~'y).
The theorem follows from the above discussion. Q.E.D.

Example 1. Forn = 7,m = 10,y = 5, and t = 2,
we have 11(10,5;2) = 6 = n — 1. However, 2m =
20 < (t + 1)n = 21. This shows that the condition
2m > (t + 1)n in Theorem 9 is not redundant.

Example 2. There are no (t+1)-color connected edge-
colored graph G(V, E, C, f) for the following special

cases.

l.y=2t=1n=3.
2. y=4,t=2,n=4.
3.y=3,t=2,n<5.

Proof. Before we consider the specific cases, we ob-
serve that, when ~ and ¢ are fixed, the function w is non-
decreasing when m increases.

1. In this case, the maximum value that m could take
is 3. Thus 4(3,2;1) = 1 < n — 1 = 2. That s, there is
no (1;2)-CFF(3, 2), which implies the claim. Note that
this result also follows from Theorem 5.

2. In this case, the maximum value that m could take
is 6. Thus 14(6,4;2) =2 <n—1=3.

3. We only show this for the case v = 3,f = 2,n =
5. In this case, the maximum value that m could take is
10. Thus p(10,3;2) = 3 < n — 1 = 4. Note that this
result also follows from Theorem 5. QE.D

The following theorem is a variant of Theorem 9.

Theorem 11. For v — 1 > t > 0, a necessary condi-
tion for the existence of a (t + 1)-color connected edge-
colored graph G(V, E,C, f) with |V| = n, |E| = m,
and |C| = ~ is that 2m > (t + 1)n and the following
conditions are satisfied:

o Ifn = (v — t)k for some integer k > 0, then m >
vk — 1.

o Ifn = (v —t)k + 1 for some integer k > 0, then
m > k.

o Ifn = (v —t)k + 2 for some integer k > 0, then
m>vk+t+ 1

o Ifn=(y—t)k+~y—1t—1forsome integer k > 0,
then m > vk 4+ v — 2.



Proof. For v > ¢t + 1, by Theorem 10, we have

(v 1)K
(y—t)k +1

(y—tK +y—-t—-1

m=~k' +1
m=~k'+t+1

m=~k'+~v—1

where 0 <1 < t.

Thus the necessary condition p(m,~y;t) > n — 1in
Theorem 9 can be interpreted as the following condi-
tions:

i ifm=ak +ifor 0<i<t
> % itm=~k"+t+1
R =k 4y 1

In other words, for a (¢ + 1)-color connected edge-
colored graph G(V, E, C, f), one of the following y — ¢
conditions is satisfied:

O\V\—n|E|>7[ —‘and|C|—7

o V|=n, |E|>fy[ ]+t+1 and |C] =

o VI=n B 2y [22E] +y — 1 and |C] = .

By distinguishing the cases forn = (v —t)k,n = (v —
tYk+1,--,andn = (y —t)k +v —t — 1, and by
reorganizing the above lines, these necessary conditions
can be interpreted as the following v — ¢ conditions:

en = (y—tkand m > vk — 1 for some k >
0. Note that this follows from the last line of the
above conditions (one can surely take other lines,
but then the bound for m would be larger). This
comment applies to the following cases too.

e n=(y—t)k+1and m > vk for some k& > 0.

en=(y—tk+2andm > vk +t+ 1 for some
k> 0.

en=(y—tk+y—t—1landm > vk +~y—2for
some k > 0.

Q.E.D.

5. Necessary and sufficient conditions for practical
cases (with small v and ¢)

Generally we are interested in the question whether
the necessary condition in Theorems 9 and 11 are also
sufficient. In the following, we show that this is true for
several important practical cases.

Theorem 12. The necessary conditions in Theorem 9
are sufficient for the case of v =t + 1.

Proof. Since m — [ 2} ] - is the remainder of m divided
by v, we trivially have t = v —1 > m — L%j .
Z. By Theorem 10, we have

Now assume that v > 7.
p(m,yit) = [2H] < L%J < n — 1. The rest
Q.E.D.

follows from Theorem 5.

Before we show that the necessary conditions in The-
orems 9 and 11 are sufficient for the case of t = 1, we
first present two lemmas whose proofs are straightfor-
ward.

Lemma13. Forn = v =m > 3 andt = 1, the fol-
lowing ~-node circle graph is (1 + 1)-color connected:

(vy,v1)}

with f(v;,vi11) = ¢; fori < v and f(vy,v1) = cy.

{(v1,v2), (va,v3), ...,

Lemmald. Fort =1,~v > 3, andv <n < 2v — 2,
the graph in Figure 1 with the edges:

{(U17U2)7 (U2a U3)7 sy (UV7 Ul)} U
{(U’w U7+1)’ (U’Y"rl’ U7+2)a ooy (Un,01)}
and colors defined by
fvi,vit1) =¢ for1 <i<~-—1

fUygi-1,0744) =¢ forl<i<n-—vy

F ()

is (1 + 1)-color connected.

)

(U% 1) =Cy
)
)

= Cp—n+1

Before we show that the necessary conditions in The-
orem 9 are also sufficient for the case of t = 1, we first
prove this for y = 3.

Theorem 15. The necessary conditions in Theorem 9
are sufficient for the case of v = 3 andt = 1.

Proof. For y = 3 and ¢ = 1, we have

2k’
2k +1

ifm=3k"orm=3k"+1



Uy+1

Figure 1: The Graph for Lemma 14

By the condition p(m,~y;t) > n— 1, the necessary con-
dition is converted to the following conditions:

n—1
/
k Z{ nEQ

2

ifm=3k"orm=3k'+1
ifm=3k"+2

Thus in order to prove the theorem, it is sufficient to
construct a (1 + 1)-color connected edge-colored graph
G(V, E, C, f) for each of the following two conditions:

o [V|=n,|E|=3[2],and |C| = 3.
e [VI=n,|E|=3[22] +2,and |C| = 3.

By distinguishing the cases for n = 2k and n = 2k +
1, it is sufficient to construct the required edge-colored
graph for each of the following two conditions:

e n=2km=3k—1,andy = 3.
e n=2k+1,m=3k,and v = 3.

For the case of n = 2k, let

Vo= {v, -, v,

F = {(1}1,’[}22‘) 1< < k}

Ey, = {(Ul,U2i+1) 1 <i< k} U {(1}1,112k>)}
By = {(v2i,v2i41) 1 1 < < k)} U {(v2,v21)}
E = E UE,UEFE;s

For each e € E; (i < 3), let f(e) = ¢;. Then it
is straightforward to check that the edge-colored graph
G(V,E,C, f)is (1 4 1)-color connected, |V | = n, and
|E| =3k —1.

For the case of n = 2k + 1, let

V = {Ul)"'yv2k+1}',

Ey = {(vi,v):1<i<k}

Ey = {(vi,v2i41):1<i <k}
By = {(v2i,v2i41) : 1 <i < k)}
E = EIUEQUEg

For each e € E; (i < 3), let f(e) = ¢;. Then it
is straightforward to check that the edge-colored graph
G(V,E,C, f)is (1 4 1)-color connected, |V| = n, and

|E| = 3k, QED.

Figure 2: Graph for the case n = (y— 1)k+1,m > kvy

Corollary 16. For v = 3, t = 1, and n,m > 0, there
exists a (1 + 1)-color connected edge-colored graph
G(\V,E,C, f)with |V| = n and |E| = m if and only if
m > min (32513 [252] + 2}

Now let us prove the theorem for the general case of
t=1

Theorem 17. The necessary conditions in Theorems 9
and 11 are sufficient for the case of t = 1.

Proof. For the case of v = 2 and ¢t = 1, it follows from
Theorem 12. Now assume that vy > 2and ¢t = 1. In
this special case, the necessary conditions in Theorem
11 are as follows:

e n = (y—1)kandm > vk — 1 for some k£ > 0.
e n=(v—1)k+1and m > ~k for some k > 0.

e n=(y—1)k+2andm > vk+2 for some k > 0.

en=(y—1k+~v—2and m > vk +~ — 2 for
some k > 0.

In the following we first show that the condition “n =
(v = 1)k + 1 and m > kv is sufficient. Let the graph
in Figure 2 be defined as follows:

Vo= {vo,v1,, Vy—1)k )

E1 = {(Uo,v(,y_l)i+1) :0 § ) S k— 1}

Ej = {(p-1)iti-1,00-1)i+5) 1 0<i <k =1}
for2<j<y-1

E’Y = {(v(v,l)i,vo) 1< < ki}

E = EUEU---UE,

For each e € E; with j < v, let f(e) = ¢;. Then it
is straightforward to check that the edge-colored graph
G(V,E,C, f)is (1 4 1)-color connected, |V| = (y —
1)k +1,and |E| = ~k.

Now we show that the condition “n = (y — 1)k + j
and m > kv 4+ j for 2 < j < v — 17 is sufficient. Let
G(V,E,C, f) be the edge-colored graph that we have
just constructed with |V'| = (y—1)k+1, and |E| = ~k.




=11 Uy
|

U(y—1)k+1

Figure 3: Graph for the case n = (y — 1)k + j, m >
ky+3

Let V! = VU{v(y—1)kt1,- - - » U(y—1)k+j—1}- Define
a new edge-colored graph G(V', E', C, f') (see Figure
3) by attaching the following edges to the y-node circle
{(U()v Ul)v (vla ’UQ), sy (U’yflv ’l}o)}:

{(U«y—la U(7—1)k+1)7 (U(7—1)k+17 U(7—1)k+2)7
R (U(fyfl)kJrjfla UO)}

The colors for the new edges are defined by letting
(V=1 ktis Vy—1)ktit1) = Cipr for 0 < i < j —2
and f'(v(y—1)k+j—1,v0) = c; (note that f = f’ when
restricted to F). It is straightforward to check that
G(V' E',C,f") is (1 4+ 1)-color connected, |V| =
(v=1k+j,and |E| = vk + j. Q.ED.

Corollary 18. For t = 1 and v, n,m > 1, there
exists a (1 + 1)-color connected edge-colored graph
G(V,E,C, f) with |V| = nand |E| = m if and only if
m is larger than or equal to the minimum of the follow-
ing values:

n—1 n—2 n—vy+1
Y 7Y +2,...,y noyTe +v—1
v—1 vy—1 v—1

Proof. It follows from the proof of Theorem 17. Q.E.D

Theorem 19. The conditions in Theorems 9 and 11 are
sufficient for the case of v = 4,t = 2.

Proof. It is sufficient to show that both of the conditions
“n=(y—t)k+1landm > kvy”and “n = (y—t)k+2
and m > vk 4+ t 4+ 17 are sufficient (note that v =
4 and t = 2). In the following we first show that the
condition “n = (v — t)k + 1 and m > k~” is sufficient
by induction on k.

For the case of k = 2, we haven = 5,m = 8,7 =4,
and t = 2. Let the graph (1 in Figure 4 be defined by
the edges

{(Ul, Uz)l, (Uz, 113)2, (U37 U4)17 (U4, ’05)37
(1)57 01)27 (01, U3)3, (Ul, ’04)4, (U27 05)4}

(%1

(%) Vs

U3 ()

Figure 4: Graph for the case n = 5,7 =4,t = 2

U1
(%) %\ vs
Cird
VU3 Uy
Vg

Figure 5: Graph forthecasen =7,y =4,t =2

where (v, v'); means that the edge (v, v’) takes color ¢;.
It is straightforward to check that G is (2 + 1)-color
connected.

For the case of K = 3, wehave n = 7,m = 12,y =
4, and t = 2. Let the graph G2 in Figure 5 be defined as

{(017 02)17 (02, 03)2, (U4, U5)3,
(vs,v1)2, (v1,v3)3, (V1,04)4, (V2,V5)4,
(vs,v6)1, (V6, v7)3, (U7, V4)1, (Va,V6)a, (V3,07)2}

where (v, v'); means that the edge (v, v’) takes color ¢;.
It is straightforward to check that G5 is (2 + 1)-color
connected.

Now for k = 2r (r > 2), wehaven = (y—t)k+1 =
4r + 1 and m = kv = 8r. If we glue the v; node of
r copies of G1, we get a (¢ + 1)-color connected edge-
colored graph G with n = 4r + 1 and m = 8r. Thus
the condition for the case of k& = 2r holds.

Fork=2r+1(r >2),wehaven = (y—t)k+1=
4r + 3 and m = kv = 8r + 4. If we glue the v; node
of » — 1 copies of G; and one copy of G2, we get a
(t+ 1)-color connected edge-colored graph G withn =
4(r—1)+146 = 4r+3andm = 8(r—1)+12 = 8r+4.
Thus the condition for the case of & = 2r+1 holds. This
completes the induction.

For the condition “n = (y — ¢t)k + 2 and m > vk +
t + 17, one can add one node to the graph for the case
“n = (y—t)k+1and m > kv” with 3 edges (with
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Figure 6: Graph for the case n = 5,7 =5,t =3
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Figure 7: Graph for the case n = 7,y =5,t =3

distinct colors) to any three nodes. The resulting graph
meets the requirements. Q.E.D.

Theorem 19 could be extended to the case of v = 5
and t = 3.

Theorem 20. The conditions in Theorems 9 and 11 are
sufficient for the case of v = 5 and t = 3.

Proof. It is sufficient to show that both of the conditions
“n=(y—t)k+landm > ky” and “n = (y —t)k +2
and m > vk +t+ 1" are sufficient (note that v —t = 2).
In the following we first show that the condition “n =
2k 41 and m > k~” is sufficient by induction on % and
.

For v = 5and k = 2, we have n = 5,m = 10. The
graph in Figure 6 shows that the condition is sufficient
also. For the case of kK = 3, we have n = 7,m =
15. The graph in Figure 7 shows that the condition is
sufficient also.

For k = 2r (r > 2), the condition becomes n =
(v—t)k+1=4r+1andm = ky = 10r. If we glue
the v; node of r copies of G5 1, we get a (¢ + 1)-color
connected edge-colored graph G with n = 4r + 1 and
m = 10r. Thus the condition for the case of k = 2r
holds.

For k = 2r + 1 (r > 2), the condition becomes n =
(v=t)k+1=4r+3andm = ky = 10r + 5. If we
glue the v; node of r — 1 copies of G5 ; and one copy
of G52, we get a (t + 1)-color connected edge-colored

graph G withn = 4(r — 1)+ 146 = 4r + 3 and
m = 10(r — 1) + 15 = 107 + 5. Thus the condition
for the case of k& = 2r + 1 holds. This completes the
induction.

For the condition “n = (y — t)k + 2 and m > ~k +
t+ 17, we have n = 2k + 2 and m > 5k + 4. We can
add one node to the graph for the case “n = (y—t)k+1
and m > k~” with 4 edges (with distinct colors) to any
four nodes. The resulting graph meets the requirements.
Q.ED.

Open Question: We showed in this section that the con-
ditions in Theorems 9 and 11 are sufficient for practical
cases. It would be interesting to show that these condi-
tions are also sufficient for general cases.

6. Hardness results

We have given necessary and sufficient conditions for
(t 4+ 1)-color connected edge-colored graphs. It is also
important to determine whether a given graph is (¢ +1)-
color connected. Unfortunately, the following Theorem
shows that the problem is coNP-complete. The ceCon-
nect problem is defined as follows.

INSTANCE: An edge-colored graph G =
G(V,E,C, f), two nodes A,B € V, and a posi-
tive integer ¢ < |C|.
QUESTION: Are A and B (t + 1)-color connected?
Before we prove the hardness result, we first intro-
duce the concept of a color separator. For an edge-
colored graph G = G(V, E, C, f), a color separator for
two nodes A and B of the graph G is a color set C’ C C'
such that the removal of all edges with colors in C from
the graph G will disconnect A and B. It is easy to ob-
serve that A and B are (¢t 4 1)-color connected if and
only there is no ¢-size color separator for A and B.

Theorem 21. The problem ceConnect is coNP-
complete.

Proof. It is straightforward to show that the problem is
in coNP. Thus it is sufficient to show that it is coNP-
hard. The reduction is from the Vertex Cover problem.
The VC problem is as follows (definition taken from

[6]):

INSTANCE: A graph G = (V, E) and a positive integer
t<|V].

QUESTION: Is there a vertex cover of size ¢ or less for
G, that is, a subset V' C V with |V’| < ¢ and, for each
edge (u,v) € E, at least one of v and v belongs to V'?

For a given instance G = (V| E) of VC, we construct
a edge-colored graph G. = (V_, E., f,C) as follows.



First assume that the vertex set V' is ordered asin V' =
{’Ul7 e ,’Un}. Let

Ve = {ABYU{ew v : (vi,v;) € Eandi < j}
E. = {(Aae(’ui,vj))v (e(vi,'uj),B) : ('Ui’vj) € E}
C = {cy:veV}

f = {f(A7 e(vi,’l)j)) = C'ui)f(e('ui,vj)v B) = Cy; :

(’l)i,'l}j) S E,Z < ]}

In the following, we show that there is a vertex cover of
size t in GG if and only if there is a t-color edge separator
for GG..

Without loss of generality, assume that V' =
{v1,..., v} is a vertex cover for G. Then it is straight-
forward that C = {c,/ : v € V'} is a color separator
for G. since each incolming path for B in G, contains
two colors corresponding to one edge (v;, v;) in G.

For the other direction, assume that C' = {cvé
i =1,...,t} is a t-color separator for G.. Let V' =
{v} : ¢,y € C'}. By the fact that C’ is a color sepa-
rator foriGC, for each edge (v;,v;) € E in G, the path
(A, ev;,0,)5 B) in G, contains at least one color from
C'. Since this path contains only two colors ¢, and Cu; s
we know that v; or v; or both belong to V’. In another
word, V' is a t-size vertex cover for G. This completes
the proof of the Theorem. Q.E.D.

7. Disjunct systems

We conclude our paper with some observations on
the relationship between disjunct system and cover free
families. Incidence matrix is usually used to describe
set systems. Let (X, F) be a (m, y)-partition of X with
X ={z1,...,on}and F = {By,..., B,}. Then the
incidence matrix of (X, F) is the m x  matrix (a; ;)
where a; ; = 1if x; € B; and a; ; = 0 otherwise. If
A is an incidence matrix of a set system, then AT (the
transpose of A) is an extended incidence matrix of a dis-
junct system. Note that by extended incidence matrix,
we mean, after consolidating repeated columns of the
matrix we get the incident matrix of a disjunct system.

Definition 22. Let Y be a set of vy elements, and B be
a set of m subsets of Y. Then the set system (Y, B)
is called a (t;n — 1)-disjunct system (or (t;n — 1)-
DS(vy,m)) if for any P C'Y such that |P| < t, there
exist at least n — 1 blocks B € B such that PN B = .

Theorem 23. 1. If there exists a (t;n — 1)-
CFF(m,~y) then there exists a (t;n’—1)-DS(y, m')
forsome 1l <n' <nandm’ <m.

2. Ifthere exists a (t;n — 1)-DS(vy, m), then there ex-
istsa (t;n—1)-CFF(m/', ) for some 0 < m’ < m.

Proof. Assume that (X, F) is a (¢;n — 1)-CFF(m, )
with incidence matrix A. Let Y = F and B = {[z] :
x € X} where [z] = {P:2 € Pand P € F}. In the
following, we show that (Y, B) isa (¢;n'—1)-DS(y, m’)
with extended incidence matrix AT for some 1 < n/ <
n and m’ < m. By the fact that (X, F) is a (t;n — 1)-
CFF(m,~), forany P = {B1,..., B} C Y, there exist
distinct 1, ..., z,—1 € X \ (Ul_, B;). That is, for any
it <n-—1andj <t we have z; ¢ B; which means
Bj ¢ [z;]. Thus PN [z;] = O forall ¢ < n — 1. Note
that for ¢ # j, we may have [z;] = [x;]. Thus the above
arguments only guarantee that there exists n’ > 1 such
that (Y, B) isa (t;n' — 1)-DS(~y, m/).

For the other direction, assume that (Y, B) is a (t;n—
1)-DS(7y, m) with incidence matrix A. Let X = B and
F=Alyl:yeY}where[y ={P:y€ Pand P €
B}. In the following, we show that (X, F)isa (t,n—1)-
CFF(m, ) with incidence matrix A”. For any ¢ blocks
[vi],-- -, [y] € F,let P = {y1,...,y:}. By the fact
that (Y, B) is a (t,n — 1)-DS(y, m), there exist distinct
blocks By, ..., B,_1 € Bsuchthat PN B; = (). That
is, foreach ¢ < tand j < n — 1, we have y; ¢ B;
which means B; ¢ [y). Thus {By,...,B,_1} €
X\ (Ut_;[ye]). Tt follows that (X, F)is a (t,n — 1)-
CFE(m, 7). QE.D.
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