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Abstract—Low Density Parity Check (LDPC) codes such as
LT codes have received significant attention from both academics
and industry in the past few years. By employing the underlying
ideas of efficient Belief Propagation (BP) decoding process in LT
codes, this paper introduces array BP-XOR codes and shows the
equivalence between the edge-colored graph model and degree-
one-and-two encoding symbol based array BP-XOR codes. Using
this equivalence result, novel [n, n−2] and [n, 2] MDS array BP-
XOR codes are designed in this paper.

I. INTRODUCTION

In order to achieve better fault tolerance with minimal
redundancy in data storage systems, there has been active
research in XOR based codes. For example, Blaum, Brady,
Bruck, and Menon [1] proposed the array code EVENODD
for tolerating two disk faults and correcting one disk errors.
Blaum, Bruck, and Vardy [2] and Huang [8] have extended
the construction of EVENODD code to general codes for
tolerating three disk faults. Other XOR based codes include
(but are not limited to) [2k, k, d] chain code, Simple Product
Code (SPC [5]), Row-Diagonal Parity (RDP [4]), and others.

By employing the underlying ideas of efficient Belief
Propagation (BP) decoding process in LT codes [10], we
introduce array BP-XOR codes. Edge-colored graph models
were introduced by Wang and Desmedt in [15] to model
homogeneous faults in networks. We will show the equivalence
between the edge-colored graph model and degree-one-and-
two encoding symbol based array BP-XOR codes. Using this
equivalence result, we are able to design general array BP-
XOR codes using graph based results. In the same time, we
are able to get new results for edge-colored graph models using
results from array BP-XOR codes.

The structure of this paper is as follows. Section II intro-
duces array BP-XOR codes and establishes the equivalence
between edge-colored graph models and array BP-XOR codes
with degree one and two encoding symbols. Section III
presents constructions of array BP-XOR codes from graph
based results (e.g., perfect one factorization of complete
graphs). Section IV presents several results on flat BP-XOR
codes. In Section V, we briefly show how to obtain efficient
secret sharing schemes from array BP-XOR codes.

II. ARRAY BP-XOR CODES

Array codes have been studied extensively for burst error
correction in communication systems and in storage systems

(see, e.g., [1], [2], [3], [17]). Array codes are linear codes
where information and parity data are placed in a two dimen-
sional matrix array. Appropriately designed array codes such
as EVENODD [1], RDP [4], and STAR [8] are very useful
for high speed storage application systems since they enjoy
low-complexity decoding and low update complexity.

As mentioned in [10], LT codes or digital fountain tech-
niques could be a better choice for distributed storage systems.
One of the major advantages that contribute to the efficiency
of LT codes is the Belief Propagation (BP) decoding process.
In this paper, we propose array codes that could be efficiently
decoded using the BP-decoding process. We call such kind
of codes array BP-XOR codes. Appropriately designed array
BP-XOR codes could achieve the MDS property from both
communication and storage aspects: for k blocks of the
original data, only k blocks of encoding symbols are needed
for correct decoding. Note that in LT codes, in order to decode
k blocks of data with probability 1− δ, k +O(

√
k ln2(k/δ))

blocks of encoding symbols are needed.
Throughout the paper, we will use the message alphabet

set M = {0, 1}. For fixed numbers n, k, t, and b where n ≥
max{k, t}, let v1, · · · , vbk be variables taking values from M ,
which are called information symbols. A t-erasure tolerating
[n, k] array code is a b×n matrix C = [αi,j ]1≤i≤b,1≤j≤n such
that each encoding symbol αi,j ∈ {0, 1} is the exclusive-or
(XOR) of one or more information symbols from v1, · · · , vbk
and v1, · · · , vbk could be recovered from any n−t columns of
the matrix. For an encoding symbol αi,j = vi1⊕· · ·⊕viσ , we
call vij (1 ≤ j ≤ σ) a neighbor of αi,j and call σ the degree
of αi,j . A t-erasure tolerating [n, k] b×n array code C is said
to be maximum distance separable (MDS) if k = n− t.

The [n, k] array code C over the alphabet M can be
considered as a linear code over the extension alphabet M b of
length n or a linear code over the alphabet M of length bn.
A bt× bn (respectively, bk× bn) binary matrix is said to be a
parity-check (respectively, generator) matrix of a b × n array
code C if it is a parity-check (respectively, generator) matrix
of C when C is considered as a length bn linear code over
the alphabet M . For example, the matrix H (respectively G)
is a parity-check (respectively, generator) matrix of the array
code C if we have HyT = 0 (respectively, y = xG) where
y = (α1,1, · · · , αb,1, · · · , α1,n, · · ·αb,n), x = (v1, · · · , vbk),
and the addition is defined as the XOR on bits. An array
code C is called low density parity-check (LDPC) if its
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parity-check (or equivalently, the generator) matrix contains
small number of nonzero entries. For an MDS array code,
it is straightforward to show that each row of the parity-
check (respectively, the generator) matrix must contain at least
n − t + 1 (respectively, t + 1) nonzero entries (see [3] for a
proof).

The Belief Propagation decoding process (also called mes-
sage passing iterative decoding) for binary symmetric channels
(BSC) is present in Gallager [7]. The BP decoding process for
binary erasure channels (BEC) is described as follows:

(Cf. [10], [11]) If there is at least one encoding
symbol that has exactly one neighbor then the
neighbor can be recovered immediately. The value
of the recovered information symbol is XORed
into any remaining encoding symbols that have this
information symbol as a neighbor. The recovered
information symbol is removed as a neighbor of
these encoding symbols and the degree of each such
encoding symbol is decreased by one to reflect this
removal.

A t-erasure tolerating [n, k] array code C =
[αi,j ]1≤i≤b,1≤j≤n is called an [n, k] array BP-XOR code if all
information symbols v1, · · · , vbk can be recovered from any
n − t columns of encoding symbols using the BP-decoding
process on the BEC.

If each encoding symbol in C = [αi,j ]1≤i≤b,1≤j≤n has
degree at most 2, then the restricted array BP-XOR codes are
equivalent to edge-colored graphs introduced by Wang and
Desmedt in [15] for tolerating network homogeneous faults.

A. Edge-colored graphs

In this section, we first describe the edge-colored graph
model by Wang and Desmedt [15]. The reader should be
reminded that the edge-colored graph model in [15] is slightly
different from edge-colored graphs in other literatures. In other
literatures, the coloring of the edges is required to meet the
condition that no two adjacent edges have the same color. This
condition is not required in the definition of [15].

Definition 2.1: (Wang and Desmedt [15]) An edge-colored
graph is a tuple G = (V,E,C, f), with V the node set, E the
edge set, C the color set, and f a map from E onto C. The
structure

ZC,t = {Z : Z ⊆ E and |f(Z)| ≤ t}.

is called a t-color adversary structure. Let A,B ∈ V be
distinct nodes of G. A and B are called (t+1)-color connected
for t ≥ 1 if for any color set Ct ⊆ C of size t, there is a path
p from A to B in G such that the edges on p do not contain
any color in Ct. An edge-colored graph G is (t + 1)-color
connected if and only if for any two nodes A and B in G,
they are (t+ 1)-color connected.

As an example, Figure 1 shows a 3-color connected graph
G4,2 with 7 nodes, 12 edges, and 4 colors. In other words, the
removal of any two colors in the graph will not disconnect the
graph. The edge-colored graphs G4,2 can also be represented

Fig. 1. 3-color connected edge-colored graph G4,2

v3

,
,
,
,
, A

A
A
AA��

���
XXXXX

@
@
@

A
A
A
A
AA

�
�
�
�
�
�
�
�
�
�

v1

v6v5

v2 v7v4

TABLE I
TABLE REPRESENTATION OF EDGE-COLORED GRAPH G4,2

〈v1, v6〉 〈v2, v7〉 〈v3, v1〉 〈v4, v2〉
〈v2, v5〉 〈v3, v6〉 〈v4, v7〉 〈v5, v1〉
〈v3, v4〉 〈v4, v5〉 〈v5, v6〉 〈v6, v7〉

by the Table I where the edges with the same color are put in
the same column.

Though Wang and Desmedt [15] presented a few simple
constructions of edge-colored graphs with certain color con-
nectivity, their results are not sufficient for our study of general
array BP-XOR code design. In the following, we present a
general construction of (t + 1)-color connected edge-colored
graphs using perfect one-factorizations of complete graphs.
We use Kn = (V,E) to denote the complete graph with
n nodes. For an even n, a one-factor of Kn is a spanning
1-regular subgraph (or a perfect matching) of Kn. A one-
factorization of Kn (n is even) is a set of one-factors that
partition the set of edges E. A one-factorization is called
perfect (or P1F) if the union of every two distinct one-factors is
a Hamiltonian circuit. It is known (see, e.g., [12]) that perfect
one-factorizations for Kp+1, K2p, and certain K2n do exist,
where p is a prime number. It is conjectured that P1F exist
for all K2n.

Example 2.2:
• P1F for Kp+1: For an integer a, let 〈a〉p denote the

integer b ∈ {0, · · · , p − 1} such that b ≡ a mod p. Let
V = {v0, v1, · · · , vp} and

Fi = {〈vi, vp〉} ∪ {〈v〈j1+i〉p , v〈j2+i〉p〉 : 〈j1 + j2〉p = 0
and 0 ≤ j1 6= j2 < p}

for i = 0, · · · , p− 1. Then F0, F1, · · · , Fp−1 is a perfect
one factorization of Kp+1.

• P1F for K2p: Let V = {v0, · · · , v2p−1}. For even i, let

Fi = {〈vj1 , vj2〉 : j1 + j2 = i mod 2p} ∪ {〈v i
2
, v i

2+p〉},

and for odd i 6= p, let

Fi = {〈vj1 , vj2〉 : j1 is odd, j1 − j2 = i mod 2p}.

Then F0, F1, · · · , Fp−1, Fp+1, · · · , F2p−2 is a perfect one
factorization of K2p.

Theorem 2.3: Let n be an odd number such that there is
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a perfect one-factorization F1, · · · , Fn for Kn+1. For each
t ≤ n− 2, there exists a (t+1)-color connected edge-colored
graph G with n nodes, (t+2)(n−1)/2 edges, and t+2 colors.
Proof. Let v1, . . . , vn+1 be a list of nodes for Kn+1 and V =
{v1, · · · , vn}. Let F ′i = Fi \ {〈vn+1, vj〉 : j = 1, · · · , n},
E = F ′1 ∪ · · · ∪F ′t+2, and color all edges in F ′i with the color
ci for i ≤ t + 2. Then it is straightforward to check that the
edge-colored graph (V,E) is (t+1)-color connected, |V | = n,
and |E| = (t+ 2)(n− 1)/2. 2

Remarks on Theorem 2.3: Since only node connectivity
instead of Hamiltonian circuit is required for (t + 1)-color
connected graphs, we could use F ′i instead of Fi to construct
edge-colored graphs. By using F ′i instead of Fi, we eliminate
t+2 edges and one node in the resulting edge-colored graph.
This helps us to keep the minimum cost for connectivity.

B. MDS array BP-XOR codes from edge-colored graphs

As an example, we first describe the array BP-XOR code
corresponding to graph G4,2 in Table I. Each edge in Table I
is mapped to the XOR of the two adjacent nodes. Then choose
a fixed node (e.g., v7) and remove all occurrences of this node
(e.g., v7) to get the [4, 2] 3× 4 array BP-XOR code in Table
II.

TABLE II
BP-XOR CODE CORRESPONDING TO G4,2

v1 ⊕ v6 v2 v3 ⊕ v1 v4 ⊕ v2
v2 ⊕ v5 v3 ⊕ v6 v4 v5 ⊕ v1
v3 ⊕ v4 v4 ⊕ v5 v5 ⊕ v6 v6

In the following, we give a general construction of
array BP-XOR codes from edge-colored graphs. Let
v1, v2, · · · , vbk, vbk+1 be variables that take values from M =
{0, 1}. Let G = (V,E,C, f) be a (t + 1)-color connected
edge-colored graph with V = {v1, · · · , vbk, vbk+1}, |E| = m,
and C = {c1, c2, · · · , cn}. If we consider the nodes in
G = (V,E,C, f) as data block variables, edges as their parity
check blocks of the adjacent nodes, and colors on the edges as
labels for placing the parity checks into different columns of
the array codes, then the following steps construct a b×n array
BP-XOR codes, where b = maxc∈C{|Z| : Z ⊆ E, f(Z) = c}.

1) For 1 ≤ i ≤ n, let βi be defined as

βi = {vj1 ⊕ vj2 : 〈vj1 , vj2〉 ∈ E, f(〈vj1 , vj2〉) = ci,
and j1, j2 6= bk + 1}∪

{vj : 〈vj , vbk+1〉 ∈ E, f(〈vj , vbk+1〉) = ci}

2) If |βi| is smaller than b, duplicate elements in βi to make
it a b-element set.

3) The array BP-XOR code is specified by the b×n matrix
CG = (βT

1 , · · · , βT
n ).

Next we show that the above array BP-XOR code CG

can tolerate t-erasure columns. Assume that the missing
t columns of the code CG correspond to the t-color set
Ct ⊂ C of the graph G. Since the graph G is (t + 1)-
color connected, for any node vi0 ∈ V , we have a path

p = 〈vbk+1, vi1 , vi2 , · · · , vij , vi0〉 without using any colors in
Ct. Thus vi0 could be recovered by the following equation

vi0 = vi1 ⊕ (vi1 ⊕ vi2)⊕ · · · ⊕ (vij ⊕ vi0)

where vi1 , vi1 ⊕ vi2 , · · · , vij ⊕ vi0 are all available in the
non-missing columns. In other words, the Belief Propagation
decoding process could be used to recover the entire data
blocks v1, · · · , vbk from the non-missing columns.

Theorem 2.4: Let n be an odd number such that there is
a perfect one-factorization F1, · · · , Fn for Kn+1. Then for
b = n−1

2 , there exists an (n−2)-erasure tolerating MDS b×n
array BP-XOR code Cb,n,2.
Proof. Follows from Theorem 2.3 and above discussions. 2

Corollary 2.5: For a given b, let n ≤ 2b + 1. If 2b + 1 or
b+ 1 is a prime number, then there exists an (n− 2)-erasure
tolerating MDS b× n array BP-XOR code Cb,n,2.

C. Edge-colored graphs from array BP-XOR codes

In this section, we show that each array BP-XOR code could
be converted to a corresponding edge-colored graph.

Theorem 2.6: Let C be an b× n array BP-XOR code with
the following properties:

1) C is t-erasure tolerating;
2) C contains bk information symbols; and
3) C contains only degree one and two encoding symbols.

Then there exists a (t+1)-color connected edge-colored graph
G = (V,E,C, f) with |V | = bk + 1, |E| = bn, and |C| = n.

Proof. Let v1, · · · , vbk be the information symbols of C =
[αi,j ](i,j)∈[1,b]×[1,n] and vi1 , · · · , viu be a list of degree one
encoding symbols in C. Then the (t+1)-color connected edge-
colored graph G = (V,E,C, f) is defined by the following
steps:

1) V = {v1, · · · , vbk, vbk+1};
2) E = ∪j∈[1,u]{〈vbk+1, vij 〉} ∪ {〈vi, vj〉 : vi ⊕ vj ∈ C};
3) C = {c1, · · · , cn};
4) Let αi,j ∈ C. If αi,j = vi′ ⊕ vj′ then let f(〈vi′ , vj′〉) =

cj . Otherwise if αi,j = vi′ , let f(〈vbk+1, vi′〉) = cj .
Let Ct be a color set of size t and vi and vj be two nodes.
Since the code C is t-erasure tolerating, both vi and vj
could be recovered from encoding symbols not contained
in the columns corresponding to the colors in Ct. Thus
there exists a path p (respectively, q) connecting vbk+1 to vi
(respectively, to vj) without using Ct-colored edges. It follows
that G = (V,E,C, f) is (t+ 1)-color connected. 2

III. EXAMPLES OF MDS [n, 2] ARRAY BP-XOR CODES

In this section, we use edge-colored graphs costructed in
Theorem 2.3 to design array BP-XOR codes. In order to
design (n− 2)-erasure tolerating MDS [n, 2] b× n array BP-
XOR codes, we first design (n−2+1)-color connected edge-
colored graphs with n colors. The edge-colored graphs are then
converted to array BP-XOR codes using the process described
in Section II-B. Specifically, we first find the smallest p (or 2p)
such that n ≤ p (or n ≤ 2p−1), where p is an odd prime. By
Example 2.2 for Kp+1, we get the perfect one-factorization of
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Kp+1 with node set V = {v0, · · · , vp} and the ith factor Fi

as{
〈vi, vp〉; 〈v〈1+i〉p , v〈p−1+i〉p〉; · · · ; 〈v〈 p−1

2 +i〉p , v〈 p+1
2 +i〉p〉

}
for 0 ≤ i ≤ p− 1. First we remove the edge 〈vi, vp〉 from Fi

and the remaining edges in Fi are mapped to the XOR of the
adjacent node variables. Then remove all occurrences of v0
and we get the MDS [n, 2] b×p array BP-XOR code in Table
III where b = (p− 1)/2. It should be noted that the dual code

TABLE III
(p− 1)/2× p BP-XOR CODE

v1 ⊕ vp−1 · · · vp−1 ⊕ vp−3 vp−2
v2 ⊕ vp−2 · · · vp−4 v1 ⊕ vp−3
· · · · · · · · · · · ·

vb ⊕ vb+1 · · · vb−2 ⊕ vb−1 vb−1 ⊕ vb

of the MDS [n, 2] array BP-XOR code in Table III is an MDS
[n, n−2] array BP-XOR code. It should also be noted that the
(p − 1)/2 × p array BP-XOR code in Table III is equivalent
to the code designed by Zaitsev, Zinov’ev, and Semakov [6]
which was reformulated later as the dual of B-code in [17]
using perfect one-factorization of complete graphs.

IV. FLAT NON-MDS BP-XOR CODES

A b×n array BP-XOR code is called a flat BP-XOR code if
b = 1. Furthermore, a 1×n BP-XOR code with k information
symbols and distance d is called an [n, k, d] BP-XOR code. In
this section, we present several results on flat BP-XOR codes.
We first present a fact based on a folklore regarding flat XOR
codes.

Fact 4.1: Let n ≥ k + 2, k ≥ 2, and d = n− k + 1. Then
there is no flat [n, k, d] BP-XOR code.

Fact 4.1 could be proved by the following observation: Let
H = [βT

1 , · · · , βT
k |In−k] be an (n − k) × n parity check

matrix. If every n − k columns in the matrix [βT
i |In−k] are

linearly independent, then wt(βi) = n−k, where wt(·) is the
Hamming weight. Thus for n ≥ k+ 2, there is neither binary
linear [n, k, d] code nor flat [n, k, d] BP-XOR code.

For an MDS [n, k, d] code with d = n − k + 1, we can
tolerate d−1 erasure faults. The question that we are interested
in is: for given n ≥ k + 2, what is the best distance d that
we could achieve for a flat [n, k, d] BP-XOR code? Fact 4.1
shows that d must be strictly less than n− k + 1.

Tolerating one erasure fault: Let α ∈ {1}k. Then the
generator matrix

[
Ik|αT

]
corresponds to an MDS flat [k +

1, k, 2] BP-XOR code that could tolerate one erasure fault.
Tolerating two erasure faults: Fact 4.1 shows that two

parity check symbols are not sufficient for tolerating two
erasure faults for flat BP-XOR codes. In order to tolerate two
erasure, we have to consider codes with n ≥ k + 3.

Theorem 4.2: For n ≥ k + 3 and k ≥ 3, there exists a flat
[n, k, 3] BP-XOR code if and only if k ≤ 2n−k− (n−k)− 1.

Proof. The truncated version (or non-truncated version if k =
2n−k − (n− k)− 1) of the Hamming code could be used to
prove the theorem. 2

Tolerating three erasure faults: For this case, we have the
following results.

Theorem 4.3: For n ≥ k + 4, there exists a systematic flat
XOR [n, k, 4] code if and only if

k ≤
{

2n−k−1 − n+ k if n− k is even
2n−k−1 − n+ k − 1 if n− k is odd

Proof. Let

X = {β : β ∈ {0, 1}n−k, wt(β) = 3, 5, 7, · · · }.

Then

|X| =
∑

i≥3,i is odd

(
n− k
i

)
=

∑
i≥3,i is odd

((
n− k − 1

i− 1

)
+

(
n− k − 1

i

))

=

 2n−k−1 − n+ k if n− k is even

2n−k−1 − n+ k − 1 if n− k is odd

Define an (n − k) × k matrix A = (βT
1 , · · · , βT

k ) where
βi are distinct elements from X . It is straightforward to
show that every three columns in the parity check matrix
[A|In−k] are linearly independent. Thus the binary linear code
corresponding to the parity check matrix [A|In−k] (or the
generator matrix [Ik|AT ]) is a flat XOR [n, k, 4] code.

The other direction is proved by the fact that each vector
β ∈ {0, 1}n−k with even Hamming weight equals to β1 + β2
for some β1, β2 ∈ X . This completes the proof of the theorem.
2

Theorem 4.3 establishes a necessary and sufficient condition
for designing systematic flat XOR codes tolerating three
erasure faults. However, the codes constructed in Theorem
4.3 are not necessarily flat BP-XOR codes. For example, let
n = 7, k = 3, d = 4, and β1 = (1, 1, 1, 0), β2 = (0, 1, 1, 1),
and β3 = (1, 0, 1, 1). Then the corresponding code has the
following generator matrix: I3

1 1 1 0
0 1 1 1
1 0 1 1


If we remove the first three columns from the above generator
matrix, then no column in the remaining generator matrix has
Hamming weight 1. Indeed, for n = 7, k = 3, and d = 4,
there is no flat [7, 3, 4] BP-XOR code. The reason is that in
order for a [7, 3, 4] linear code to be a flat BP-XOR code, we
need four columns with Hamming weight 1 in the generator
matrix. Furthermore, we need to have Hamming weight 4 for
each row. Without loss of generality, we may assume that the
column (1, 0, 0)T occurs twice in the generator matrix. Then
we have three columns in the generator matrix with the format
(b, 1, 1)T where b = 0, 1. Thus there exist two columns in the
generator matrix, each of which occurs twice. In other words,
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the code distance is at most 3.
Tolerating four or more erasure faults: In the following,

we present some sufficient (but not necessary) conditions for
tolerating four erasure faults.

Theorem 4.4: For n ≥ k + 5, there exists a systematic flat
XOR [n, k, 5] code if k is less than⌊

n− k − 2

2

⌋
+ 2

⌊(⌈
n− k
2

⌉
− 2

)
/2

⌋
+2

⌊(⌈
n− k
4

⌉
− 2

)
/2

⌋
.

Proof. Let U = {a1, · · · , an−k}. In the following, we con-
struct four-element subsets of U so that the characteristic
sequences of these subsets could be used as the columns of
the parity check matrix. It helps readers to understand the
following definitions if elements of U are interpreted as leaf
nodes on a binary tree of depth blog2(n− k)c.

V 1
i = {a1, a2, a2i+1, a2i+2} for 1 ≤ i ≤

⌊
n−k−2

2

⌋
,

V 2,0
i = {a1, a3, a4i+1, a4i+3} for 1 ≤ i ≤

⌊(
dn−k2 e − 2

)
/2
⌋
,

V 2,1
i = {a2, a4, a4i+2, a4i+3} for 1 ≤ i ≤

⌊(
dn−k2 e − 2

)
/2
⌋
,

V 3,0
i = {a1, a5, a8i+1, a8i+5} for 1 ≤ i ≤

⌊(
dn−k4 e − 2

)
/2
⌋
,

V 3,1
i = {a4, a8, a4i+2, a8i+5} for 1 ≤ i ≤

⌊(
dn−k4 e − 2

)
/2
⌋
,

· · · · · ·

Let β1, · · · , βw be the characteristic sequences of the above
sets. Then the parity check matrix H = [βT

1 , · · · , βT
w |In−k]

corresponds to a systematic flat XOR code of distance 5. The
code has distance 5 since every 4 columns in H are linearly
independent by the facts that (1) for any β1, β2, we have
wt(β1 + β2) > 2; and (2) any three or four β are linearly
independent. The two facts follow from the construction. This
completes the Proof of the Theorem. 2

V. EFFICIENT XOR-BASED SECRET SHARING SCHEMES

In a perfect (n, k) threshold secret sharing scheme, a secret
s is encoded into n shares and each participant receives
one share. Any k ≤ n participants can come together and
reconstruct the secret s though no k−1 participants could learn
any information of the secret. By an ideal threshold scheme,
we mean a secret sharing scheme for which the size of the
shares is the same as the size of the secret.

It is well known that each MDS code could be converted
to a perfect and ideal secret sharing scheme (see, e.g., Karnin,
Greene, and Hellman [9]). In this section, we use array BP-
XOR codes to design perfect and ideal (n − 1, 2) threshold
BP-XOR secret sharing schemes that only use XOR operations
both for secret distribution and reconstruction phases.

By Corollary 2.5, there exist MDS b × n array BP-XOR
codes Cb,n,2 = [σi,j ] if 2b+1 or b+1 is a prime number and
n ≤ 2b+1. Specifically, the first column of Cb,n,2 corresponds
to a one-factor of an edge-colored graph. Without loss of
generality, we may assume that the first column of Cb,n,2

consist of vi1 ⊕ vi′1 , vi2 ⊕ vi′2 , · · · , vib ⊕ vi′b . For a given

secret s = (s1, · · · , sb) where si ∈ {0, 1}, the dealer chooses
random values for vi′1 , · · · , vi′b ∈ {0, 1} and lets vi1 = vi′1⊕s1,
vi2 = vi′2 ⊕ s2, · · · , vib = vi′b ⊕ sb. The dealer computes the
code Cb,n,2 using the P1F of the complete graph K2b+2 and
securely distributes the (i + 1)th column of Cb,n,2 to the ith
participant.

By the MDS property of Cb,n,2, any two participants could
use their shares to reconstruct the secret. By the MDS property
of Cb,n,2, the above constructed secret sharing scheme is a
perfect and ideal 2-out-of-(n − 1) threshold secret sharing
scheme.

VI. CONCLUSION

In this paper, we used edge-colored graphs to design degree-
one-and-two encoding symbol based array BP-XOR codes.
Paterson, Stinson, and Wang [13] showed the limitation of
lower degree encoding symbols and obtained several bounds
on what one can achieve using degree one and degree two
encoding symbols only. In particular, degree one and two
encoding symbols could be used to design MDS array BP-
XOR codes with t = 2 or k = 2, and higher degree encoding
symbols are needed for general MDS array BP-XOR code
design. It is clear that edge-colored graphs could not be used
to model higher degree encoding symbols and it is an open
question whether one can use edge-colored hyper-graphs to
model higher degree encoding symbols and obtain non-trivial
results for general array BP-XOR code design.
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