
The Mathematics Underlying Transformers and ChatGPT∗

Yongge Wang (UNC Charlotte)

December 7, 2023

Abstract

Since the inception of the transformer deep learning model, as outlined in the 2017 paper titled “At-
tention Is All You Need” [19], it has risen to prominence and now boasts widespread applications across
various domains. Notably, the transformer architecture has found remarkable success in applications
such as ChatGPT. In this tutorial, we aim to demystify the mathematical principles underpinning the
transformer architecture.

1 Gradient descent

In the realm of machine learning, we frequently encounter the task of identifying a local minimum of a
differentiable function f(x). It’s worth highlighting that the function f(x) attains its minimum value at a
specific point x0 only if the derivative of f(x) at x0 equals zero. Consequently, the problem can be simplified
by seeking the root or zero-point of the derivative function f ′(x). Newton’s root-finding algorithm may be
used to approximate the roots of a real-valued function f(x). The most basic version starts with an initial
guess value x0 of the root. Then it continously computes

xn+1 = xn −
f(xn)

f ′(xn)

until the value |xn+1 − xn| is small enough.
In practical applications, Cauchy’s gradient descent method is commonly utilized to find a local minimum

of a differentiable function f(x). This algorithm entails iteratively moving in the direction opposite to the
gradient of the function at the current point until hopefully it converges to a value of x that minimizes f(x).
As an illustrative example for a single-variable function f(x), if we begin from the point x0 , we can establish
the following relationship for n > 0:

xn+1 =

{
xn − δn if f ′(xn) > 0
xn + δn if f ′(xn) < 0

(1)

where δn > 0 are small values. Alternatively, equation (1) can be conveniently expressed as

xn+1 = xn − γ · f ′(xn) (2)

where γ > 0 is a learning rate.
The gradient descent method for multi-variable functions works in a similar manner to the example above

for single-variable functions. For a function f(x) of multiple variables with x = (x1, · · · , xm)T , the gradient
of f(x) at a point a is defined as follows:

∇f(a) =

(
∂f

∂x1
(a), · · · , ∂f

∂xn
(a)

)
∗ChatGPT3.5 has been used to improve the presentation of this paper. In particular, after we finish the draft of each

paragraph, we submit the paragraph to ChatGPT3.5 to re-write the paragraph with better English presentation.

1

z

x

y

C

A
BO

D
! "

Figure 1: Gradient example

For multi-variable functions, the equation (2) may be expressed as follows:

xn+1 = xn − γn · ∇f(xn). (3)

Here, γn > 0 represents positive step sizes that are small enough and are commonly referred to as learning
rates.

Example 1 We’ll illustrate the concept of a two-variable function’s gradient using an example. In Figure
1, imagine a plane labeled as ABC serving as the tangent plane to a function z = f(x, y) at the point
(0, 0, C). To clarify, let’s denote ∆x as the vector OA, ∆y as OB, and ∆z as OC. In this context, the
partial derivatives are defined as ∂f

∂x = ∆z
∆x and ∂f

∂y = ∆z
∆y .

Since the plane COD is orthogonal to plane ABC and CD is the shortest distance from the point (0, 0, C)
to the line AB., the direction OD points precisely in the opposite direction of the gradient of function f(x, y)
at the point (0, 0, C). Assuming that the coordinates of the point D is (x1, y1), we have

x1 = OD · cosα = OD · OD
∆x

=
OD2

∆x
=
OD2

∆z

∆z

∆x
=
OD2

∆z

∂f

∂x

and

y1 = OD · cosβ = OD · OD
∆y

=
OD2

∆y
=
OD2

∆z

∆z

∆y
=
OD2

∆z

∂f

∂y

From this, we deduce the gradient of function f as:

∇f =

(
∂f

∂x
,
∂f

∂y

)

2 Cost functions, stochastic gradient descent, and softmax

Let’s consider a multi-variable function f(x) which we aim to understand. For this function, we know
that yi = f(xi) for i = 1, · · · , n where the set {(xi, yi) : i = 1, · · · , n} constitutes our training dataset.
Furthermore, we can express the function f(x) using parameters θ = (θ1, · · · , θm)T , and for the sake of
simplicity, we may represent this function as f(θ,x) by extending our notations. For instance, in the context
of linear regression, we can express the function as f(θ,x) = θT · (x, 1).

Given the training dataset represented as {(xi, yi) : i = 1, · · · , n}, we can determine the values of θ that
minimize a predefined cost function (also known as a loss function). One common example of such a cost
function is the Mean Squared Error (MSE), which is defined as:

J(θ) =
1

n

n∑
i=1

(yi − f(θ,xi))
2
. (4)

2

To find the optimal θ that minimizes the function J(θ) as expressed in Equation (4), one can employ gradient
descent methods.

Calculating the gradient of the function J(θ) iteratively at specific points is typically a computationally
intensive task. In practical scenarios, an alternative approach involves approximating the gradient using a
randomly chosen subset of the data, a method known as stochastic gradient descent (SGD). Instead of using
the entire training dataset, one may choose to work with a single sample pair during each iteration. In this
setup, at each iteration, a random variable j is selected, and the gradient ∇θ (yi − f(θ,xi))

2
is utilized to

estimate the gradient ∇θJ(θ).
To provide a concise summary, stochastic gradient descent for optimizing the value of θ proceeds as

follows:

1. Begin with an initial value for θ and select a learning rate γ.

2. Continue iterations until the convergence criteria are satisfied.

• Randomly shuffle the samples in the training set.

• For i ∈ {1, · · · ,m}, update θ as follows:

θ = θ − γ · ∇θ (yi − f(θ,xi))
2

softmax function: The softmax function is a frequently used tool for the normalization of probability
distributions. For an N -dimension input vector x, the function transform this vector into a probability
distribution, where each probability is directly proportional to the exponential of the corresponding input
number. To clarify, prior to applying the softmax function, some components of the input vector may be
negative or greater than 1. As a result, the components may not collectively sum up to 1, rendering them
unsuitable for interpretation as probabilities. However, after the application of the softmax function, every
component of the vector will be confined within the (0, 1) interval, and they will sum up to precisely 1, making
them amenable to interpretation as probabilities. Notably, the larger input values will yield correspondingly
higher probabilities. More formally, for a vector x = (x1, · · · , xN), the softmax transformation is defined as

softmax(x) = (x̄1, · · · , x̄N) with each x̄i calculated as
exi∑N
j=1 e

xj

.

3 Neural networks

First we define the ReLU(rectified linear unit) function:

ReLU(x) =

{
x if x > 0
0 otherwise

Then a single neuron can be described as follows:

f(x) = ReLU(w1x+ w0)

Here, the ReLU function introduces non-linearity to the linear expression w1x+w0 and w0 is often referred
as the bias. A single neuron with multi-variables can be described as

f(x) = ReLU(wT · (x, 1))

A more intricate neural network can be created by combining the solitary neuron mentioned earlier in a
stacked fashion, where each neuron transmits its output as input to the next neuron, thus leading to a
more sophisticated function. In the realm of machine learning, commonly used neural networks include,
but are not limited to, Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformers. CNNs find their primary application in the analysis of visual images and function as feed-
forward neural networks. On the other hand, RNNs involve the utilization of hidden states and are typically
used for processing sequential data.

3

As an example, let’s consider a sequence of data denoted as x1, · · · , xn and an initial hidden state labeled
as h1. A recurrent neural network (RNN) can be defined by the following function for i = 1, · · · , n −
1: (yi+1, hi+1) = f(hi, xi). Here, yi+1 represents the output, while hi+1 represents the updated hidden
state. RNN has been extensively used in natural language processing applications until the introduction of
transformer-based models.

As another example, in the context of image analysis, it is frequently necessary to employ multiple filters
to extract different local features. This could be achieved by linking patches in the input layer to a single
neuron in a subsequent layer and employing sliding windows to establish these connections. This specific
neural network architecture can be achieved through the use of convolutional neural networks rather than
fully connected neural networks.

4 Word embeddings

To achieve effective natural language processing (NLP), one crucial objective is the development of a system
enabling computers to grasp the meaning of individual words. The significant breakthrough in this realm
came from the pioneering concept introduced by Firth [6] in 1957, suggesting that a word’s meaning is
shaped by the context in which it appears. This idea is often expressed as “a word is characterized by the
company it keeps”. This is generally accomplished through word embeddings, which involve the mapping of
a vocabulary into numerical vectors in the real number space. These real-valued vectors effectively encode
the essence of a word in such a way that when two word representations are closer in the vector space, they
are expected to share a similar meaning.

ChatGPT has the capability to utilize pre-existing word embedding schemes, or it can generate its
own word embeddings through training. To grasp the rationale behind training word embeddings, we will
elucidate the word2vec approach, as discussed in [7, 8, 12]. It’s worth noting that this approach is currently
deemed obsolete and should be substituted with transformer-based techniques.

The training data used in word2vec consists of a collection of center words wi and their associated contexts
ci, denoted as {(wi, ci) : i = 1, · · · , T}. For instance, in a training sentence such as “a word is defined by the
company it keeps”, any word within this sentence can be regarded as a center word. If we were to choose
“company” as the center word, then its associated contexts would be:

{a, word, is, defined, by, the, it, keeps}.

The straightforward “bag of words” model generates identical predictions for each position, aiming to assign
a reasonably high probability to all words within the context. In particular, the training model’s objective
is to maximize the likelihood function, as initially introduced in the skip-gram model by Mikolov in 2013
[11]:

L(θ) =

T∏
i=1

∏
wj∈ci

p(wj |wi; θ) (5)

where θ represents the neural network parameters that we aim to optimize, and p(wj |wi; θ) is the conditional
probability. The task of maximizing the likelihood function L(θ) in (5) is essentially equivalent to minimizing
the following cost function

J(θ) = − 1

T

T∑
i=1

∑
wj∈ci

log p(wj |wi; θ) (6)

In word2vec, the conditional probability p(wj |wi; θ) is defined using the softmax functioin as follows:

p(wj |wi; θ) =
evwi

·uwj∑
w′∈V e

vwi
·uw′

(7)

In this equation, vw represents the vector representation of the center word w, while uw denotes the vector
representation of the context word w. Moreover, V encompasses the entire vocabulary. It is important to
note that two distinct vector representations, namely uw and vw, are assigned to each word w.

4

In the preceding paragraphs, we discussed the primary objective of the training model, which is to
reduce the cost function J(θ) as outlined in Equation (6). Nevertheless, as highlighted in [7], it remains
unclear why minimizing J(θ) results in the creation of good embeddings for all words in the vocabulary set
V . Moreover, it is not evident why defining conditional probabilities as shown in Equation (7) is useful for
obtaining high-quality word embeddings; this aspect is essentially an assumption. On the flip side, empirical
evidence demonstrates that word2vec has proven to be highly successful in achieving good word embeddings.

In the following paragraphs, we will provide a concise overview of the procedure for computing the
gradient in the model training process. When we merge Equations (6) and (7), it results in the subsequent
expression:

J(θ) = − 1

T

T∑
i=1

∑
wj∈ci

(
vwi · uwj − log

∑
w′∈V

evwi
·uw′

)
(8)

Thus we have
∂J(θ)
∂vwi

= − 1
T

∑T
i=1

∑
wj∈ci

(
uwj
− ∂ log

∑
w′∈V evwi

·u
w′

∂vwi

)
= − 1

T

∑T
i=1

∑
wj∈ci

(
uwj
− 1∑

w′∈V evwi
·u

w′
∂
∑

w′∈V evwi
·u

w′

∂vwi

)
= − 1

T

∑T
i=1

∑
wj∈ci

(
uwj
−

∑
w′∈V evwi

·u
w′ uw′∑

w′∈V evwi
·u

w′

)
= − 1

T

∑T
i=1

∑
wj∈ci

(
uwj
−
∑
w′∈V p(w

′|wi; θ)uw′
)

(9)

It’s important to highlight that in Equation (9), the final term
∑
w′∈V p(w

′|wi; θ)uw′ represents the expected
probability, with uwj denoting the observed value. As a result, the model’s performance is considered
satisfactory when the observed value is close to the expected value.

If we represent each word as a vector in a d-dimensional real number space, we can think of θ as a vector
containing 2d|V | elements, where θ encompasses all the model parameters. Consequently, the computational
cost for calculating and conditional probability in Equation (7) and for calculating ∇θJ(θ) scales with the
size of this vector, which is 2d|V |. In practice, |V | is often as large as 105–107. While hierarchical softmax
[13] or Noise Contrastive Estimation (NCE) [9] or stochastic grading descent can serve as computationally
efficient alternatives to the full softmax in Equation (7), word2vec employs a distinct technique known as
negative sampling.

In the following paragraphs, we will describe the negative sampling technique outlined in [7]. Let’s define
D as the collection of all pairs comprising a center word and its associated context that we extract from the
training text. Consider a pair (w, c), representing a center word and its context. We use p(D = 1|w, c; θ) to
denote the probability that this particular (w, c) pair originated from the corpus data. In a corresponding
manner, p(D = 0|w, c; θ) = 1− p(D = 1|w, c; θ) represents the probability that (w, c) did not originate from
the corpus data. Rather than optimizing the likelihood function L(θ) as shown in Equation (5), word2vec
aims to maximize the likelihood that all observations are indeed derived from the dataset:

L′(θ) =
∏

(w,c)∈D

p(D = 1|w, c; θ) (10)

The authors in [7, 12] provide a definition for the probability p(D = 1|w, c; θ) using sigmoid functoin as
follows. However, it is unclear whether this meets the definition of probability, as the total probability sum
may not necessarily equal one:

p(D = 1|w, c; θ) =
1

1 + e−vc·vw
.

Then the task of maximizing the likelihood L′(θ) is equivalent to minimizing the following cost function

J ′(θ) = −
∑

(w,c)∈D

log
1

1 + e−vc·vw
=

∑
(w,c)∈D

log
(
1 + e−vc·vw

)
(11)

It should be emphasized that achieving optimal results for J ′(θ) is straightforward when we configure θ
in a way that ensures p(D = 1|w, c; θ) equals 1 for all pairs (w, c). To tackle this issue, a solution is to

5

create a random dataset, denoted as D′, which comprises mismatched word-context pairs, often referred to
as negative samples. In this context, the objective is to maximize the probability∏
(w,c)∈D′

p(D′ = 0|w, c; θ) =
∏

(w,c)∈D′
(1−p(D′ = 1|w, c; θ)) =

∏
(w,c)∈D′

(
1− 1

1 + e−vc·vw

)
=

∏
(w,c)∈D′

1

1 + evc·vw

That is, our goal is to minimize the loss function

J(θ) = J ′(θ)−
∑

(w,c)∈D′
log

1

1 + evc·vw
=

∑
(w,c)∈D

log
(
1 + e−vc·vw

)
+

∑
(w,c)∈D′

log (1 + evc·vw) (12)

5 Transformers

The transformer architecture employs the encoder-decoder structure. The encoder takes an input sequence
of symbol representations x = (x1, · · · , xn) and transforms it into a sequence of continuous representations
z = (z1, · · · , zn). Once we have the sequence z, the decoder produces an output sequence (y1, · · · , ym)
by generating one symbol at a time. At each step in the decoding process, the decoder incorporates the
previously generated symbols as additional input when generating the next symbol. A visual representation
of the transformer architecture can be seen in Figure 2, with Nx being 6, indicating that the block labeled
Nx is repeated 6 times.

The transformer model, as described in Vaswani et al.’s paper [19], utilizes a word embedding size of
dmodel = 512. In this model, the input sentence x is initially broken down into a sequence of tokens (words)
denoted as x = (x1, · · · , xn). Each word is associated with a 512-dimensional real-number vector, and this
representation is subject to updates during the learning process. As a result, the input sequence can be
transformed into a sequence of real-number vectors: ux1 , · · · , uxn .

To incorporate positional information into the input vector sequence ux1 , · · · , uxn , we require a series of
position vectors. Consider posi = (pi,1 · · · , pi,512), a 512-dimensional real-number vector defined as follows:

pi,j =


sin i

10000
j

512

if j is even

cos i

10000
j−1
512

if j is odd

The input vectors are augmented with position vectors by letting ūx1 = ux1 +pos1, · · · , ūxn = uxn +posn. It’s
important to note that these position vectors remain constant throughout the transformer model’s operation
and are not updated during the learning process.

The sequence of augmented input vectors, denoted as ūx1 , · · · , ūxn , can be converted into a matrix A
with dimensions n × 512. We can set Q = A, K = A, and V = A as the query, key, and value matrices,
respectively. Then the dot-product based self-attention can be computed as

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

where dk represents the dimension of the input vectors, which in this case is 512. It’s worth mentioning
that QKT forms an n× n matrix which serves as a representation of the connections between these words.
The matrix QKT is divided by

√
512 and then the softmax is applied to each row. The n× 512-dimensional

attention matrix Attention(Q,K,V) is expected to encode information about each word and its relationships
with all other words, with each row capturing such associations. To elaborate, the element at the (i, j)
position in the matrix QKT is determined by qi · kj = |qi||kj | cos(θ), where qi represents the ith row of
matrix Q, ki is the jth row of matrix K, and θ is the angle between them. In essence, the element at the
(i, j) position of the matrix QKT is larger if and only if the ith word and the jth word are closer in meaning.

Instead of employing a single attention mechanism, the transformer model subdivides the 512-dimensional
vector into h = 8 segments and employs h = 8 separate attention heads. This approach enables us to use
individual heads to capture various facets of a word’s meaning and its attention to other words simultaneously.

6

Figure 2: The Transformer - model architecture (from [19])

Now, let’s define dk as dmodel/h = 512/8 = 64. For i ranging from 1 to 8, we have weight matrices

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk , and WO ∈ Rdmodel×dmodel for the query matrix

Q, key matrix K, and value matrix V , and output matrix, respectively. These weight matrices are subject
to learning during the training process. For each i = 1, · · · , 8, we have

headi = Attention(QWQ
i ,KW

K
i , V W

V
i).

Then we can concatenate these heads to obtain the multi-head attention sub-layer output

MultiHead(Q,K, V) = [head1, · · · ,headh]WO

After the application of the multi-head attention operation to the augmented input vectors ūx1 , · · · , ūxn ,
we proceed to the “Add & Norm” operation. In this “Add” operation which is also called residual connectoin,
the output of the multi-head attention is summed with the input to the multi-head attention operation. In
other words, we have x + f(x), where f(x) represents the multi-head attention operation. This concept
was originally introduced in the context of residual learning building blocks by He et al. [10]. For the

normalization operation, as described by Ba et al. [1], we first compute two values: µ =
∑N

i=1 ai
N , which is

the average of all values ai in the layer to be normalized, and σ =

√∑N
i=1(ai−µ)2

N , which is the standard
deviation calculated from these values. Then, we normalize each ai as follows:

āi =
ai − µ
σ + ε

where ε is a small added value so that āi are not too large when ε is very small.
The outcome of the preceding procedure, referred to as the “Add & Norm” operation, serves as the input

to a fully connected feed-forward network. This network is individually and consistently applied to every
word position, corresponding to each row within the n× 512 matrix. It involves two linear transformations
separated by a ReLU activation function:

FFN(x) = max(0, xW1 + b1)W2 + b2

7

where W1 is of dimension dmodel×dff and W2 is of dimension dff ×dmodel. The paper [19] used a parameter
of dff = 2048. The FFN’s output is directed into the “Add & Norm” operation to derive a sub-layer output,
concluding the operations within the Nx box for one iteration. To obtain the final output z for the Encoder,
these operations in the Nx box must be repeated six times.

The output z from the Encoder serves as an input for the Decoder’s “Multi-Head Attention”. To elab-
orate, the sequence z is transformed into the matrices Q and K, which are subsequently provided as input
to the Decoder’s “Multi-Head Attention”. The matrix V input for the Decoder’s “Multi-Head Attention”
is sourced from the “Masked Multi-Head Attention” and the “Add & Norm” operation within the Decoder
module. The operations within the Decoder are quite similar to those within the Encoder, with one notable
exception being the “Masked Multi-Head Attention”. The Decoder enables each position, in other words,
each row of the m×512 dimensional output matrix, to attend to all positions within the Decoder, up to and
including that specific position. This constraint is crucial to prevent the flow of information in a leftward
direction within the Decoder and thereby preserve its auto-regressive nature. To achieve this, Transformer
implement a masking process in the scaled dot-product attention mechanism. During this process, we set
all values in the input of the softmax corresponding to illegal connections to −∞.

6 Reinforcement Learning from Human Feedback (RLHF)

In the Foundation Model paradigm [2], following pretraining of the large language model using the trans-
former, fine-tuning the model becomes necessary along with the integration of human preferences directly
into the model. This process typically involves Reinforcement Learning from Human Feedback (RLHF).

6.1 Reinforcement learning and Markov decision processes (MDP)

Reinforcement learning is typically explained through a Markov decision process (MDP), which comprises a
tuple (S,A, {Psa : s ∈ S, a ∈ A}, γ, R). Here, S is a set of states, A is a set of actions, {Psa : s, a} are the
state transition probabilities, γ ∈ [0, 1) is the discount factor, and R : S → R is the reward function.

An MDP starts with a state s0, where an agent selects an action a0 ∈ A. Following the aaction a0, the
MDP’s state transitions randomly to a successor state s1 according to the probabilistic distribution Ps0,a0 .
Subsequently, the agent chooses another action a1 ∈ A, leading to another random transition of the MDP’s
state to a successor state s2, and so on. After a sequence of actions, the total reward that the agent obtains
is

R(s0) + γR(s1) + γ2R(s2) + · · ·

The goal in reinforcement learning is to choose actions over time so as to maximize the expected value of
the total reward

E
[
R(s0) + γR(s1) + γ2R(s2) + · · ·

]
A policy is a function π : S → A that maps the states to the actions. The value function for a policy π can
be defined as

V π(s) = E
[
R(s0) + γR(s1) + γ2R(s2) + · · · |s0 = s, π

]
.

Given a fixed policy π, its value function V π satisfies the Bellman equations which is essential for the value
iteration and policy iteration learning process.

V π(s) = R(s) + γ
∑
s′∈S

Ps,π(s)(s
′)V π(s′).

For an MDP, the optimal value function is defined as V ∗(s) = maxπ V
π(s). Then the optimal policy could

be defined as
π∗(s) = arg max

a∈A

∑
s′∈S

Ps,a(s′)V ∗(s′).

In the large language model, we are more intereted in the policy iteration learning algorithm which procedds
as follows.

8

• initialize π

• repeat until convergence

– Let V = V π

– for each state s, let

π(s) = arg max
a∈A

∑
s′∈S

Ps,a(s′)V ∗(s′).

6.2 Fine-tuning language models using RLHF

In this section we use instructGPT as a case study to demonstrate the enhancement of a pre-trained large
language model’s performance. In reinforcement learning terms, we regard the language model as a policy
π. Specifically, we assume that we have obtained a pretrained language model π0 through a transformer-
based deep learning procedure. Starting from π0, Figure 3 outlines the three distinct stages involved in
instructGPT training [16]:

• This initial language model (policy) π0 is fine-tuned using additional texts generated by humans (la-
belers), resulting in a new model π1.

• Human labelers are engaged to assess the outputs of model π1 by ranking them. These rankings serve
as training data for a reward model.

• The refinement of the model/policy π1 is accomplished through reinforcement learning.

Figure 3: Three steps of instructGPT (from [16])

Step 1 follows a simple process, while Step 2 involves deriving the reward function for reinforcement
learning. Our aim is to create a reward function that takes a text sequence and produces a numerical reward,
reflecting human preference. We plan to construct this function using a transformer neural network. To
generate training data for this reward function transformer, we sample prompts from a predefined dataset,
passing them through the language model π1 to generate new text. Human labelers then rank the text
outputs produced by π1.

9

In instructGPT, for each prompt input, the labelers are presented from K = 4 to K = 8 π1-generated
responses to rank. The loss function for reward function training could be defined differently for different
models. For instructGPT, it is defined as

loss(θ) =
1(
K
2

)E(x,yw,yl)∼D [log (σ(rθ(x, yw)− rθ(x, yl)))]

where rθ(x, y) is the scalar output of the reward model for prompt x with completion y with parameters θ,
yw is the preferred completion ouf of the pair of yw and yl, and D is the dataset of human comparisons.
Alternatively, one may use cross entropy to define the loss function (see, e.g., [4]) which is based on the
famous Elo ranking system [5].

After deriving the reward function in step 2, we refine model π1 through reinforcement learning (RL)
in step 3, yielding the fine-tuned model π2. To prevent π2 from producing gibberish merely to fulfill the
reward function, we aim to minimize the Kullback-Leibler divergence between the outputs of π1 and π2.
In particular, when considering the parameters θ, if the reward value from the output π2 is rθ and the
Kullback-Leibler divergence between the outputs of π1 and π2 is DKL, then the final reward rθ − DKL is
used in reinforcement learning (RL) to update these parameters.

As a conclusion of this section, we briefly describe the Kullback-Leibler divergence. For two discrete
probability distributions p and q on the same sample space X, the Kullback-Leibler divergence DKL(p||q)
(also known as relative entropy or I-divergence), is defined as

DKL(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

That is, DKL(p||q) is the expected logarithmic difference between the probabilities p and q, where the
expectation is taken using the probabilities p.

7 Parameters used in practice

Table 1 shows the Transformeter parameters used in LaMDA [18], GPT-2 [17], GPT-3 [3], and GPT-4 [15].

Table 1: Transformer parameters for LaMDA and GPTs

Model Name nparams nlayers dmodel nheads dk dff context size training data
LaMDA 137 Billion 64 8192 128 128 65536 1.56T words
GPT-2 1542 Million 48 1600 12 3072 1024 40GB
GPT-3 175 Billion 96 12288 96 49152 2048 570GB
GPT-4 170 Trillion 120 ? ? 32k 10T words

GPT-4 Turbo ? ? ? ? 128k ?

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems, 33:1877–1901, 2020.

10

[4] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing systems, 30,
2017.

[5] Arpad E Elo and Sam Sloan. The rating of chessplayers: Past and present. (No Title), 1978.

[6] John Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, pages 10–32, 1957.

[7] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling word-
embedding method. arXiv preprint arXiv:1402.3722, 2014.

[8] Google. word2vec. https://code.google.com/archive/p/word2vec/, 2013.

[9] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. Journal of machine learning research, 13(2),
2012.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing systems,
26, 2013.

[13] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
International workshop on artificial intelligence and statistics, pages 246–252. PMLR, 2005.

[14] Graham Neubig. Neural machine translation and sequence-to-sequence models: A tutorial. arXiv
preprint arXiv:1703.01619, 2017.

[15] OpenAI. Gpt-4 technical report, 2023.

[16] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow in-
structions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744,
2022.

[17] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[18] R Thoppilan, D De Freitas, J Hall, N Shazeer, A Kulshreshtha, HT Cheng, A Jin, T Bos, L Baker, Y Du,
et al. Lamda: Language models for dialog applications. arxiv 2022. arXiv preprint arXiv:2201.08239.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11

https://code.google.com/archive/p/word2vec/

	Gradient descent
	Cost functions, stochastic gradient descent, and softmax
	Neural networks
	Word embeddings
	Transformers
	Reinforcement Learning from Human Feedback (RLHF)
	Reinforcement learning and Markov decision processes (MDP)
	Fine-tuning language models using RLHF

	Parameters used in practice

