
A Review of Threshold Digital Signature Schemes

Yongge Wang
UNC Charlotte

January 26, 2020

Abstract

In recent years, threshold cryptography has been used in cryptography currencies. For example, they have been
used in secure random beacon protocols such as Randao and for the purpose of wallet key protection and full cryp-
tocurrency custody solutions to large customers. Threshold ECDSA schemes has recently been used in the Swingby
project for the purpose of moving assets between blockchains. This paper reviews a few threshold digital signature
schemes that are of interest for the blockchain community.

1 Introduction and Digital Signature Algorithms DSA and ECDSA
Efficient threshold cryptography protocols have been designed for many cryptographic schemes such as RSA signing
and decryption, ElGamal and ECIES encryption, Schnorr signatures, Cramer-Shoup, and many others. However, full-
threshold DSA/ECDSA schemes with practical distributed key generation and signing are unknown until recent work
by Gennaro and Goldfeder [6] and Lindell, Nof, and Ranellucci [9]. The reader is referred to [9] for a complete review
of the efforts for threshold DSA/ECDSA.

In this paper, we review a few threshold digital signature schemes that are of interest for the blockchain community.
We first review the DSA and ECDSA schemes. A group G is cyclic if there is an element g ∈ G such that for each
y ∈ G thre is an integer x with y = gx. Such an element g is called a generator of G. For an element g ∈ G, the
order of g is defined to be the least positive integer x such that gx = 1. As an example, for a given prime number p,
the multiplicative group Z∗p = {1, · · · , p − 1} is a cyclic group of order p − 1. A discrete logarithm problem (DLP)
is defined as follows. Give a prime p, a generator g of Z∗p, and an element y ∈ Z∗p, find the integer x, 0 ≤ x ≤ p− 2,
such that gx = y mod p.

The most recent version of the Digital Signature Scheme (DSS) is published in FIPS PUB 186-4 [8]. FIPS PUB
186-4 includes description of DSA and ECDSA algorithms. The DSA algorithm works as follows. Let p be a prime
of L bits and q be an N -bits prime divisor of p − 1. Let 1 < g < p be a generator of a subgroup of order q in the
multiplicative group Z∗p. For various security strength, DSA recommends the following parameter pairs

1. L = 1024, N = 160

2. L = 2048, N = 224

3. L = 2048, N = 256

4. L = 3072, N = 256

The DSA signature mechanism requires a hash functionH : {0, 1} → Z∗q . Let min(N, outlen) be the minimum of the
positive integers N and outlen, where outlen is the bit length of the hash function output block. For simplification,
we abuse our notation by using H(M) to denote the leftmost min(N, outlen)-bits of H(M). The DSA algorithm
includes key generation, signature generation, and signature verification algorithms.
DSA Key generation algorithm. For the security parameter (L,N), each entity creates a public key y and corre-
sponding private key x as follows:

1. Obtain a string c of N + 64 bits using a random bit generator

2. Let x = (c mod (q − 1)) + 1 and y = gx mod p.
1

DSA signature generation algorithm. An entity with private key x generates a digital signature (r, s) for a binary
message M of arbitrary length as follows

1. Selects a random integer k and let r = (gk mod p) mod q

2. Let s = (k−1(H(M) + xr)) mod q.

DSA signature verification algorithm. Let M ′, r′, and s′ be the received versions of M, r, and s, respectively. Let y
be the public key of the claimed signatory. The signature verification process is as follows:

1. Let w = (s′)−1 mod q

2. Let u1 = wH(M ′) mod q and u2 = r′w mod q

3. Let v = (gu1yu2 mod p) mod q

4. The signature is valid if and only if v = r′

FIPS PUB 186-4 refers ECDSA to ANSI X9.62. Domain parameters for ECDSA are of the form (q, FR, a, b,G, n, h),
where q is the field size; FR is an indication of the basis used; a and b are two field elements that define the equation
of the curve (that is, y2 = x3 + ax + b); G is a base point of prime order on the curve (i.e., G = (xG, yG)), n is
the order of the point G, and h is the cofactor (which is equal to the order of the curve divided by n). ECDSA is
defined for any one of the arithmetic fields GF (p) = Z∗p or GF (2m). The ECDSA algorithm includes key generation,
signature generation, and signature verification algorithms.
ECDSA Key generation algorithm. An ECDSA key pair (x,Q) for a set of domain parameters (q, FR, a, b,G, n, h)
is generated as follows:

1. Obtain a string c of len(n) + 64 bits using a random bit generator

2. Let x = (c mod (n− 1)) + 1 and Q = xG.

ECDSA signature generation algorithm. An entity with private key d generates a digital signature (r, s) for a binary
message M of arbitrary length as follows

1. Select a random integer k, 1 ≤ k ≤ n− 1.

2. Compute kG = (x1, y1) and convert x1 to an integer x1.

3. Compute r = x1 mod n. If r = 0 then go to step 1.

4. Compute s = k−1(H(M) + xr) mod n. If s = 0 then go to step 1.

5. The signature for the message m is (r, s).

ECDSA signature verification algorithm. For a signature (r, s) on a message M , Assume that the public key is Q.
The signature verification process is as follows:

1. Compute w = s−1 mod n.

2. Compute u1 = wH(M) mod n and u2 = rw mod n.

3. Compute X = u1G+ u2Q.

4. Convert the x-coordinate x1 of X to an integer x1, and compute v = x1 mod n.

5. Accept the signature if and only if v = r.

2

2 Threshold DSA by Gennaro and Goldfeder
There are several approaches to develop threshold DSA schemes. For example, one may share the secret keys x
among participants (e.g., using Shamir secret share schemes) and then jointly compute both r and s. This could
be achieved by designing mechanisms to compute two multiplications over secret values that are shared among the
participants. Alternatively, one may encrypt the secret key x using an additively homomorphic encryption scheme E
(e.g., Paillier’s scheme [10]) and share the secret key of E among the participants. But this approach may require
the distributed generation of the additively homomorphic encryption scheme E. Recently, Gennaro and Goldfeder [6]
designed an efficient threshold ECDSA scheme using the SPDZ approach [3]. For a high level description, Gennaro
and Goldfeder’s approach [6] works as follows. The participants start with a (t,N) Shamir secret sharing of the
secret key x. When t+ 1 participants want to sign a message, they generate an additive sharing of two random values
k =

∑
i ki and γ =

∑
i γi. Then the participants compute additive sharings of the products δ = kγ and σ = kx

∑
i wi.

Note that for two secrets a = a1 + · · · + aN , b = b1 + · · · + bN additively shared among N participants where Pi
holds ai and bi. One can compute the additive sharing of c = ab by computing an additive sharing of each individual
term aibj since ab =

∑
i,j aibj . The details of the Gennaro and Goldfeder’s approach is described in the following

paragraphs.
We first describe Paillier’s additive encryption scheme [10]. The public key pk = (n, g) for a Paillier’s scheme

consists of two integers where n = pq divides the order of g ∈ Z∗n2 and p, q are two prime numbers. The private key

sk = (λ, µ) is a pair of integers where λ = lcm(p − 1, q − 1) and µ =
(

(gλ mod n2)−1
n

)−1
mod n. A message m is

encrypted to c = Encpk(m) = gm · rn mod n2 for a randomly selected r ∈ Z∗n. A ciphertext c is decrypted to the

message m = Decsk(c) =
µ((cλ mod n2)−1)

n mod n.
In a Shamir’s secret sharing scheme, the dealer generates a random degree t polynomial p(x) = s+a1x+· · ·+atxt

over Zq where the secret is s = p(0). A participant Pi receives the share si = p(i) mod q. Feldman’s verifiable
Secret Sharing Scheme (VSS) is an extension of Shamir secret sharing scheme where the dealer also publishes v0 = gs

and vi = gai for all i = 1, · · · , t. Using this auxiliary information, each participant Pi can check its share si for
consistency by verifying whether gsi =

∏t
j=0 v

ij

j .
We next describe a share conversion protocol from multiplicative shares to additive shares. Assume that two

participants P1 and P2 multiplicatively share a secret x = ab ∈ Zq where P1 holds a and P2 holds b. P1 and P2 would
like to additively share the secret x = α + β ∈ Zq where P1 holds α and P2 holds β. This could be achieved using
the Paillier’s additively homomorphic scheme as follows

1. P1 creates his Paillier’s public key pk and his private key sk.

2. P1 initiates the protocol by sending cA = Encpk(a) to P2 and proving in ZK that a < K via a range proof where
K is a constant bound that we will discuss later1.

3. P2 computes the ciphertext cB = bcA − Encpk(β) = Encpk(ab − β) where β is chosen uniformly at random.
P2 sets his share to β and responds to P1 by sending cb and proving in ZK that b < K. Furthermore, if gb is
public, P2 proves he knows b and β in ZK.2

4. P1 decrypts cb to obtain his share α = ab− β.

Now we are ready to describe Gennaro and Goldfeder’s threshold DSA scheme GG-DSA. We assume that each
participant Pi is associated with a public key pki for an additively homomorphic encryption scheme.
GG-DSA Key generation algorithm.

1. Each participant Pi selects a random ui ∈ Zq , computes yi = gui , hi = H(yi, ri) for a random ri, and
broadcasts hi.

2. Each participant Pi broadcasts yi and ri. The participant Pi performs a (t,N) Feldman-VSS of the value ui.
The public key is set to y =

∏
i yi. Each participant adds the private shares received during theN Feldman VSS

protocols. The resulting values xi are a (t,N) Shamir’s secret sharing of the secret key x =
∑
i ui. Note that

the values Xi = gxi are public.
1Note that [6] conjectured that this ZK proof could be removed.
2Note that [6] conjectured that the first ZK proof could be removed and the second ZK proof could be simplified.

3

3. Let Ni = piqi be the RSA modulus associated with pki. Each participant Pi proves in ZK that he knows xi
using Schnorr’s protocol [11] and that he knows pi, qi using any proof of knowledge of integer factorization.

GG-DSA signature generation algorithm. Let S = {i1, · · · , it} ⊂ {P1, · · · , PN} where P = {Pi1 , · · · , Pit} is a set
of t participants that participate in the signature protocol. For the signing protocol we can share any ephemeral secrets
using a (t, t) secret sharing scheme. Note that using the appropriate Lagrangian coefficients λi,S , each participant in
P can locally map its own (t,N) share xi of x into a (t, t) share wi of x: wi = xiλi,S . That is, x =

∑
i∈S wi. Since

Xi = gxi and λi,S are public values, all participants can compute Wi = gwi = X
λi,S
i . The participants in P jointly

generate a DSA signature (r, s) on the message M as follows where m = H(M).

1. Each participant Pi ∈ P selects ki, γi ∈R Zq , computes hi = H(gγi , θi) for a random θi, and broadcasts hi.
Define k−1 =

∑
i∈S ki, γ =

∑
i∈S γi. Note that k−1γ =

∑
i,j∈S kiγj mod q and k−1x =

∑
i,j∈S kiwj

mod q.

2. Every pair of players Pi, Pj ∈ P engages in two multiplicative-to-additive (MtA) share conversion sub-protocols

(a) Pi, Pj run MtA with shares ki, γj respectively. Let αij (respectively, βij) be the share received by par-
ticipant Pi (respectively Pj) at the end of this protocol. That is, kiγj = αij + βij . Participant Pi sets
δi = kiγi +

∑
j 6=i αij +

∑
i6=j βij . Note that the δi are a (t, t) additive sharing k−1γ =

∑
i∈S δi.

(b) Pi, Pj run MtA with shares ki, wj respectively. Let µij (respectively, νij) be the share received by par-
ticipant Pi (respectively Pj) at the end of this protocol. That is, kiwj = µij + νij . Participant Pi sets
σi = kiwi +

∑
j 6=i µij +

∑
i 6=j νij . Note that the σi are a (t, t) additive sharing k−1x =

∑
i∈S σi.

3. Every participant Pi ∈ P broadcasts δi and the participants reconstruct δ =
∑
i∈S δi = k−1γ.

4. Every participant Pi ∈ P broadcasts gγi and θi and proves in ZK that he knows γi using Schnorr’s protocol
[11]. The participants compute

r =

(∏
i∈S

gγi

)δ−1

= g
∑
i∈S γikγ

−1

= gk.

5. Each participant Pi ∈ P sets si = mki + rσi. Note that∑
i∈S

si = m
∑
i∈S

ki + r
∑
i∈S

σi = mk−1 + rk−1x = k−1(m+ xr) = s.

That is, the si is a (t, t) sharing of s.

(a) Each participant Pi ∈ P selects li, ρi ∈R Zq , computes Vi = rsigli , Ai = gρi , h′i = H(Vi, Ai, θ
′
i) for a

random θ′i, and broadcasts h′i. Let l =
∑
i li and ρ =

∑
i ρi.

(b) Each participant Pi ∈ P broadcasts (Vi, Ai, θ
′
i) and proves in ZK that he knows si, li, ρi such that Vi =

rsigli and Aρii . Let V = g−my−r
∏
i∈S Vi = gl and A =

∏
i∈S Ai.

(c) Each participant Pi ∈ P computes Ui = V ρi , Ti = Ali , h′′i = H(Ui, Ti, θ
′′
i), and broadcasts h′′i .

(d) Each participant Pi ∈ P broadcasts (Ui, Ti, θ′′i).

(e) For a participant Pi ∈ P, if the received (de-committed) values satisfies
∏
i∈S Ti =

∏
i∈S Ui, then Pi

broadcasts si. All participants compute s =
∑
i∈S si. (r, s) is the signature on M .

GG-DSA signature verification algorithm. This is the same as the DSA signature verification algorithm.

4

3 Threshold ECDSA by Lindell-Nof-Ranellucci
Lindell, Nof, and Ranellucci [9] proposes a threshold ECDSA by replacing the Paillier additively homomorphic en-
cryption with ElGamal additively homomorphic encryption in-the-exponent. We use LNR-ECDSA to denote the
threshold protocol in [9]. Let G be a group of order n where the Decisional Diffie-Hellman problem is hard, and let
G be a generator of the group. We will introduce Lindell, Nof, and Ranellucci’s scheme using elliptic curve notations.
For ElGamal additively homomorphic ecryption in-the-exponent, an encryption of a value m ∈ Zn with public key
P ∈ G is defined as

EGexpEncP (m) = (A,B) = (rG, rP +mG)

where r ∈R Zn. It is noted that, for ElGamal encryption in-the-exponent, decryption requires solving the discrete
logarithm problem. That is, given the private key d where P = dG and EGexpEncP (m), one can compute mG.

LNR-ECDSA recommends the use of Fiat-Shamir’s paragidm [5] for ZK proofs. LNR-ECDSA leverages a pri-
vate multiplication protocol that computes additive shares of the multiplication of two previously shared secrets with
privacy but not correctness. That is, assume that each participant Pi holds the additive shares (xi, yi) and wants to
compute the multiplicative shares zi such that

N∑
i=1

zi =

(
N∑
i=1

xi

)
·

(
N∑
i=1

yi

)
mod n.

This kind of protocol could be constructed using Oblivious-Transfer as in [7] which has low computation cost but
higher bandwidth or using Paillier encryption scheme as follows which has higher computation cost but much lower
bandwidth. The following protocol is based on Paillier encryption scheme.

1. Each participant Pi generates his Paillier key pair (ski, pki).

2. Each participant Pi computes ci = Encpki(xi). In addition, for every j, Pi prepares a non-interactive ZK range
proof π1

i→j proving that xi ∈ Zn. For every j 6= i, Pi sends (ci, π1
i→j) to Pj .

3. For every j 6= i, Pi receives cj = Encpkj(xj) and π1
j→i. Pi uses the homomorphic operations to generate the

value ci→j where ◦ is the homomorphic scalar multiplication:

ci→j = (cj + 2t+ln) ◦ yi + δi→j = Encpkj(xjyi + 2t+lnyi + δi→j)

for a randomly chosen δi→j ∈ Zn22t+l+s . In addition, Pi generates a non-interactive ZK proof π2
i→j of knowl-

edge (yi, δj→i) within ci→j . Pi sends (ci→j , π2
i→j) to Pj .

4. Pi receives (cj→i, π2
j→i) from Pj for every j 6= i. Pi verifies the ZK proof, decrypts xiyj + 2t+lnyj + δj→i

and adds (xi + 2t+ln)2t+ln + 2t+ln22t+l+s. Finally, Pi sums the results, adds xiyi and subtracts all its δi→j
values, and reduces the result modulo n. The result is Pi’s output zi.

Next we describe the secure multiplication protocol Fmult that will be used in LNR-ECDSA. The protocol Fmult is
initiated as follows:

1. Each participant Pi selects a random di ∈R Zn, computes Pi = diG, prepares a ZK proof πi for the knowledge
of di, and broadcasts hi = H(Pi, πi, θi) for a random string θi.

2. Each participant Pi broadcasts (Pi, πi, θi).

3. Each participant Pi computes the ElGamal (in-the-exponent) public key P =
∑N
j=1 Pi corresponding to the

private key d =
∑N
j=1 di. Pi stores (di, P, P1, · · · , PN).

The input-enc procedure generates an ElGamal in-the-exponent encryption of a =
∑N
i=1 ai mod n where each Pi

holds ai and P is the ElGamal public key.

1. Pi chooses a random si ∈R Zn and computes (Ui, Vi) = EGexpEncP (ai; si) = (siG, siP+aiG). Pi broadcasts
(Ui, Vi;πi) where πi is the ZK proof of the knowledge ai.

5

2. Pi computes U =
∑N
l=1 Ul, V =

∑N
l=1 Vl, and stores (U, V, ai, si, (U1, V1), · · · , (UN , VN)).

The element-out procedure is used by the participants to obtain A = aG for an input value a that was in-
put. The element-out procedure requires that the input-enc procedure has been complete. Note that a tuple
(A,B,C,D) is called a Diffie-Hellman tuple if there is an integer z such that C = zA and D = zB.

1. Each participant Pi broadcasts Ai = aiG and a ZK proof that (G,P,Ui, Vi −Ai) is a Diffie-Hellman tuple.

2. Each participant Pi computes A =
∑N
l=1Al.

The secure-mult procedure is used to compute the multiplication c = ab of two shared secrets a and b. Assume
that the participants share the secret a =

∑N
i=1 ai and b =

∑N
i=1 bi. In the following steps, each participate computes

and outputs the value ab.

1. The participants carry out the input-enc procedure for each of the shares a =
∑N
i=1 ai and b =

∑N
i=1 bi.

2. The participants carry out a private multiplication protocol for a =
∑N
i=1 ai and b =

∑N
i=1 bi. Participant Pi

computes the share ci of c = ab by the end of this protocol.

3. Pi chooses a random s′i and computes (Ei, Fi) = (aiX + s′iG, aiY + s′iP). Pi broadcasts (Ei, Fi) and a ZK
proof of knowledge (si, s

′
i, ai) to all participants.

4. Pi sets (E,F) =
(∑N

l=1El,
∑N
l=1 Fl

)
. Pi chooses a random ŝi and computes (Ai, Bi) = EGexpEncP (ci; ŝi).

Pi then broadcasts (Ai, Bi) and a ZK proof of knowledge (ci, ŝi) to all participants.

5. Pi computes A = E−
∑N
l=1Al and B = F −

∑N
l=1Bl. All participants run a DH check protocol to check that

B = dA where d =
∑N
l=1 di.

6. Pi broadcasts ci and a ZK proof for ((P,Ai, Bi − ciG), ŝi) to all participants.

7. Pi computes c =
∑N
l=1 cl.

Now we are ready to describe the scheme LNR-ECDSA. Assume that all participants have the public parameter
(G, G, n) for the ECDSA and know the number N of participants.
LNR-ECDSA Key generation algorithm. The participants jointly generate an ECDSA signature (r, s) on the mes-
sage M as follows where m = H(M).

1. The participants initialize the secure multiplication protocol Fmult.

2. Pi selects a random xi ∈ Zn. The ECDSA private key is x =
∑N
i=1 xi.

3. All participants carry out input-enc procedure. At the end of the input-enc procedure, each participant
Pi stores (U, V, xi, si) where (U, V) is an ElGamal encryption of the private key x.

4. All participants carry out element-out procedure to obtain the ECDSA public key xG.

LNR-ECDSA signature generation algorithm.

1. The participants initialize the secure multiplication protocol Fmult.

2. Pi selects random ki, ρi ∈R Zn. Let k =
∑N
i=1 ki and ρ =

∑N
i=1 ρi.

3. All participants carry out the secure-mult procedure to compute the value τ = kρ.

4. All participants carry out element-out procedure to obtain the value of kG =
∑N
j=1 kjG = (x1, y1).

5. Each Pi converts x1 to an integer x1 and computes r = x1 mod n.

6. All participants compute the shares of m′ + xr locally.

6

7. All participants carry out the secure-mult procedure to compute the value β = ρ(m′ + xr).

8. Each Pi computes s′ = τ−1β = k−1(m′ + xr) mod n and s = min{s, n− s}.

9. Pi outputs the signature (r, s).

LNR-ECDSA signature verification algorithm. This is the same as the ECDSA signature verification algorithm.

4 Threshold signature scheme BLS
Boneh, Lynn, and Shacham’s signature scheme (BLS) [2] has been used in blockchain environments. For example, it
is used in the random beacon protocol Randao [4]. BLS scheme is based on gap groups in which the computational
Diffie-Hellman problem is hard but the decisional Diffie-Hellman problem can be efficiently solved. Typically the BLS
scheme is instantiated in a gap group constructed from non-degenerate, efficiently computable, and bilinear pairings.
We first briefly describe the bilinear maps and bilinear map groups. Let G1, G2 and GT be multiplicative cyclic groups
of prime order n and g1, g2 be a generators of G1, G2 respectively. A bilinear map is a map ê : G1 ×G2 → GT with
the following properties:

1. bilinear: for all gi, gj ∈ G, and x, y ∈ Z, we have ê(gxi , g
y
j) = ê(gi, gj)

xy .

2. non-degenerate: ê(g1, g2) 6= 1.

Assume that G is a multiplicative cyclic group with a generator g of prime order p. We say that the decisional
Diffie-Hellman problem is hard if it is difficult to decide whether c = ab given the tuple (g, ga, gb, gc). We say
that the computational Diffie-Hellman problem is hard if it is difficult to compute gab given the tuple (g, ga, gb). A
group is called Gap Diffie-Hellman (GDH) group if the the computational Diffie-Hellman problem is hard though the
decisional Diffie-Hellman problem is easy. The GDH Signature Scheme [2] consists three algorithms.
GDH Key generation algorithm: Pick a random x and compute v = gx2 . The public key is v ∈ G2 and the private
key is x.
GDH signature generation algorithm: Given a secret key x and a message M , compute h = H(M) ∈ G1 and
σ = hx. The signature on M is σ ∈ G1.
GDH signature verification algorithm: Given a public key v, a messageM , and a signature σ, compute h = H(M),
and verify that ê(σ, g2) = ê(h, v).

It is shown in [1] that the GDH signature scheme has the aggregation property: Given N signatures on N distinct
messages from N distinct users, it is possible to aggregate all these signatures into a single short signature. This
aggregated signature and the N original messages can be used to convince the verifier that the N users did indeed sign
the N original messages. Specifically, the aggregation of the signatures works as follows.
Aggregation: For the aggregating subset of users U , assign to each user an index i, ranging from 1 to k = |U |. Each
user ui ∈ U provides a signature σi on a message Mi of his choice. The messages Mi must all be distinct. Compute
the aggregate signature σ =

∏k
i=1 σi.

Aggregate Verification: Given an aggregate signature σ for an aggregating subset of users U , indexed as before, and
given the original messages Mi and public keys vi for all users ui. To verify the aggregate signature σ

1. ensure that the messages Mi are all distinct, and reject otherwise; and

2. compute hi = H(Mi) for 1 ≤ i ≤ k = |U |, and accept if ê(σ, g2) =
∏k
i=1 ê(hi, vi).

These properties can be used to design threshold signature schemes.

References
[1] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear

maps. In Eurocrypt, pages 416–432. Springer, 2003.

[2] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. Journal of cryptology, 17(4):297–
319, 2004.

7

[3] I. Damgård, M. Keller, E. Larraia, C. Miles, and N.P. Smart. Implementing aes via an actively/covertly secure
dishonest-majority mpc protocol. In International Conference on Security and Cryptography for Networks, pages
241–263. Springer, 2012.

[4] Ethereum. Randao: A DAO working as RNG of ethereum, 2017. https://github.com/randao/
randao and https://www.randao.org/whitepaper/Randao_v0.85_en.pdf.

[5] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
CRYPTO, pages 186–194. Springer, 1986.

[6] R. Gennaro and S. Goldfeder. Fast multiparty threshold ecdsa with fast trustless setup. In Proc, 2018 ACM CCS,
pages 1179–1194, 2018.

[7] N. Gilboa. Two party rsa key generation. In Annual International Cryptology Conference, pages 116–129.
Springer, 1999.

[8] C.F. Kerry and C.R. Director. FIPS PUB 186-4 federal information processing standards publication digital
signature standard (dss). 2013.

[9] Y. Lindell and A. Nof. Fast secure multiparty ecdsa with practical distributed key generation and applications to
cryptocurrency custody. In Proc. 2018 ACM CCS, pages 1837–1854, 2018.

[10] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, pages
223–238. Springer, 1999.

[11] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology, 4(3):161–174, 1991.

8

https://github.com/randao/randao
https://github.com/randao/randao
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf

	Introduction and Digital Signature Algorithms DSA and ECDSA
	Threshold DSA by Gennaro and Goldfeder
	Threshold ECDSA by Lindell-Nof-Ranellucci
	Threshold signature scheme BLS

