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Changes in eyebrow configuration, in conjunction with other facial expressions and head gestures, are used
to signal essential grammatical information in signed languages. This paper proposes an automatic recognition
system for non-manual grammatical markers in American Sign Language (ASL) based on a multi-scale, spatio-
temporal analysis of head pose and facial expressions. The analysis takes account of gestural components of
these markers, such as raised or lowered eyebrows and different types of periodic head movements. To advance
the state of the art in non-manual grammatical marker recognition, we propose a novel multi-scale learning
approach that exploits spatio-temporally low-level and high-level facial features. Low-level features are based
on information about facial geometry and appearance, as well as head pose, and are obtained through accurate
3D deformable model-based face tracking. High-level features are based on the identification of gestural events,
of varying duration, that constitute the components of linguistic non-manual markers. Specifically, we recognize
events such as raised and lowered eyebrows, head nods, and head shakes. We also partition these events into
temporal phases. We separate the anticipatory transitional movement (the onset) from the linguistically signifi-
cant portion of the event, and we further separate the core of the event from the transitional movement that
occurs as the articulators return to the neutral position towards the end of the event (the offset). This partitioning
is essential for the temporally accurate localization of the grammatical markers, which could not be achieved
at this level of precision with previous computer vision methods. In addition, we analyze and use the motion
patterns of these non-manual events. Those patterns, together with the information about the type of event
and its temporal phases, are defined as the high-level features. Using this multi-scale, spatio-temporal combina-
tion of low- and high-level features, we employ learningmethods for accurate recognition of non-manual gram-
matical markers in ASL sentences.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Signed languages are full-fledged natural languages, comparable in
structure and complexity to spoken languages but manifested in the
visual–gestural modality. Computer-based recognition of sign language
from video, which has been the object of various research efforts over
the last two decades (e.g., [42,49,47]), is particularly challenging in
that it requires attention to detection and interpretation of linguistic in-
formation conveyed through both the manual and the non-manual
channels. Although the equivalents of words are articulated primarily
through movements of the hands and arms, important linguistic infor-
mation of various kinds is also expressed non-manually: through head
movements and facial expressions. In particular, essential grammatical
Qiang Ji.
1 732 4450537.
information about such things as negation, clausal type, question status,
and topics is conveyed by clusters of specific facial gestures and head
movements [3–5,9,22,23,34]. For instance, the marking of yes/no
questions typically includes raised eyebrows. However, raised eye-
brows are a component of many other grammatical markers, as well
(e.g., topics, conditional clauses, “relative clauses”); these expressions
are distinguished by other differences in facial expressions, including
eye gaze and eye aperture, nose configuration, and head positions and
movements.

Despite their linguistic importance, it is only relatively recently that
sign language recognition has begun to focus on detection of the non-
manual components of signed languages, in some cases as an aid to
the recognition by computer of manual signs [2,39], and in other
cases, with a view toward interpretation of the grammatical informa-
tion carried by non-manualmarkers [26,30,37]. Computer-based recog-
nition of non-manual aspects of signed languages has made use of
methods for facial expression recognition [44,13] and headpose estima-
tion [32], which have been active research topics in computer vision for
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Fig. 1. Eyebrow raise and head shake: (a) If the weather is warm, I'll go to the beach; (b) As for my brother helping me, he can't.
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decades. Most approaches to interpretation of non-manual information
have involved construction of mapping functions between low-level
features and grammatical markers. Related work will be reviewed in
Section 2. However, the accurate interpretation of non-manual events
(e.g., eyebrow gestures and periodic head movements) that carry lin-
guistic information requires attention to the spatio-temporal patterning
of these events over syntactic domains that may vary significantly in
size and duration.

In this paper we propose an automatic recognition system for
non-manual grammatical markers based on multi-scale and spatio-
temporal analysis of head poses and facial expressions. Although
there has been previous research focused on low-level features alone
[26,30,36], or on high-level features that can be derived from those
[37], our approach relies on combining both types of features. To extract
the relevant features, we use a 3D deformable face tracker based on an
adaptive ensemble of ASMs [17]. This 3D tracker deals well with the
large head movements and occlusions of the face by the hands that
occur during signing. Another advantage of the 3D facemodel approach
is that it eliminates the need for facial pose alignment necessary
in 2D approaches, which is often a source of significant errors in facial
pose estimation and expression recognition. Another feature of our
3D face tracker is that it is generic and not person-specific. Our face
tracker can adaptively fit each person's face without the need for
person-specific training. The low-level features related to the 3D head
pose and facial expressions (including eye aperture and eyebrow
configuration) are based on geometry and appearance features from
the 3D face tracker. The low-level features are used, in part, to recognize
non-manual events such as raised/lowered eyebrows and periodic head
movements (nods and shakes). The recognition of these events allows
us to extract important high-level features, including the type of non-
manual event, its temporal phases, and specific aspects of itsmotion pat-
terns over phrasal domains. Finally, we combine the low- and high-level
features based on learning methods [1] to recognize the five types of
non-manual grammatical markers under consideration in this paper.

We pay particular attention to the computer-based recognition of
raised and lowered eyebrows, and of periodic head nods and shakes,
since they function as components of many non-manual grammatical
markers in signed languages generally, and in American Sign Language
(ASL) in particular. The focus on eyebrow gestures and periodic head
movements is thus linguistically motivated. We further partition these
events into temporal phases, to facilitate the accurate localization of
the relevant grammatical markers. For example, in eyebrow events,
our research to date has revealed that the linguistically significant por-
tion of a raised or lowered eyebrow gesture begins after an anticipatory,
transitional phase (which we refer to as the onset), during which the
eyebrows raise (or lower) to themaximal extent. The core of the gesture
begins at that point, linguistically aligned with the start of the relevant
sign or group of signs associatedwith the grammatical marker. The eye-
brows often start returning to neutral (a phase that we refer to as the
offset) a few frames before the end of the final sign in the phrase being
marked by the relevant non-manual expression. This is illustrated in
Fig. 1(a). For periodic head gestures, thehead tends to beginwith a tran-
sitional, anticipatory movement (onset) that involves rotating the head
to the maximal angle, so that the first head nod or shake can cover the
maximal angular range, and the start of the linguistically significant
portion of these periodic head movements is usually initiated from
this maximally rotated position. Periodic head movements tend to in-
volve successive head rotations of diminishing amplitude, eventually
damping out (with no identifiable offset). This pattern is illustrated in
Fig. 1(b). Hence, it is critical to separate out the preparatory phase in
order to focus on the linguistically meaningful part.

In order to recognize these high-level features, we introduce a
hierarchical Conditional Random Field (CRF) [20] framework to recog-
nize raised/lowered eyebrows, head nods, and head shakes from video
sequences, and to further partition these non-manual events into
temporal phases, i.e., onset, core and offset (if there is one). After recog-
nizing the non-manual events,we analyze theirmotion patterns, which,
together with the temporal phase partitioning, are regarded as high-
level features. Experiments are designed to evaluate the recognition
results for eyebrow gestures and periodic head movements, as well as
the further effects of such identifications on successful recognition of
non-manual grammatical markers. More specifically, we investigate
the improvement in performance for recognition of these markers
achieved as a result of the combined use of low-level and high-level
features (i.e., eyebrow and head events and their spatio-temporal
patterning). Our method outperforms the baseline approach that uses
only low-level features. The methodology in this paper is a significant
extension of our previous approach in [25]. The innovations here
include: 1) utilization of drastically improved facial tracking that
combines a 3D deformable model with an ASM approach; this new
method is capable of reporting reliably when tracking is not successful;
2) improvement in the computation of high-level features as sequence
models, which in turn enhances the incorporation of linguistic knowl-
edge into the recognition of grammatical markers; and 3) validation of
the results through a substantial number of additional experiments,
demonstrating success in the identification and temporal localization
of events and their phases, and in the higher-level detection and identi-
fication of grammatical markers in ASL.
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This paper is organized as follows. Section 2 reviews relatedwork on
the recognition of non-manual expressions and head movements, as
well as the recognition of non-manual grammatical markers. Section 3
introduces our proposed method which is based on: 3D face tracking
to obtain landmarks; extraction of the relevant low-level features; se-
lection of the relevant facial features with a rankingmodel; recognition
of non-manual events using hierarchical CRFs; and derivation of addi-
tional high-level features from motion analysis of these events. We
also describe the integration of multi-scale features for non-manual
grammatical marker recognition. Section 4 presents the experiments
on recognition of eyebrow gestures and periodic head movements,
and then on recognition of grammatical markers in ASL. Section 5 sum-
marizes our approach.

2. Related work

In signed languages, essential grammatical information is expressed
by various combinations of facial expressions involving the eyes, eye-
brows, nose, andmouth, as well as headmovements, including periodic
head nods and shakes [3–5,9,22,23,34]. For automatic analysis of facial
expressions, numerous vision approaches have been proposed. Prior ap-
proaches can be categorized into two main methodological types:
classification-based and action unit-based. The classification-based
methods aim at recognizing a small set of prototypical facial expressions
related to certain mental activities [41,7,48,6], as well as identifying the
intensities of these expressions [24,38]. Most of these approaches are
based on data collected in laboratory environments, with frontal-view
faces and fewocclusions; these constraints donot hold for sign language
data gathered in more natural settings. Furthermore, the targeted
expressions are commonly limited to the six universal emotions
(i.e., fear, anger, sadness, happiness, surprise, and disgust) proposed
by Ekman et al. [11], whereas automatic analysis of facial expressions
for sign language recognition must encompass a wide range of expres-
sions involved in conveying linguistic information. The action unit-
based approaches analyze facial expressions from the perspective of
facial actions related to muscle activity, and describe these expressions
by their locations and intensities. In this streamof approaches, the Facial
Action Coding System (FACS), which deconstructs facial expressions
into specific Action Units (AUs) [12], is widely used. Many previous
methods focus on the recognition of these AUs and their temporal
phases [43,45]. Although some grammatical facial expressions are
related to AUs, little prior research attempts to explore the linguistically
significantmotion patterns of these actions, nor to use such information
for non-manual grammatical marker recognition in ASL.
Step1: 3D Face tracking

Hi
Non-manual grammatical markers:

Negation;
Wh-question;

Yes-noquestion;
Topic;

Conditional.

Step4: Non-manual Grammatical
Marker Recognition

S

Fig. 2. Flowchart of the
Other issues relevant to the non-manual channel include head pose
estimation and head movement recognition. Out-of-plane head motion
is frequent during signing. Hence, it is essential to estimate head pose,
and to eliminate the perspective effects that distort facial features.
Somemodels can be used to estimate head poses alongwith facial land-
mark fitting, such as the Active Appearance Models (AAM) [8], Active
Shape Models (ASM) [17], and Constrained Local Model (CLM) [10].
See [32] for a survey of head pose estimation methods. Some efforts
have also been made to recognize head motions, including periodic
movements [31,18,14] of the kind that occur frequently as components
of non-manual markers. However, sub-classification of these gestures
based on their movement properties and differentiation of their tempo-
ral phases has not been previously undertaken. In this paper, we show
that such analyses provide significant advantages for non-manual
grammatical marker recognition.

Recently, researchers have tackled recognition of non-manual gram-
matical markers through analysis of linguistically relevant facial expres-
sions and headmovements [46,35,27]. Somemethods have constructed
frame-based or sequence-based mapping functions between non-
manual grammatical markers and low-level features. Michael et al.
[28,29] used SIFT + Pyramids and a bag of words approach to capture
facial features. Metaxas et al. [26,30] additionally introduced head pose
and some geometric facial features, such as eyebrow height and eye
aperture. However, the low-level features utilized in these methods do
not explicitly contain important temporal patterns of linguistic signifi-
cance. Nguyen et al. [36,37] recognized head motions for non-manual
grammatical marker recognition, for instance, head forward, move
down, or turn left. Although the information about these head motions
is in some sense high-level, the authors ignored some linguistically im-
portant temporal properties of these head movements. They also did
not exploit low-level facial features for recognition of non-manual ex-
pressions. In this paper, we focus on the multi-scale, spatio-temporal
analysis of facial expressions and head poses, incorporating the tempo-
ral properties of non-manual events, and we further leverage this in-
formation to enhance non-manual grammatical marker recognition.

3. Our approach

3.1. Overview

The flowchart of our approach for non-manual grammatical marker
recognition is shown in Fig. 2. This method involves the following steps:

1. We use a 3D deformable face tracker based on an adaptive ensemble
of ASMs [17], which is capable of tracking in the presence of large
Head poses:
Pitch;
Yaw;
Roll.

Facial features:
Eyebrow height;
Gaborresponse;

Local BinaryPattern.

Non-manual events:
Raised/lowered eyebrows;

Head nods;
Head shakes.

gh-level features:
Types of events

Temporal phases;
Motion patterns.

Step3: Non-manual Event Recognition
and High-level Feature Extraction

tep2: Low-Level Feature Extraction and Selection

proposed method.
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Fig. 3. Low-level features for eyebrow gesture recognition. (a) Geometric and Appearance features. On the right, from top to bottom are forehead region; illustration of inner, middle,
and outer eyebrow height shown by yellow lines; ROI for eyebrow gestures. (b) An example of the Gabor response of forehead during a raised eyebrow event.
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head movements and occlusions of the face by the hands that may
occur during signing. The use of a 3D facial tracking approach elimi-
nates the use of alignment methods necessary in 2D approaches,
which often result in inaccurate pose and expression feature estima-
tion.Our parameterized deformablemodel is then used to extract the
features listed below.

2. We extract low-level features related to the 3D head pose and facial
expressions, based on geometry and appearance.

3. We first use the low-level features to recognize non-manual events
such as raised/lowered eyebrows, head nods, and head shakes. The
recognition of these events then allows us to extract important
high-level features, such as the type of non-manual event, its tempo-
ral phases, and motion patterns over phrasal domains.

4. We combine the low- and high-level features based on learning
method to recognize the five types of non-manual grammatical
markers under consideration in this paper.

In the followingwe give details for each of the steps of our approach.

3.2. Step 1: face tracking

Accurate facial tracking is essential for precise non-manual marker
feature extraction and detection. We adopt the method in [17], which
has been successfully used inmany applications (e.g., [26,25]), and com-
bine themultiple ASMswith a 3D deformable model. The face tracker is
capable of tracking the non-linear geometry of the facial shapemanifold
in the presence of large headmovements because it uses an ensemble of
Point Distribution Model (PDM) clusters as well as a 3D shape model.
The combined ASM and 3D face tracker automatically locates 79 facial
landmarks, as shown in Fig. 3(a), and estimates the three head rotation
angles (i.e., pitch, yaw, and roll). In sign language videos, accurate face
tracking is challenging because of occlusions caused by arbitrary head
pose andhands. To alleviate this problem,wemodify the generic setting
in [17]. We enhance the constraint power of the global 3D shape prior
while maximizing mixture density probability of local components, for
a tradeoff between occlusions and local deformation.

Furthermore, as themodel tracks a face, it creates a stored 3Dmodel
of the face being tracked. When the face is occluded by the hands, our
facemodel erroneously uses features that include thehands. This results
in a distortion of the tracked face parameters, which, as a result, then do
notmatch the stored facial parameters; in such cases, we know that our
model is not tracking well at this point. When the occlusion ends,
themodel again fits well with the facial data, and the storedmodel's pa-
rameters againmatch those of the trackedmodel. The frameswhere our
facemodel does not trackwell (as a consequence of some type of occlu-
sion or even noise in the data) are not used here for the recognition of
non-manual markers. This results in a significant improvement in our
recognition results, as compared with our previous work [25].

3.3. Step 2: low-level facial feature extraction and selection

There are two types of low-level features. The first type is extracted
from the face tracker based on the rigid 3D head movement; such fea-
tures include yaw, pitch, and roll, aswell as head translation. The second
type is based on the geometry and the appearance of the relevant facial
expressions, such as eye aperture and eyebrowmovement and configu-
ration. For recognition robustness, we extract and combine both geo-
metric and appearance-based facial features.

As shown in Fig. 3(a), the intuitively obvious feature to describe eye-
brow gestures is eyebrow height. Based on facial landmarks, the inner,
middle, and outer heights of the right and left eyebrows are computed.
We also extract the eyebrow Region of Interest (ROI), from which we
compute the LBP (Local Binary Pattern) features. In addition, we use
texture features from the forehead region. As illustrated in Fig. 3(b),
with eyebrow raise, the forehead appears more wrinkled; in contrast,
lowered eyebrows are typically accompanied by brow furrowing,
resulting in a smooth forehead. We obtain the Gabor features in the
forehead regions using vertical filters; we calculate the maxima, mini-
ma, and standard deviation of the Gabor response in the ROI. These
features have not been used previously for recognition of eyebrow
configuration.

The raised and lowered eyebrow movements undergo ordinal
changes during the onset and offset phases. Inspired by previous work
in facial expression recognition [38] and age estimation [21], which re-
veal that features or feature combinations carrying rank information can
improve the performance of vision tasks involving ordinal changes, we
further explore the underlying relationships between LBP features in
ROI and eyebrow movements. Intuitively, the feature dimensions
whose values monotonically increase (decrease) during onset (offset)
can be more discriminative. In this work, we use the Ranking SVM
[15] algorithm for LBP feature selection. It aims at finding a hyperplane
under pairwise ranking constraints, by maximizing SVM soft margins:

arg min
w;ξ;

1
2

wk k2 þ C
X

ξi; j;k

s:t:∀ xi; xj

� �
∈ r�1 : wTφ xið Þ≥wTφ xj

� �
þ 1−ξi; j;1

⋯
∀ xi; xj

� �
∈ r�n : wTφ xið Þ≥wTφ xj

� �
þ 1−ξi; j;n

ð1Þ

where C is a trade-off parameter between training error and soft
margin; ξi,j,k are slack variables; rk⁎(k = 1,…, n) are targeted ranking
lists. (xi, xj) ∈ r⁎ means the rank of xi is higher than xj's in r⁎.
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More specifically, we estimate the onset and offset phases of
eyebrow events from the original feature sequences. Each phase
corresponds to one ranking list. A rank value is assigned to each frame
in the list according to the frames' temporal order in the eyebrowmove-
ment. A larger rank value is assigned to the frame with higher eyebrow
height. Take the onset of eyebrow raise as an example.We assign rank 1
to the first frame of onset phase, rank 2 to the second frame, etc. The
dataset for LBP feature selection is divided into two groups: D1 and D2.
D1 is used to train the rankingmodel for each individual feature dimen-
sion. For M-dimension features, M ranking models are learned using
SVMrank [16]. D2 is used to evaluate the extent to which features
preserve ordinal information. We calculate the ranking score of each
feature dimension si, i = 1,…, M on D2. The score is defined as the
similarity between the prediction results and the ground truth [19]:

τ L̂; L
� �

¼
XN

i; j¼1
bLi−bL j

� �
Li−L j

� �
N N−1ð Þ ð2Þ

where ⌈ ⋅ ⌉ is 1 if the inner function is positive, and 0 if it is negative. L̂and
L are the predicted rank list and ground truth, respectively. A higher
score indicates greater ability of a feature to describe the eyebrow con-
figurations. In our recognition task, we rank si, i = 1,…, M and the Kth
largest corresponding features are selected.

3.4. Step 3: non-manual event recognition and high-level feature extraction

Most attempts at grammatical marker classification or recognition
have been based on direct construction of mapping functions between
low-level features and non-manual grammatical markers. However,
low-level features are ill suited to capturing important properties of
phenomena that occur over varying spatio-temporal scales, and they
are sensitive to small errors in tracking and to noise in the image. In
this section, we introduce hierarchical CRFs to recognize important
non-manual events—i.e., raised or lowered eyebrows, head shakes,
and headnods—and to further partition them into onset, core, and offset
phases. Through temporal analysis of these events, we further extract
additional temporal properties and patterns in the form of high-level
features. These high-level features represent non-manual events ex-
plicitly, which contributes significantly to reliable recognition of gram-
matical markers.

3.4.1. Non-manual event recognition and phase partitioning
To obtain accurate detection of eyebrow or periodic head gestures as

well as their temporal phases (i.e., including onsets and offsets, where
relevant, as described earlier), sequence models could be utilized to
label the frames in a video sequence. Models such as Hidden Markov
Models (HMMs) or Conditional Random Fields (CRFs) have demon-
strated advantages for sequence classification and event detection,
such as in the sign language domain [37,42] citeASL:yang09. We adopt
the CRF approach and construct a two-stage model for non-manual
event recognition and partition.

CRF is a probabilistic model proposed by Lafferty et al. [20]; it has
beenwidely used for structured prediction, such as image segmentation,
event detection, and object tracking. The model considers not only the
dependencies between observations and states, but also interactions
among states. As discriminative models, CRFs have several advantages
over HMMs. They allow arbitrary dependencies between observations,
and they need only a small training dataset, because there is no require-
ment to specify the distributions of the states and observations.

In a chain CRF model, given an observation sequence X, the proba-
bility of a label sequence Y has the form:

p Yð jXÞ∝ exp
XT
t¼1

XN
i¼1

λi f yt ; x
i
t

� �
þ
XT
t¼1

XM
j¼1

μ jg yt ; y
j
t−1

� �0
@

1
A ð3Þ
where T, N, and M are the numbers of the nodes, feature values, and
states, respectively; f(yt, xti) is the unary potential function to evaluate
the interactions between features and labels; and g(yt, xt − 1

j) is the bi-
nary potential function considering the dependencies among neigh-
borhood labels. λi and μj are the parameters we can learn from the
training data using likelihood maximization.

We propose a hierarchical CRF framework to detect and partition the
non-manual events. This framework is composed of two-level chain
CRFs, as illustrated in Fig. 4. At the first level, using low-level features,
the CRF model is trained to recognize the entirety of the non-manual
event (specific type of eyebrow gesture or head movement). In Fig. 4,
one non-manual event is detected in frames t to k whose first-level
states are marked as gray circles. Then at the second level, another
CRFmodel is trained to further partition the detected event into tempo-
ral phases, using the same low-level features.

For the eyebrow motion CRF models, the unary potential function
f(yt, xti) that we use is feature quantization: the feature value is quan-
tized according to predefined thresholds. For each feature dimension,
rather than using evenly divided intervals, we develop an adaptive
strategy to decide the thresholds used for quantization, as illustrated
in Fig. 5. We first compute the value ranges (blue bars) of lowered, nor-
mal, and raised eyebrows in the training set, which establish four of the
thresholds: maximum feature values of lowered and normal eyebrow
heights, and minimum feature values of normal and raised eyebrow
heights (refer to the red dots in Fig. 5).We chose four additional thresh-
olds (refer to green dots), defined as follows: the 80th percentile of
lowered eyebrows, the 20th and 80th percentiles of normal eyebrows,
and the 20th percentile of raised eyebrows. These eight thresholds are
used to discretize the feature values into nine integers.

3.4.2. High-level feature extraction
The high-level features aim to model the motion patterns of each of

the distinct non-manual markers, for which the general patterns hold
across different ASL signers. In this paper we report our first attempt
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Fig. 6. Example of yaw angle curve in Negation and Wh-questions.
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to explore such spatio-temporal patterns in non-manual marker recog-
nition. Detailed motion analysis is conducted for head shake and head
nod based on the event detection and the phase partitioning results.
As shown in Fig. 6, a given kind of head motion varies significantly as
far as its patterning (e.g., with respect to amplitude and velocity) is
concerned in different non-manual grammaticalmarkers in ASL. For ex-
ample, as has been well described in the linguistic literature, the non-
manual marking of negation typically includes a head shake with a rel-
atively large amplitude, whereas the head shake that is sometimes
found in wh-questions has a much smaller amplitude, but with more
rapid repetitions.2 In order to model this difference, we develop dis-
criminative features as follows.

First, we detect the “peak frame” points from the overall motion. The
“peak frame” is defined as the local extreme value of the corresponding
angular curve (yaw for head shake, and pitch for head nod) during the
head motion. Based on these peak frame points, a motion can be seg-
mented into a set of sub-parts. An illustrative example is shown in
Fig. 7, in which four peak frame points are detected. These four peak
frames segment the motion into 3 sub-parts, that is [p1, p2], [p2, p3]
and [p3, p4]. Several features are derivedwithin each sub-part including:

(1) Gradient of peak value, which is the intensity of the headmotion
for each sub-part

dpt ¼ ypt−ypt−1

��� ��� ð4Þ

where ypi is the angular value of frame pi.
(2) Peak to peak velocity3

Vpt−1
¼ Vpt

−Vpt−1

��� ���= pt−pt−1j j: ð5Þ

Additionally, we also use per-frame velocity as a feature for the head
motion.Mathematically for frame t, the per-frame velocity is defined as:

vt ¼ yt−yt−1: ð6Þ
2 This general difference is robust across signers. In this data set, the averagemaximum
amplitude is about 10 times greater for the head shakes associated with negation than for
those that occur as part of wh-questions.

3 In our work, the dataset videos are collected with the same frame per second (fps)
rate, so here we directly use the frame index to represent the time.
3.5. Step 4: non-manual grammatical marker recognition

We use a sequence learning approach to model the correlations be-
tween the multi-scale, spatio-temporal features and the non-manual
grammatical markers of interest within each video sequence. The
sequence model is trained using the concatenation of low-level and
high-level features as input.

Raised and lowered eyebrows are examples of high-level features.
They play important roles in many non-manual grammatical markers.
For example, the ASL markers of Yes/No questions, Focus/Topics, and
Conditional/When clauses are usually associated with raised eyebrows,
whereas Negation and Wh-question markings are usually associated
with lowered eyebrows. Head nods and shakes are also examples of
high-level features; they are modeled as sequence features based on
the transformation of extracted, discrete gradient and velocity values.
An illustrative example is shown in Fig. 8. The discrete features of gradi-
ent and peak to peak velocities are converted into step-shape function
features. The start and end points of each step reflect the peak value's
location and the length of the step reflects the time interval of the cor-
responding peak to peak value.

With this high-level approach for feature extraction, the temporal
alignment of information is implicitly encoded. These features are incor-
porated into a Hidden Markov Support Vector Machine (HM-SVM) [1]
learning framework, which is general and scalable, and can incorporate
other high-level features encoded as sequence models.
4. Experiments and discussion

We carry out our experiments on a dataset collected fromnative ASL
signers at BostonUniversity byDr. C. Neidle and her research group. The
original videos we used in our experiments (for both face tracking and
feature extraction) had the resolution of 640 × 480 pixels. These
close-shot videos focusing on the signer's face are captured with a
fixed camera. Given the area ratio of the face to the whole image,
the resolution of faces is approximately 220 × 300 pixels (width by
height). The size of the regions of interest (ROI) is 256 × 128 pixels.

The data set contained 90 videos, corresponding to 90 ASL utter-
ances from a single native ASL signer.4 The videos were linguistically
annotated using SignStream® [33]:manual signs, grammaticalmarkers,
and relevant non-manual behaviors (including onsets and offsets,
where relevant) are labeled, and their start and end frames are
identified.
4 We are currently carrying out linguistic annotations of data from several additional
signers. Futureworkwill focus on recognition of these expressions acrossmultiple signers.



5 Theoretically, this criterion is slightly looser than the PASCAL criterion using intersec-
tion over union.

Table 1
Recognition results for raised and lowered eyebrows.

Raised eyebrows Lowered eyebrows

# LBP features 0 5 10 100 0 5 10 100

Precision 95.0% 97.6% 95.1% 56.6% 72.2% 73.9% 90.9% 48.7%
Recall 92.7% 97.6% 95.1% 88.7% 59.1% 77.3% 83.3% 57.6%
F1 Score 93.8% 97.6% 95.1% 69.1% 65.0% 75.6% 86.9% 52.7%
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Fig. 8. Illustration of high-level feature transformation.

70 75 80 85 90 95 100
-5

0

5

10

15

Frame Index

A
ng

ul
ar

 V
al

ue

p1

p2

p3

p4

Yaw (Pitch) Angle Curve of a Head Shake (Nod) 

Fig. 7. Illustration of head motion high-level feature extraction.

677J. Liu et al. / Image and Vision Computing 32 (2014) 671–681
The size of the present data set is smaller thanwhatwas reported for
our previous experiments [25]; this is because ten utterances were re-
moved from the original dataset, for one of two reasons: (1) Because
our new 3D face tracker now allows the automatic detection and
reporting of tracking failures, we excluded eight videos from these ex-
periments on recognition of non-manual events and grammatical
markers. The tracking failures were caused either by serious occlusions
over a long period, or by frames in which the entire face is not visible.
(2) We also discarded two videos containing a non-manual grammati-
cal marker beyond the scope of our current investigation (rhetorical
question marking, which is similar in appearance to some of the non-
manual markings that have been the focus of the present research).
We intend to extend our research to encompass a larger set of non-
manual grammatical markings in the future.

Our experiments consist of two parts. First we evaluate the results of
non-manual event recognition and partitioning, the accuracy of which
determines the effectiveness and robustness of the high-level features.
Then we investigate the improvement in non-manual grammatical
marker recognition that results from the use of the high-level features.
We conduct these experiments on a Dell Workstation with a 3.4 GHz
processor of eight cores and 16G memory.

4.1. Evaluation of non-manual event recognition

The non-manual event recognition is based on the use of low-level
facial features. To boost the recognition accuracy for raised and lowered
eyebrows, we first choose 40 video sequences for LBP feature selection:
56 phases in D1 and 32 in D2. The other 50 video sequences are then
used for the recognition task, using a “leave one out” testing approach.
This testing strategy uses one video sequence each time as a test sample
while the others are used as the training set.

For raised or lowered eyebrow recognition, as mentioned previous-
ly, we use the inner, middle, and outer eyebrow height as geometric in-
formation;we calculatemaxima, minima, and standard deviation of the
Gabor response features from the forehead region; we reduce the LBP
features from 100 to a lower dimensionality. For head shake and head
nod recognition, we use yaw and pitch angles, respectively, and calcu-
late the velocity of these two movements for each frame. In order to
grasp themotion dynamics, we used a 5-framewindow,which captures
the dynamics of these events given a 30-frame-per second frame rate.

We introduce two measurements to assess non-manual event
recognition. Thesemeasurements are based on the range of overlap be-
tween the true configuration and the detected one. The two measure-
ments are computed as follows: r1 = (RT ∩ RD(/(RT( and r2 = (RT
∩ RD(/(RD(, where RT and RD represent the true eyebrow time range
and the detected motion, respectively. r1 evaluates whether a gesture
is captured, while r2 represents the error of over-capturing. With a
threshold rt, the recognition is considered to be valid, if r1 ≥ rt and r2
≥ rt.5 The F1 measurement, which takes both precision and recall into
account, is computed to evaluate the overall performance of the non-
manual recognition: F1score = 2 · precision × recall/(precision+ recall).

4.1.1. Accuracy of non-manual event recognition
We use the CRF Toolbox [40] to train the CRF models and test. In

Table 1, we show the recognition results for raised and lowered eye-
brows. We empirically set rt = 0.7. The 50 video sequences contain 41
raised eyebrow and 22 lowered eyebrow events. For the recognition
of raised eyebrows, we achieve an F1 score of 93.8%when only eyebrow
height andGabor response features are used.However, adding 5 dimen-
sional LBP features improves performance: our model only fails to de-
tect one raised eyebrow event. The performance begins to drop with
a greater number of LBP features. With all of the 100 dimensional LBP
features, both precision and recall significantly decrease. This is simply
because more undiscriminating LBP features tend to override the im-
portant geometric and texture features, and weaken the recognition
power of the CRF model.

The recognition of lowered eyebrows is significantly worse when
using only eyebrowheight andGabor response features. This is because,
compared to the differences between raised and neutral eyebrows, the
differences in eyebrow height between lowered and neutral eyebrows
are much more subtle. With more LBP features, however, the F1 score
increases;we obtain the highest score by using ten dimensional LBP fea-
tures, which demonstrates that LBP features include useful information
for lowered eyebrow recognition. Our experiment achieves the best
performance with ten dimensional LBP features. In this case, only two
lowered eyebrow events fail to be detected correctly. Both of these
failure cases are due primarily to the short duration of the lowered
eyebrow events.
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Table 2
Recognition results of periodic head movements.

Head shake Head nod

Precision 88.9% 80.0%
Recall 85.7% 80.0%
F1 Score 87.3% 80.0%

Table 3
Average number of frames by which the prediction of the start
points of core phase differs from the annotated start point of
the associated grammatical marker.

Non-manual event # Frames

Raised eyebrows 3.6
Lowered eyebrows 4.8
Head shakes 3.1
Head nods 2.3
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With five dimensional LBP features for recognition of raised eye-
brows and ten dimensions for lowered eyebrow, we investigate the
influence of rt, i.e., the threshold value, brought into the recognition re-
sults. Fig. 9 demonstrates that both of the F1 scores drop with strict
threshold value, e.g., rt = 0.8. With looser rt, the scores just slightly
increase, which means we achieve high temporal accuracy. That is, the
detected event overlaps to a great degree with the event as identified
by the human annotators. Under similar experimental settings as
above, we also evaluate the accuracy of the second-level CRFs. Fig. 10
Groung

CRF accur

HACA accu

Fig. 11. Comparison results for the recognition of eyebrow events. Colors represent
illustrates the F1 scores for the onset, core, and offset phases with a
loose threshold value. We obtain an F1 score of over 80% for the core
phase of raised eyebrow, and almost 80% for the lowered eyebrows.

To demonstrate the effectiveness of our method for eyebrow event
detection, we conducted an experimental comparison with an existing
common approach. One representative approach in facial event detec-
tion is Aligned Cluster Analysis (ACA) [50], which uses unsupervised
clustering. We concatenate all test videos and run the hierarchical ACA
(HACA). For HACA, we first cluster the test set into twelve clusters,
and then these twelve clusters are further grouped into three clusters.
We assign the most probable label (raised eyebrows, lowered eye-
brows, normal) to each of these three clusters. Fig. 11 shows the
comparison of the recognition results for the entire eyebrow events
(raised lowered). In our approach, the predicted labels are obtained
by the trained CRF models. Since both the CRF model and the targeted
feature potential function make full use of the label information, this
method outperforms the unsupervised ACA algorithm.

Table 2 shows the recognition results for head shakes and headnods.
28 head shake events and 5 periodic head nods are included in the
50 video sequences. Missed detection emerges when a periodic head
shake or head nod is very slight. We expect improvements in the future
with use of larger sets of training data.
4.1.2. Temporal accuracy of non-manual event recognition
Next, we test the temporal accuracy of themotion partition achieved

by the second-level CRF. Since the start point of core phase (ts) is the be-
ginning of the linguistically informative portion of the event, we
 truth

acy 0.85

racy 0.68

different eyebrow configurations (green: raised, red: lowered, blue: normal).
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Fig. 12. Sample results for recognition of non-manual events. The solid bars represent ground truth labeling, and dashed bars show the experimental results. (a) Recognition of raised and
lowered eyebrows. (b) Recognition of head shake.
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evaluate the temporal accuracy of this point specifically. Especially, for
head movements, if tsH is not at a local extremal value of yaw or pitch,
we move ts

H to the local extremum. The results are shown in Table 3.
For head shakes and head nods, errors occur when ts

H is not in the
time range of the detected event based on our annotations. For eyebrow
gestures, since the dynamic changes from the onset to the core phase
are smooth, the boundary between the two phases is blurry, leading
to less accurate localization of tsH. In the following, we will show that
the introduction of the high-level features, based on these low-level
recognition results of eyebrow gestures, further improves the gram-
matical marker recognition.

We show some sample results of non-manual event recognition and
partitioning in Fig. 12. Fig. 12(a) contains a lowered eyebrow event
following a raised eyebrow event. Our face tracker accurately locates
the facial landmarks, and precise eyebrow heights are extracted. The
two eyebrow gestures are correctly detected, and each is partitioned
into three phases. In Fig. 12(b), we can see a yaw curve with clear
periodicity, which explicitly represents a head shake. The detected
start point of the core phase is very accurate.
Table 5
Confusion matrix comparison of results obtained by using (a) both high- and low-level
features (on the left), and (b) low-level features only (on the right). The label at the left
4.2. Evaluation of grammatical marker detection

In order to verify the performance of combining the extracted low-
level and high-level features in non-manual grammatical marker analy-
sis, we conduct an experiment on detection of five specific non-manual
grammatical markers in the 50 video samples we used for non-manual
event recognition. The high-level features are derived based on the
recognition results in Section 4.1. Table 4 shows the number of each
Table 4
The number of each type of non-manual grammatical markers in our dataset.

Marker types Sample number

Conditional/When (C/W) 14
Negation (Neg) 8
Topics/Focus (T/F) 21
Wh-question (Wh) 12
Yes/No question (Y/N) 6
kind of non-manual grammatical marker in our dataset. In addition to
the 5 markers, “nomarker (NM)” is added as another category. This in-
dicates that none of these 5 specific markers is present, which allows us
to identify cases where a non-manual marker is not present or incor-
rectly detected. Herewe also adopt the criteria in section 4.1 to evaluate
whether a detection result is valid or not.

We also use “leave one out” testing for non-manual grammatical
marker detection evaluation. We compare our proposed low- and
high-level feature combination strategy with the baseline method
using only low-level features. The confusion matrices for these two ap-
proaches are shown in Table 5. The comparison between the two confu-
sionmatrices demonstrates that our combinedmethod outperforms the
low-level feature only approach in the following two respects: (1) fewer
NM regions are incorrectly detected as non-manual grammatical
markers; (2) our new approach more accurately recognizes and distin-
guishes the five types of markers. This is attributable, as discussed
previously, to the fact that each type of non-manualmarker is character-
ized by a combination of different facial expressions and head gestures,
some of which are best reflected in the low-level features and others
of which are associated with non-manual events that are captured by
the high-level features; thus the relevant indicators have varying
spatio-temporal properties.

By and large, the combined features method outperforms the meth-
od that uses only low-level features. Confusion among non-manual
markers that are similar in appearance (e.g., those including raised
of each row indicates the ground truth from the annotations.

Both high- and low-level features Only low-level features

C/W Neg T/F Wh Y/N C/W Neg T/F Wh Y/N

C/W 11 0 2 0 1 9 0 5 1 4
Neg 0 8 0 0 0 0 5 0 2 1
T/F 1 0 19 0 0 5 0 16 2 3
Wh 0 1 0 8 0 1 2 0 6 0
Y/N 1 0 1 0 4 2 1 2 0 3
NM 0 1 2 2 0 5 6 8 7 4



Table 6
Average number of frames by which the prediction of the start frame differs from the
ground truth start frame for non-manual markers that are correctly detected.

High- and low-level features Only low-level features

C/W 1 4
Neg 4.8 10
T/F 3.9 7
Wh 3.6 16
Y/N 3.1 7.3
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brows, especially: C/W, T/F, and Y/N; or those that involve lowered
brows and potentially some kind of head shake: Wh and Neg) is re-
duced using the newmethod. Nonetheless, some errors remain.We ex-
pect that the results of the newmethod can be further improved in the
future through use of larger samples of training data and consideration
of additional properties of facial expressions and head movements.

The boundaries of the non-manual events are recognizedwith great-
er temporal accuracy using the combined approach, as compared with
the low-level frame-based features approach, as is evident from the im-
provement in identification of start points shown in Table 6. In addition,
the low-level feature approach often results in identifying multiple dif-
ferent markers over the duration of what is really a single marker. The
identification of unitary events greatly enhances the ability to demar-
cate individual markers. This is reflected in Table 5: whereas the sum
of the values in each row for the combined method used in the left
part of Table 5 corresponds to the total number of markers identified
as ground truth, the sum of the rows for the low-level feature method
is frequently higher because of the errors just described.

We test the improvement in the temporal accuracy of the detection
results achieved by our method, by evaluating the location of the
start point of the non-manual grammatical marker. Table 6 compares
the average temporal accuracy using the two different feature-based
methods. By separating the onset from the core part of non-manual
events and encoding this as a high-level feature, we significantly im-
prove the temporal accuracy of the non-manual grammatical marker
recognition. In summary, our new approach outperforms the traditional
low-level feature only methods in terms of both recognition and
accuracy.
5. Conclusion

In this paper, we proposed a comprehensive framework for the auto-
matic recognition of non-manual grammatical markers in American
Sign Language (ASL). To improve the recognition accuracy, we intro-
duced high-level features based on the detection and temporal analysis
of linguistically motivated non-manual events, such as eyebrow ges-
tures and periodic head movements. A two-level CRF is employed to
identify these events, and to separate the linguistically relevant portion.
We demonstrated that combining both high-level and low-level fea-
tures through multi-scale, spatio-temporal analysis of head pose and
face can further improve the recognition accuracy of non-manual gram-
maticalmarkers in ASL, as comparedwith priormethods using low-level
features alone. In the future, we plan to extend this method to a wider
range of grammatical markers and to additional gestural components
of linguistically important markings. Moreover, this approach should
prove useful in differentiating other uses of eyebrow gestures from
their role in signaling grammatical information in signed languages.
For example, it is known that the temporal contours are different for
grammatical vs. affective facial expressions that can be otherwise similar
in appearance. The temporal accuracy achieved in identifying the
domains of these grammatical markers is expected also to offer signifi-
cant advantages for integrating information from the manual and non-
manual channels (as is essential for the long-termgoal of automated un-
derstanding of signed languages from video). We also intend to apply
this modeling to production of more realistic sign language animations.
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