
Exotic Arithmetic, 2020 Games and Representations

1 Introduction

The mathematical subject of ‘game theory’ is less than a hundred years old,
and has been applied broadly, especially in economics, to analyze a huge
variety of real-life situations. During the past 80 years, two major branches
of game theory have emerged, classical games and combinatorial games.

A two-player classical game is a game played with a payoff matrix be-
tween a row player and a column player. Each one chooses a strategy, un-
beknownst to the other. The payoff (usually written with respect to the
row player) is the entry in the row and column selected. When the game
is played multiple times, as is often the case in real life, the players must
select a probability distribution on their strategy spaces, and this leads to
an expected payoff, which each player attempts to maximize. Linear pro-
gramming is the typical mathematical tool used to find these best strate-
gies. Classical game theory is used to analyze games which may involve
chance, imperfect information (not knowing your opponent’s move), simul-
taneous moves, and/or the possibilities for cooperation. For example, poker,
Monopoly, and the global nuclear arms race are not combinatorial games.
See http://en.wikipedia.org/wiki/Minimax

Mathematical competitions tend to focus on combinatorial games, as we
will here. A combinatorial game is a set of players, a set of positions, a set of
allowable moves, and a set of payoffs for various outcomes. In combinatorial
games, there is no randomness, players take turns, and the set of allowable
moves is public information, as is each player’s move.

A combinatorial game is a set of players, a set of positions, a set of
allowable moves, and a set of payoffs for various outcomes. In combinatorial
games, there is no randomness, players take turns, and the set of allowable
moves is public information, as is each player’s move. Combinatorial games
can be impartial, meaning that the set of moves allowed to each player is the
same, or partisan, meaning that the players’ sets of allowable moves may be
different. Single and multiple pile nim games and Go are impartial, while
chess and Tic-Tac-Toe are partisan, because the player with the white pieces
(or ×’s) cannot move any black piece. Nim is a family of games in which
two players begin with a pile or piles of counters or stones. Players alternate
removing some number of stones from the pile or piles. The winning player
is the last one to make an allowable move. Different versions of Nim result
from different rules about how many stones can be removed at each step,
and different starting positions (numbers of stones and number of piles).
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Typically the aim of a combinatorial game problem is to identify a winning
strategy, either for the starting player or for the opponent. We say player
A has a winning strategy if, whatever moves B makes, there is some set of
moves that A can make so that A is guaranteed to win.

In the 1930s, it was shown (the Sprague-Grundy theorem) that every
impartial combinatorial game is equivalent to some variant of nim, which
has been completely solved. Thus, any game in this category can, in theory,
be ‘worked out’, though the actual computations may be far beyond current
computational power. So, one approach to solving a combinatorial game is
to translate it into a variant of nim. We will see an example of this later in
this paper. However, it may be difficult to translate a game into nim, and
solving the nim variant may also be difficult, so this is far from a universal
strategy.

This paper is divided into nine sections. In the second section, we present
two algorithms for expressing a given positive integer n as a base-b numeral.
We use a base of 6 for the examples. In the third section, we present two
algorithms for finding the base-b representation of a fraction. In section 4, we
discuss three unusual place value type representations: Fibonacci, Factorial,
and Balance-pan representations, and their arithmetics. In section 5, we
discuss the Prime Factorization method of representation and provide a table
of values for all five methods of representation in the paper. In section 6,
we discuss the relationship between integer representation and game playing
strategies for static one-pile nim. In particular, we show how finding the
right representation often leads to a convenient method for finding a winning
strategy in counter pickup games. In section 7 we present an introduction
to dynamic counter pickup games. These are games for which the number of
counters that can be removed changes according to some game parameters
as the game is in progress. In section 8, the reader will find a collection of
exercises and problems related to representation of integers and fractions.
Section 9 contains problems on combinatorial games. Readers whose main
interest is combinatorial games can skip all of the first four sections except
the repeated subtraction method for representing integers and the Fibonacci
representation.
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2 Place value and base 6 representation

The place value interpretation of 4273 is 4000 + 200 + 70 + 3, which is a sum
of multiples of powers of 10. The relevant powers of 10, 103 = 1000, 102 =
100, 101 = 10, and 100 = 1 all have coefficients or multipliers, 4, 2, 7, and 3.
Thus 4 · 103, 2 · 102, 7 · 101, and 3 · 100 are multiples of powers of 10 and
therefore 4273 is a sum of multiples of powers of 10. Notice that the digit
3 is the remainder when 4273 is divided by 10. We will see below that the
division process enables us to express a given integer as the sum of multiples
of powers of b, where b is a positive integer bigger than 1.

For convenience, let us assume for sections 2 and 3 that b = 6. The same
procedures work no matter what the value of b is, but fixing the value of b
here makes discussion much easier. The notation 21136 is interpreted as a
sum of multiples of powers of 6, just as the 4273 was above. The subscript
6 must be attached unless we are using base 10, because 10 is the default
value of the base. Thus 21136 = 2 · 63 + 1 · 62 + 1 · 61 + 3 · 60 = 477. The
process of finding the decimal (ie, base 10) value of a number from its base
6 representation is called interpreting. Thus we interpreted 21136 as 477.
The reverse process, that of finding the base 6 representation of an integer
expressed in decimal notation is harder and more interesting. There are two
methods, (a) repeated subtraction and (b) repeated division. Each method
has some advantages over the other.

To see how to use repeated subtraction, first make a list of all the integer
powers of 6 that are not bigger than the number we are given. In the case
of 477, we need the powers 60 = 1, 61 = 6, 62 = 36, and 63 = 216. Next
repeatedly subtract the largest power of 6 that is less than or equal to the
current number (which changes during the process). So we have 477 =
216 + 261. At this point our current number becomes 261 and we repeat the
process. Then 477 = 216 + 261 = 216 + 216 + 45, and our current number
is 45. Repeating the process on 45 gives 45 = 36 + 9 and incorporating that
in the above gives 477 = 2 · 216 + 45 = 2 · 216 + 1 · 36 + 9. Continuing
this with 9 leads to 477 = 2 · 63 + 1 · 62 + 1 · 61 + 3 · 60, which is a sum
of multiples of powers of 6, just what we want. Thus 477 = 21136, just as
we saw above. Repeated subtraction has two advantages over the repeated
division method. First, it is closely related to the definition, hence it leads to
a better conceptualization. Second, it can be used in other situations when
repeated division cannot, as in the case of Fibonacci representation.

The repeated division method requires that we repeatedly divide the given
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integer by base 6 and record the remainder at each stage. First we divide
477 by 6 to get 477 ÷ 6 = 79.5. We can interpret this as 477 = 6 · 79 + 3,
so the quotient is 79 and the remainder is 3. Notice that the remainder
can never exceed 5 since in such a case the quotient would have been larger.
Next divide the quotient by 6 and record the new quotient and the remainder.
Thus 79 = 6 ·13+1. Repeat the process 13 = 6 ·2+1 and finally, 2 = 6 ·0+2.
Next write the remainders in reverse order, 2, 1, 1, and 3 to get 21136 as the
base 6 representation of 477. You’ll see why the order must be reversed in
the following example.

Example 1. Repeated Division To see why 477 = 21136, we can
repeatedly replace each quotient with its value obtained during the division
process. Thus

477 = 6 · 79 + 3

= 6(6 · 13 + 1) + 3

= 6(6(6 · 2 + 1) + 1) + 3

= 6(6 · 6 · 2 + 6 · 1 + 1) + 3

= 6 · 6 · 6 · 2 + 6 · 6 · 1 + 6 · 1 + 3

= 2 · 63 + 1 · 62 + 1 · 61 + 3 · 60

= 21136

The advantage of repeated division is that it is computationally more effi-
cient. Also, the method of justification can be applied in other situations
(synthetic division and Euclidean algorithm).

3 Repeated Multiplication and Repeated Sub-

traction

In section 2 we saw two methods (algorithms) for writing a given integer in a
base different from 10. Before we consider representing fractions, let’s review
the place value ideas in decimal notation. For example, 5.234 is, as in the
first part, a sum of multiples of powers of 10. This time, the powers have
(except one) negative exponents:

5.234 = 5 · 100 + 2 · 10−1 + 3 · 10−2 + 4 · 10−3.
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Using this interpretation as a guide, we can interpret 0.1246 similarly, as a
sum of multiples of (negative) powers of 6. Thus

0.1246 = 1 · 6−1 + 2 · 6−2 + 4 · 6−3

=
1

6
+

2

36
+

4

216
=

36 + 12 + 4

216

=
52

216
=

13

54

As in the discussion of integers, there are two methods for dealing with
numbers in the range 0 < x < 1. They are called (a) repeated subtraction
and (b) repeated multiplication. As before, each has advantages over the
other.

Example 2. Repeated Subtraction To use the method of repeated
subtraction on 13/54, first list the powers of 6 with negative integer expo-
nents:

6−1 = 1/6, 6−2 = 1/36, 6−3 = 1/216, . . . .

Find the largest of these powers of 6 and subtract it from the original number.
Thus 13/54− 1/6 = 13/54− 9/54 = 4/54 = 2/27. Therefore, 13/54 = 1/6 +
2/27. Now repeat the process on the number 2/27. Note that 1/36 = 3/108.
Thus, 2/27−1/36 = 8/108−3/108 = 5/108. Therefore, 2/27 = 1/36+5/108.
Putting this together with the arithmetic above, we have

13

54
=

1

6
+

1

36
+

1

36
+

1

54
.

Again dealing with the extra part, 1/54 − 1/216 = 4/216 − 1/216 = 3/216.
At this point we can anticipate the final arithmetic:

13

54
=

1

6
+

1

36
+

1

36
+

1

216
+

1

216
+

1

216
+

1

216
= 1 · 6−1 + 2 · 6−2 + 4 · 6−3

= 0.1246

The method of repeated multiplication is much quicker and does not
require so much fraction arithmetic.
Example 3. Repeated Multiplication To find the base 6 representation
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of 13/54, we repeatedly multiply by 6. Following each multiplication by 6,
split the result into its integer part and its fractional part:

13

54
· 6 =

13 · 6
6 · 9

=
13

9
= 1 +

4

9
.

Each integer part is a digit in the representation. Thus 13/54 = 0.1 . . .6.
Now repeat the process using the new fractional part, 4/9:

4

9
· 6 =

24

9
= 2 +

6

9
= 2 +

2

3
.

Thus 13/54 = 0.12 . . .6 . Repeating the process, 2
3
· 6 = 4 + 0. Since the

fractional part is 0, we are done (why?). Thus, 13
54

= 0.1246.
Of course, not all rational numbers have base 6 representations that ter-

minate (ie, end in all 0’s from some point on). But there is an easy way to
tell, and a great notation to use when the representation does not terminate.
Consider the problem of finding the binary representation of 1

3
. Using re-

peated multiplication, we get 1
3
· 2 = 0 + 2

3
. Then 2

3
· 2 = 1 + 1

3
. Thus we see

the same fractional part 1
3

occur again. The first two digits are 0 and 1, so we
have 1

3
= 0.01 . . .2, but we can see that the block 01 continues to recur. The

slick way to write this number 0.01010101 . . . is 0.012. When the representa-
tion repeats in blocks, the number can be regarded as the sum of an infinite
geometric series. In this case it is 2−2+2−4+2−6+ · · · . There is a formula for
finding the sum of the geometric series a+ar+ar2 +ar3 + · · · . It is a

1−r , and

this holds whenever |r| < 1. Thus 2−2 + 2−4 + 2−6 + · · · = 2−2

1−2−2 = 1/4
3/4

= 1
3
,

just as we knew.

4 Place Value with Negative Bases

In this section we study the consequences of using a negative base for arith-
metic. As we did in the previous section, we’ll pick a sample base and stick
with it throughout. You’ll see easily how to modify the ideas when other
bases are used. We’ll pick negative 4 as our base. Here we allow ourselves
the digits 0, 1, 2, 3. Let us first interpret a number written in base −4. For
example take 113.3−4. We interpret this as a sum of multiples of powers of
−4: 1 · (−4)2 + 1 · (−4)1 + 3 · (−4)0 + 3 · (−4)−1 = 16− 4 + 2− 3/4 = 13.25.
Thus, we write 13.25 = 113.3−4. The methods for finding the base negative
four representation of a positive integer are interesting. Also of interest are
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methods for finding the base −4 representation of rational numbers r satisfy-
ing 0 < r < 1. We can find the base −4 representation of 13.25 by combining
these two methods.

Incidentally, the paper on Exploding Dots, Antidots and Black Holes is
relevant here. The machine we can use is denoted −1← 4 . Its called this
because when four dots accumulate in a box, they explode, causing an anti-
dot to be formed in the next box to the left. Similarly when four antidots
accumulate, they explode to give a dot in the box to the left. This machine
can be drawn as follows:

..

.
+ . = ◦

and

◦◦◦ + ◦ = .

Example 1. Repeated Division To see why 477 = 21211−4, we can
repeatedly replace each quotient with its value obtained during the division
process. Its important to remember that the remainders cannot be negative
numbers. Thus

477 = −4 · −119 + 1

= −4(−4 · 30 + 1) + 1

= −4(−4(−4 · −7 + 2) + 1) + 1

= −4(−4(−4(−4 · 2) + 1 + 1) + 1

= −4(−4(−4(−4 · 2 + 1) + 2) + 1) + 1

= 2(−4)4 + 1(−4)3 + 2(−4)2 + (1(−4)1 + 1(−4)0

= 21211−4

Here’s how the exploding dot machine above would process the number
477. First, there would be 119 explosions that would produce 119 antidots
in the second box and one dot in the right box. Then 29 explosions would
take place, producing 29 dots in the third box and 3 antidots in the second
box. Then 7 explosions would take place to produce 7 antidots in the fourth

box with one dot left in the third box:
.◦◦◦.◦◦◦ ◦◦◦◦ The final explosion

produces:
.◦◦◦.◦◦◦.

. So, can we say that the base −4 represen-
tation of 477 is 1− 31− 31? Of course not. We can use only positive digits.

So what can we do? Try adding some dot-antidot pairs.
.◦◦◦◦

..◦◦◦◦
..

.

7



Exotic Arithmetic, 2020 Games and Representations

From here its easy: .
......

. In other words, 21211−4.
The algorithms for finding the base −4 representation of fractions is even

more interesting. My AwesomeMath student Eliot Levmore, suggested the
following algorithm, related to repeated multiplication. To find the base −4
representation of 7/20, first note that our number is positive, so it looks like
1.abcd.... That means the .abcd... has value 7/20 − 1 = −13/20. Multiply
−13/20 by -4 to get 52/20 = 13/5 = 3−2/5, so the digit a is 3. Then multiply
−2/5 by −4 to get 8/5 which we can write as 2 − 2/5. Our representation
is 1.32cd.... Now −2/5 · −4 = 8/5 again, and we can see that the digit 2
repeats. Thus 7/20 = 1.32−4. Can you prove that this is correct? Which
rational numbers less than 1 require a digit 1 in the unit’s position? Levmore
again provides the answer. To see what it is, ask yourself the question, What
is the largest rational number representable as 0.x1x2 . . .?

In algebra, you learn a method for converting a repeating decimal to a
ratio of two integers. We can do that here also. Let t = 1.32−4. Then
16t = 132.2 and 16t− t = 15t = 132.2−4−1.3−4 = 132.3 = 21/4÷15 = 7/20.
This algorithm is not perfect, however because the subtraction idea can lead
to digits larger than 3. Can you devise another method that avoids this
problem?

Here’s an idea. To find the base −4 representation of a fraction, we
repeatedly multiply by 16, and produce two digits at a time. This way we
can avoid the difficulties posed by the negative numbers.

5 Fibonacci, Factorial, and Balance-Pan Enu-

meration

Fibonacci Representation The Fibonacci numbers F1 = 1, F2 = 2, F3 =
3, F4 = 5 . . . are defined so that after the first two, every one is the sum of
the last two. In other words, F1 = 1, F2 = 2 and Fn+2 = Fn + Fn+1. Thus
the sequence is 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .. In the case of Fibonacci rep-
resentation, we need only two digits, 0 and 1. These represent the absence
or presence of the corresponding Fibonacci number. To represent a number
in Fibonacci representation, use the method of repeated subtraction.
Example 4. Fibonacci Representation To find the Fibonacci repre-
sentation of 100, find the largest Fibonacci number less than or equal to
100. Then subtract it and repeat the process. Thus 100 = 89 + 11. Thus
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100 = 89 + 11 = 89 + 8 + 3 = 1000010100f . Of course, the 1’s tell us which
Fibonacci numbers are added, and the 0’s tell us to leave out the number:
1000010100f means 1F10+0F9+0F8+0F7+0F6+1F5+0F4+1F3+0F2+0F1.
Notice that the representation 1000010100f has at least one 0 between each
pair of 1’s. Try to figure out why this is always the case this before reading
on. We’ll return to this representation later. How can we do arithmetic with
numbers represented this way? Addition is not very hard. Let’s use the
addition 87 + 31.
Example 5. Fibonacci Arithmetic In the notation we (slightly) abuse
the notation by using the coefficient 2 at times.

89 55 34 21 13 8 5 3 2 1
87 1 0 1 0 1 0 1 0 0

+31 1 0 1 0 0 1 0
1 0 2 0 2 0 1 1 0
1 0 2 0 2 1 0 0 0
1 0 2 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0

118 1 0 0 1 0 1 0 0 0 0

The addition process repeatedly makes use of the fact that the sum of two suc-
cessive Fibonacci numbers is the next one. In the representation, therefore,
you never need to have two successive 1’s. Another example might be helpful
here. How would you carry out 21 + 21? That is 1000000f + 1000000f =
2000000f = 1110000f = 10010000f = 34 + 8 = 42 Can you devise an algo-
rithm for multiplication?

Factorial Representation Here the idea is to represent each number as
a sum of multiples of factorials. The basic building blocks are the numbers
1 = 1!, 2 = 2!, 6 = 3!, 24, 120, 720, . . .. The coefficients allowed for n! are
the numbers from 1 up to n. Of course, using n + 1 as a coefficient for n!
would not be needed since (n + 1)n! = (n + 1)!. The table below lists the
representations of the first twelve positive integers. How can we find the
factorial base for a positive integer N? The answer is by repeated division.
First, divide by two and write the remainder in the rightmost position. Of
course the remainder is either 1 or 0 depending on the parity of the N . Next
divide the quotient by three, and again write down the remainder. Continue
this process until the quotient is zero.
Example 6. Repeated Division To find the Factorial representation of
N = 127 first divide by 2. The first remainder is 1, and the quotient is 63.
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Dividing 63 by three yields a quotient of 21 and a remainder of 0. Then
dividing 21 by four yields quotient 5 with remainder 1. Finally, divide by
five to get a quotient of 1 and a remainder of 0. Thus 127 = 10101!. That
is, 127 = 5! + 3! + 1!.

Arithmetic in factorial notation is not very hard. Let’s pursue addition.
Example 7. Factorial Arithmetic Consider the problem 65 + 21, which
in factorial notation is 2221! + 311! since 65 = 2 · 4! + 2 · 3! + 2 · 2! + 1 · 1!
while 21 = 3 · 3! + 1 · 2! + 1 · 1!. So

2 · 4! + 2 · 3! + 2 · 2! + 1 · 1!
+ 3 · 3! + 1 · 2! + 1 · 1!

2 · 4! + 5 · 3! + 3 · 2! + 2 · 1!

But 5 · 3! = (4 + 1) · 3! = 4 · 3! + 3! = 4! + 3!. So the sum is just
3 · 4! + 2 · 3! + 2! = 3210!.

Balance-Pan Enumeration Now let’s turn our attention to balance-
pan enumeration. Think about how you would arrange four weights on a
two-pan balance to weigh out each of the numbers from 1 to 40, and what
weights would you use for such a project. Since there are three things you
can do with each weight (put it on the left pan, the right pan, or not use it),
there are at most 34 = 81 arrangements of the four weights. One of these is
to do nothing with each weight, and for every other arrangement, there is the
opposite arrangement where each weight on the left pan is moved to the right
pan, and vice-versa. So there are just 40 possible values to be weighted with
four weights. A little playing with this leads to the possibility of using the first
four powers of 3, 30 = 1, 31 = 3, 32 = 9, and 34 = 27. We can let the digits
0, 1, and 1 mean a) don’t use the weight, b) put the weight on the left pan, and
c) put the weight on the right pan. We’ll always put the object to be weighed
in the right pan, so we will need to arrange the weights so the sum of the
weights in the left pan is at least as large as the sum of the weights in the right
pan. Now the representation 1110b = 1·33+1·32−1·31+0·30 = 27+9−3 = 33,
for example.

Example 8. Balance Pan Arithmetic
1 1 1 1
× 1 0 1
1 1 1 1

1 1 1 1 0 0
1 1 1 1 1 1

Of course, this is just a slick way to show that 22× 8 = 176.
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To do arithmetic of integers represented in balance-pan representation,
we need the addition and multiplication tables for digits, just as we learned
in third grade for decimal representation.

+ 1 0 1

1 11 1 0

0 1 0 1

1 0 1 11

× 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

Of course, the balance pan representation of a number is closely related to
its ternary representation. In fact M = (akak−1 . . . a0)b where ai ∈ {0, 1, 1} if
and only if M =

∑
i∈P 3i−

∑
i∈N 3i, where P is the set of indices i for which

ai = 1 and N is the set of indices i for which ai = 1. For yet another example,
consider the case M = 15 = 33 − 32 − 3. Then a3 = 1, a2 = 1, a1 = 1, and
a0 = 0.

6 Prime Notation

Here is perhaps the most interesting of the four methods of enumeration.
We are all well aware of the uniqueness of prime factorization of positive
integers. If we agree to write all the primes in every factorization, making
use of the fact that p0 = 1, we get a representation of positive integers.
1 = 20, 2 = 21, 3 = 3120, 4 = 22, 5 = 513020, and 6 = 3121. Now write the
list of exponents in the same order as above: 1 = 0p, 2 = 1p, 3 = 10p, 4 =
2p, 5 = 100p, and 6 = 11p. In this system, multiplication is especially easy.
For example, 12101p × 21001p = 33102p. Can you figure how we did this?

7 Static one-pile nim

The point of this section is to provide a nearly trivial example that illustrates
the ideas we encounter in the next section, and also to develop some notation.
Static one-pile nim is a counter pickup game contested by two players. The
initial number of counters, denoted by n, can change from game to game. The
maximum number of counters k that can be removed on each turn is fixed
throughout the game. The notation N4 (20) means that there are initially
n = 20 counters and that up to k = 4 counters can be removed on each
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turn. The winner, as in all the games we discuss here, is the last player
to make a move (i.e., the player who takes the last counter). The games
Nk (n) of static one pile nim are completely understood. They are among
the simplest of combinatorial games. Chess , checkers , tic-tac-toe, and go are
more complicated examples. The ‘solution’ of N4 (20) is obtained by first
noting that there are 21 “positions” in the game, represented by the integers
0, 1, 2, · · · , 20. We call 20 the initial position and 0 the terminal position of
N4 (20). The sequence of positions 20 7→ 18 7→ 15 7→ 14 7→ 10 7→ 9 7→ 5 7→
2 7→ 0, such that for each x 7→ y a pile of size y is obtainable from a pile of
size x, is called a ‘play’ of the game. Notice that there are eight moves in
this play of the game. Since eight is an even number, the second player wins
this game. In fact any such game with an even number of moves is won by
the second player, and those plays of the game with an odd number of moves
are won by the first player. Thus, the issue is whether the first player can
play in such a way as to force the game to have an odd number of moves.
Alternatively, the second player would like to force the game to end after an
even number of moves.

One approach to solving counter pickup games like these is to find a
handy representation for the pile sizes and an easily understood method for
finding optimal moves. The following example illustrates the idea.
Example 9. Consider the game N4 (20) again. Notice that each number
l = 0, 1, 2, · · · , 20 can be represented in the form l = 5t+u where l is the size
of the pile and 0 ≤ t ≤ 4 and 0 ≤ u ≤ 4. With this in mind, for example, we
could write 17 = 5 · t + u = 5 · 3 + 2, or 32(three 5’s and two 1’s) or 111 :.
(The final dot is a ‘period’.) The numbers 5 through 13 can be written using
this notation as follows:
5 = 1 (1 summand); 6 = 1 · (2 summands); 7 = 1 : (2 summands); 8 =

1
... (2 summands); 9 = 1 :: (2 summands); 10 = 11 (2 summands); 11 = 11 ·

(3 summands); 12 = 11 : (3 summands) and 13 = 11
... (3 summands). Each

1(representing 5) is a summand and each set of dots ·, :, ..., :: is a summand.
With this understanding, it is easy to see that a move from the position

20 = 1111 cannot reduce the number of summands. This is true because
each of the representations for 19, 18, 17 and 16 has four summands, just
as 20 does. Denote the set of relevant multiples of five by S. Thus S =
{0, 5, 10, 15, 20}. Let U denote the rest of the attainable positions. Now it
is easy to see that each move from a position in S results in a position in
U . On the other hand, from each position p in U there is some move that
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reduces the number of summands, for example: 111 :7→ 111. In other words,
a player confronted with a pile size of 5, 10, 15, or 20 cannot reduce the
number of summands, but a player confronted with a pile size that is not a
multiple of 5 (all the other positions) can reduce the number of summands.
Delightfully, the positions (pile sizes) are divided into two subsets S and U
(called safe and unsafe) so that the following diagram describes the moves.
Here we are going to use the notation O for oasis position instead of safe and
poison position P instead of unsafe U .
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S
0, the terminal position

U

Every Move

Some Move

Fig. 1

These are

bad moves

In the game N4 (20) , S = {0, 5, 10, 15, 20} and U = {1, 2, 3, 4, 6, 7, · · · }.
Note that each move from U to S reduces the number of summands in the
representation, whereas none of the moves from positions of S reduce the
number of summands. Notice also that if a player is able to make such a
summand-reducing move, he can continue to make such moves on succeeding
turns.

The S vs U classification of the positions is the classic method for solv-
ing combinatorial games. Our main contribution is to note that in certain
dynamic games, there is a representation of the pile size (we call these g-
base representations) for which one of the players can repeatedly reduce/not
increase the number of summands while the opposing player cannot re-
duce/must increase the number of summands.

8 Dynamic Nim

We finally come to the application part of the handout. Two players are
engaged in a single pile game of Nim in which the number of counters that
can be removed varies during the play of the game. The rules for this game
specify a function f , called the move function, that is used to determine
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the maximum number of counters that can be removed as a function of the
number removed on the previous move. The winner is the last player to make
a move. Dynamic one-pile nim with move function f and staring pile size n
is denoted Nf (n).

We focus here on the two games Ni(n) and Nd(n) where i is the identity
function and d is the doubling function. The positions in the game are
ordered pairs (t, k) where t is the pile size and k is the maximum number of
counters that can be removed on the next turn. A move is an ordered pair
of positions (t, k) 7→ (t − r, f(r)), where r ≤ k. The position (t − r, f(r))
results from taking r counters from the pile of t counters.

Let’s play Ni(100) first. So make 100 marks on your paper, decide which
player moves first and let them choose some number of markers less than 100.
The second player can then take only as many as was taken on the previous
play. Suppose the first player takes 1 counter. Then the rest of the moves
are completely determined, and the second player will continue to move to
the positions with an even number of counters, including (eventually) the
zero position. So the first player must not take 1. Suppose he takes an odd
number of counters. Then the second player can take 1 counter, and we are
back to the same situation as above, a win for the second player. Thus, the
first player must take an even number of counters and, by the same reasoning,
each move after that should also be an even number of counters. Hence, we
may as well assume that the counters are glued together in pairs, and that
we start with only 50 pairs. Applying the same reasoning, the first player
cannot take just 1 of these pairs. In fact he must take an even number, and
so must the second player. Hence we may as well be playing the game Ni(25)
with counters that are glued together in bunches of four. Now there is a move
for the first player that clearly wins: he must take one bunch of four. This
translates into the move (100, 99) 7→ (96, i(4)) = (96, 4). The number 99 in
the move above is arbitrary. It simply means that player 1 cannot win on the
first move. This gluing ideas brings to mind the possibility of using binary
notation. Suppose we’re playing Ni(100) and the first player can take up to
10 counters. Then we denote the first position (100, 10). Write 100 in binary
form to get 26 + 25 + 22 = 11001002 (three summands). Thus one move the
first player can make is to (11000002, 4), by taking 4 counters, reducing the
number of summands from three to two. Note that the next player cannot
reduce the number of summands. In fact, the next move results in 95, 94, 93,
or 92 counters, and all these have binary representations with at least five
summands, the least value of which is either 1 or 2. Thus, the first player

14



Exotic Arithmetic, 2020 Games and Representations

can again reduce the number of summands, and following that, the second
player cannot. We can use the following theorem to play this game. An
easy-to-remember rule for winning Ni(n) is to remove the largest power of 2
that divides the pile size.

Theorem 1. Consider the game Ni(n) where n = elel−1 · · · e0 =

j=l∑
j=0

ej ·2j

be the binary representation of the pile size n. Then the first player has a
winning move from the position (n, k) if and only if 2t ≤ k where et = 1 and
for all j < t, ej = 0. In other words, if the player can reduce the number
of summands in the binary representation of n, then he can win. If not, he
can’t win.

The second example Nd (100; 10) is a game we call Fibonacci Nim. The
subscript d in this case means doubling , the 100 is the number of counters at
the start and 10 is the maximum size of the first move. This dynamic one pile
nim is of the type (a) where the size of a move is determined by the size of the
previous move. Here we allow a player to take as many as twice the number
taken on the previous move, thus the ”doubling function”. The best way to
denote a position in this game is as an ordered pair (n, k) where n is the
size of pile and k is the maximum number of counters that can be removed
on the next turn. Thus (100, 10) 7→ (92, 16) means that the first player
removed 8 counters, thus allowing the second player to remove up to 2× 8 =
16 counters. Incredibly, this doubling game Nd (n, k) can be solved using
Fibonacci representation. The number 100 has been represented as the sum of
three Fibonacci numbers. If the first player removes 3 counters, (100, 10) 7→
(97, 6) the number of summands has been reduced to two (97 = 89 + 8). Note
that the second player can remove no more than 6, so that player cannot
reduce the number of summands. In our paper [?], we prove that once a
player in the game Nd (n, k) has been able to reduce the number of summands
(Fibonacci numbers), he will be able to do this repeatedly on all future turns.
Thus the game might go as follows: (100, 10) 7→ (97, 6) = (89 + 8, 6) 7→
(89 + 4, 8) 7→ (89, 8) 7→ (81, 16) = (55 + 21 + 5, 16) 7→ (55 + 21, 10) 7→ . . . .
Note that each odd move beginning with the first one reduces the number of
summands.

Just as one can express every position integer as a sum of distinct powers
of 2, one can also write every such number as a sum of Fibonacci numbers.
The method of repeated subtraction we discussed in section 1 works nicely.
Pick the largest Fibonacci number not exceeding the given integer, then
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subtract the Fibonacci number and continue the process with the difference.
For example, to write 100 in Fibonacci, list the Fibonacci numbers up to 100:
{1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .}. Then subtract the largest member of the
list from 100. So, we have 100 = 89 + 11 and we continue the process with
the obtained differences: 100 = 89 + 11 = 89 + 8 + 3 which we could write as
1·89+0·55+0·34+0·21+0·13+1·8+0·5+1·3+0·2+0·1 = 1000010100f . The
winning strategy for Nd(n) is analogous to the winning strategy for Ni(n),
and is given by Theorem 2.

Theorem 2. Consider the game Nd(n) where n =

j=l∑
j=1

ej · Fj, where

F1 = 1, F2 = 2, . . . , is the sequence of Fibonacci numbers. In other words,
elel−1

· · · e1 is the Fibonacci representation of n. Then the next player has a
winning move from the position (n, k) if and only if Ft ≤ k where et = 1 and
for all j < t, ej = 0. In other words, if the player can reduce the number of
summands in the Fibonacci representation of n, then he can win. If not, he
can’t win.

For proofs of these theorems, see the paper Dynamic One-Pile Nim, with
Arthur Holshouser and James Rudzinski, in The Fibonacci Quarterly, a copy
of which can be found at

http://www.math.uncc.edu/~hbreiter/dynamic.pdf
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