- 1. Two hundred coins are identical except that their weights are an integer number of ounces, 1, 2, 3, ..., 200. An integer set of weights $W = \{w_1, w_2, ..., w_k\}$ is required to be used with a two-pan balance so that if you were given just one coin c from the set, you could determine its weight using just c and W. The number of times the balance need be used for any coin is immaterial. What is the size of the smallest set of weights?
- 2. What is the cardinality of the smallest set of positive integers P such that for each integer $n, 1 \le n \le 200$, it is possible to find two disjoint subsets A, B of P such that n = S(A) S(B), where S(X) denotes the sum of the members of the set X.
- 3. The columns in the table provide the representation of the numbers from 1 to 12 for the systems of enumeration discussed above. Of course, the entries in column A are decimal representations.

A	B	С	D	Ε	F
1	1	1	1	1	0
2	2	10	10	$1\overline{1}$	1
3	120	100	11	10	10
4	121	101	20	11	2
5	122	1000	21	$1\overline{11}$	100
6	110	1001	100	$1\overline{1}0$	11
7	111	1010	101	$1\overline{1}1$	1000
8	112	10000	110	$10\overline{1}$	3
9	100	10001	111	100	20
10	101	10010	120	101	101
11	102	10100	121	$11\overline{1}$	10000
12	220	10101	200	110	12

Binary numbering

	16	8	4	2	1		32	16	8	4	2	1
0						32						
1						33						
2						34						
3						35						
4						36						
5						37						
6						38						
7						39						
8						40						
9						41						
10						42						
11						43						
12						44						
13						45						
14						46						
15						47						
16						48						
17						49						
18						50						
19	1	0	0	1	1	51						
20						52						
21						53						
22						54						
23						55						
24						56						
25						57						
26						58						
27						59						
28						60						
29						61						
30						62						
31						63						

- 5. Notice that the only digits needed to write the real numbers in base 6 are 0, 1, 2, 3, 4 and 5.
 - (a) Explain why, using the repeated subtraction method, it can never happen that a power of 6 is subtracted more than 5 times.
 - (b) Explain why, using the repeated division method, it can never happen that the remainder is more than 5.
 - (c) Explain why, using the repeated multiplication method, it can never happen that the integer part is more than 5.
- 6. Choose a four-digit base 6 number <u>*abcd*</u>₆. Of course the digits a, b, c and d are all in the range $0, 1, 2, \ldots, 5$, and $a \neq 0$.
 - (a) Interpret $abcd_6$ to get its decimal equivalent.
 - (b) Next use repeated subtraction to find the base 6 representation of the decimal you obtained in part (a).
 - (c) Finally, use repeated division on the number obtained in part (a) to get the base 6 representation in a different way.
- 7. For each of the integers in the first column, use repeated division or repeated subtraction to find the base 2, base 4 and base 8 representations.

n	base 2	base 4	base 8
104	1101000	1220	150
105			
106			
107			
108			
109			
110			
111			
112			

- 8. Devise a method to find the base 8 and base 4 representations of a number based on its binary (i.e., base 2) representation without converting first to decimal.
- 9. Devise a method to find the binary representation given its quartic (i.e., base 4) representation without converting first to decimal.
- 10. Devise a method to find the binary representation given its octal (i.e., base 8) representation without converting first to decimal.

- 11. Find nonzero digits a, b, c, and d such that $343 \cdot a + 49 \cdot b + 7 \cdot c + d = 2007$. Hint: Is the left side a sum of multiples of powers of 7?
- 12. In this problem, we explore representation of integers in a negative base. For convenience, we use b = -6. Use repeated division to find the base -6 representation of the number 2004. Division by -6 requires some extra care. The crucial observation is that the remainders must always be in the range 0 to 5, just as in the base 6 case. Next see if repeated subtraction works as it did for positive bases.
- 13. Choose a four-digit base 6 number \underline{abcd}_6 . Of course the digits a, b, c and d are all in the range $0, 1, 2, \ldots, 5$, and $a \neq 0$.
 - (a) Interpret $.abcd_6$ to get its decimal equivalent.
 - (b) Next use repeated subtraction to find the base 6 representation of the decimal you obtained in part (a).
 - (c) Finally, use repeated multiplication on the number obtained in part (a) to get the base 6 representation in a different way.
- 14. Find nonnegative integers a, b, c, and d all less than 6 such that

$$\frac{a}{6} + \frac{b}{36} + \frac{c}{216} + \frac{d}{1296} = \frac{437}{1296}.$$

15. For each of the fractions in the first column, use repeated multiplication or repeated subtraction to find the base 2, base 4 and base 8 representations.

n	base 2	base 4	base 8
$\frac{1}{3}$	$.\overline{01}_2$	$0.\overline{1}_4$	$0.\overline{25}_8$
$\frac{1}{4}$			
$\frac{1}{5}$			
$\frac{2}{7}$			
$\frac{3}{8}$			
$\frac{6}{17}$			