
44 APRIL 2001 Embedded Systems Programming

f
e

a
t

u
r

e

J O E L E M I E U X

ne advantage of using a high-level language
is the native support of floating-point math.
This simplifies the task of programming and
increases the accuracy of calculations.
When used in a system that includes a hard-
ware floating-point math unit, this can be a

very powerful feature. However, if floating-point math is
used on a microprocessor that supports only integer math,
significant overhead can be incurred to emulate floating
point, both in ROM size and in execution time. The alter-
native, used by assembly language programmers for years, is
to use fixed-point math that is executed using integer func-
tions. This article will discuss a method to implement fixed-
point math in C.

Fixed-point math typically takes the form of a larger inte-
ger number, for instance 16 bits, where the most significant
eight bits are the integer part and the least significant eight
bits are the fractional part. Through the simple use of inte-
ger operations, the math can be efficiently performed with
very little loss of accuracy. Unfortunately, C does not provide

native support for fixed-point math. The method presented
in this article is essentially the same as in assembly language
and is described in the following steps.

Initialization
The first step in the fixed-point math algorithm is to ini-
tialize the system. This step defines the parameters used
later in the development of the system. To illustrate each
step, assume that your application requires a variable
that ranges from 0 to 1 with a granularity of 0.01, anoth-
er variable family that ranges from 0 to 100 with a gran-
ularity of 0.1, and a third variable family that ranges
from –1,000 to 1,000 with a granularity of 0.01. The steps
are performed as follows.

First, determine the maximum absolute value M that you
wish to calculate for each class of fixed-point variable. The
value of M for each example requirement is 1, 100, and
1,000, respectively.

Second, calculate the number of bits x required to store
this number such that 2x ≥ M ≥ 2x–1. If the number is to be

Fixed-Point
Math in C
Floating-point arithmetic can be expensive if you’re using an integer-only
processor. But floating-point values can be manipulated as integers, as
a less expensive alternative.

O

Embedded Systems Programming APRIL 2001 45

signed, add 1 to x. For our example
requirements, x is 1, 7, and 11,
respectively.

Then, determine the granularity G
that is required. The example require-
ments define the granularity and no
further calculation is needed.

Next, calculate the number of bits y
required to provide this granularity
such that 1/2y ≤ G ≤ 1/2y–1. For our
example requirements, this is 7
(1/128 = .0078125), 4 (1/16 = .0625),
and 7.

Finally, the minimum number of
bits required is x+y. Round this sum up
to either 8, 16, or 32. This sum will be
referred to later as the FULLSIZEINT.
If this sum is greater than the maxi-
mum integer size in your system, then
floating-point numbers are required
and will probably be more efficient.
The results for our example require-
ments for all the initial parameters are
shown in Table 1. The resultant
columns show the actual ranges and
granularity available after the bit
requirements are complete.

Definition
The second step in the algorithm is to
create the definitions for C that are
required to implement the variables.
This consists of typedefs and macros,
with the possibility that a function may
need to be developed.

Typedef
Definition of the fixed-point algo-
rithm requires a typedef for each
fixed-point variable type that will be
used by the system. This typedef is a
union with an embedded structure as
follows. The structure assumes that
the compiler assigns the bits in an
integer from most significant to least
significant. If this is not the case,
reverse the declaration of the struc-
ture members integer and fraction in

the structure. This typedef is not
portable, and is best put in a unique
header file:

typedef union FIXEDX_Ytag {

FULLSIZEINT full;

struct partX_Ytag {

FULLSIZEINT integer: x;

FULLSIZEINT fraction:

FULLSIZEINT-x;

} part;

} FIXEDX_Y;

FULLSIZEINT is either long, int,
short, or char and either signed or
unsigned and cannot be longer than

the maximum length integer avail-
able, or the structure will not work. If
FULLSIZEINT is longer than this
maximum, then floating point needs
to be used.

Notice that the fractional portion
of the structure is calculated as FULL-
SIZEINT-x, instead of using y as the
size of the member. Since a complete
integer is available, I have chosen to
increase the granularity of the system
in order to decrease the error of the
calculations. In your application, you
may wish to increase the integer mem-
ber in order to provide a method to
check for math overflow.

Macros
After the typedefs have been declared,
macros need to be defined. Substitute
the actual value for the equations

using X and Y in each of the following
macros.

Define a macro to convert a value
into the fixed-point variable. A is the
integer part and B is the decimal part,
expressed as normal decimal. These
values must be hard-coded constants
so the preprocessor and compiler can
completely resolve the macro into an
integer. If either A or B are variables,
then the macro will actually generate
floating-point code and eliminate the
savings of this algorithm. Check the
results of the compile in the listing to
make sure that the compiler func-
tioned properly. (To do this, you must

have the compiler interlace the assem-
bly code with the C statements.)

#define FIXEDX_YCONST(A,B) (FULL-

SIZEINT)((A<<Y) + ((B +

1/(2̂ (Y+1)))*2̂ Y))

Define macros to perform multipli-
cation and division of the fixed-point
variables:

#define MULTX_Y(A,B) (FULL-

SIZEINT+1)(A.full*B.full+

2̂ (Y-1))>>Y

#define DIVX_Y(A,B) (FULL-

SIZEINT+1)((A.full<<Y+1)/

B.full)+1)/2

where FULLSIZEINT+1 is the next
largest integer over X+Y. If FULL-
SIZEINT is the largest available inte-

If floating-point math is used on a microprocessor that supports only

integer math, significant overhead can be incurred to emulate

floating point, both in ROM size and in execution time.

R
U

P
E

R
T

A

D
L

E
Y

/
S

K
E

L
E

T
O

N

S
T

O
O

D
I

O
S

TABLE 1 Example initialization results

No. Range M x Resultant Granularity y Resultant Number
range granularity of bits

required
1 0–1 1 1 0–1 0.01 7 0.0078125 8
2 0–100 100 7 0–127 0.1 4 0.0625 16
3 -1000– 1000 11 -1024–1023 0.01 7 0.0078125 32

1000

ger, then either floating point must be
used, or a subroutine is required for
multiply and divide.

Listing 1 shows the definitions for
one of our example requirements sets.
In this file, I first define the integer
typedefs so the code that is written is
portable. Next, the typedefs and
macros are defined.

Listing 2 shows the multiply and
divide routines used for the 32-bit
example, assuming that a 64-bit inte-
ger is not available in the system,
since that cannot be done in a macro.
Notice that in the divide routine, I
am using a floating-point number for
the calculation. If your system
requires division, the amount of
memory used cannot be reduced this
way, but the add, subtract, compare,
and multiply routines will still exe-
cute faster than the comparable float-
ing-point routines.

Usage
When using the fixed-point variables
in an application, first declare vari-
ables using the new typedef. Next, use
the new variables in the application as
defined in the following paragraphs.

When adding, subtracting, or per-
forming logical comparisons on two
variables with the same-resolution
fixed-point numbers, use the .full
portion of the union and perform
straight integer arithmetic. Listing 3
shows a small routine that performs
each operation and prints the result
for the number of type FIXED1_7. In
this routine, the numbers are added
and the result is printed to the display.
A set of comparisons are then done to
determine if a subtraction would
work, and if so, the subtraction is per-
formed and the results written to the
display. If a subtraction would result
in an unsigned underflow, an error is
displayed.

When adding, subtracting, or
performing logical comparisons on
two variables with different-resolu-
tion fixed-point numbers, first scale
the different resolution number to
the same resolution as the result.

46 APRIL 2001 Embedded Systems Programming

fixed-point m
ath

LISTING 2 Multiply and divide for 32-bit variables

int MULT11_21(FIXED11_21 a, FIXED11_21 b)
{

int temp,result;
char sign = 0;

if (a.full < 0)
{
sign = 1;
a.full = -a.full;

}
if (b.full < 0)
{
sign̂ = 1;
b.full = -b.full;

}

result = (((a.full & 0x0000FFFF) * (b.full & 0x0000FFFF))+1048576)>>21;
result = result + ((((a.full>>16) * (b.full & 0x0000FFFF))+16)>>5);
result = result + ((((b.full>>16) * (a.full & 0x0000FFFF))+16)>>5);
temp = (a.full>>16) * (b.full>>16);
result = result + (temp<<11);
return (result * -sign);

}

int DIV11_21(FIXED11_21 a, FIXED11_21 b)
{

double temp;
FIXED11_21 result;
unsigned char sign = 0;

temp = (double)a.full/(double)b.full;
if (temp<0)
{
temp = -temp;
sign = 1;

}
result.part.integer = temp;
result.part.fraction = ((temp-result.part.integer)*4194304 + 1)/2;
result.part.integer *= -sign;
return (result.full);

}

LISTING 1 Example typedef and macros

* Range 0-1.9921875
* Granularity 0.0078125

typedef union FIXED1_7tag {
unsigned char full;
struct part1_7tag {
unsigned char fraction: 7;
unsigned char integer: 1;

} part;
} FIXED1_7;

#define FIXED1_7CONST(A,B) (unsigned char)((A<<7) + ((B + 0.00390625)*128))
#define MULT1_7(A,B) (unsigned short)(A.full*B.full+64)>>7
#define DIV1_7(A,B)(unsigned short)((A.full<<8)/B.full)+1)/2

Listing 4 shows a small routine that
performs some mixed operations
and prints the results. This routine
performs the same function as
Listing 3.

When multiplying or dividing vari-
ables of the same-resolution fixed-
point numbers, use the macros previ-
ously defined. Listing 5 shows a small
routine that performs each operation
and prints the result. This routine sim-
ply performs the multiply and divide
without checking, then displays the
results. With multiply and divide, you
cannot pass the full value, so you must
pass the structure name.

When multiplying or dividing vari-
ables of different-resolution fixed-
point numbers, use the same macro as
the result and scale the operands as
with addition and subtraction. Listing
6 shows a small routine that performs
an operation like this and prints the
results.

The value can be displayed using
the integer and fractional portions of
the structure.

Words of caution
When these algorithms are imple-
mented, a few areas of caution need to
be addressed. If they aren’t, erroneous
results may be obtained.

The C language does not check
integer arithmetic for overflows or
underflows. The programmer must
take care to either prevent or check
for these conditions. This is usually
accomplished by using a subroutine,
possibly in assembly language, for
each math operation and checking
the limits. However, it can also be
accomplished by adding bits to the
integer portion, and limiting to a
smaller number after each math
operation.

The compiler may perform signed
integer arithmetic in a subroutine
and may not provide a tremendous
benefit.

A rounding error may be injected
in the result due to the value of the
least significant bit. Since the expec-
tation is an LSB of 0.1, and in fact

48 APRIL 2001 Embedded Systems Programming

fixed-point m
ath

LISTING 3 Simple math on same granularity variables

void Test1_7(FIXED1_7 a, FIXED1_7 b)

{

FIXED1_7 temp;

printf(“Results of operations on 1_7 variables\n”);

temp.full = a.full + b.full;

printf(“Addition result is %d.%2.2d\n”, temp.part.integer,

(temp.part.fraction*100+64)/128);

if (a.full < b.full)

{

printf(“a is less than b. Subtraction overflows.\n”);

}

if (a.full == b.full)

{

printf(“a is the same as b. Result = 0.\n”);

}

if (a.full > b.full)

{

temp.full = a.full - b.full;

printf(“Subtraction result is %d.%2.2d\n”, temp.part.integer,

(temp.part.fraction*100+64)/128);

}

}

LISTING 4 Simple math on different granularity variables

void Test7_9(FIXED7_9 a, FIXED1_7 b)

{

FIXED7_9 temp;

printf(“\nResults of operations on 7_9 and 1_7 variables\n”);

temp.full = a.full + (b.full<<2);

printf(“Addition result is %d.%1.1d\n”, temp.part.integer,

(temp.part.fraction*10+256)/512);

if (a.full < (b.full<<2))

{

printf(“a is less than b. Subtraction overflows.\n”);

}

if (a.full == (b.full<<2))

{

printf(“a is the same as b. Result = 0.\n”);

}

if (a.full > (b.full<<2))

{

temp.full = a.full - (b.full<<2);

printf(“Subtraction result is %d.%1.1d\n”, temp.part.integer,

(temp.part.fraction*10+256)/512);

}

}

the value is something less, an error
of ±1 LSB is injected that can com-
pound during mathematical opera-
tions. For example, using our
FIXED1_7 example, 0.02 is repre-
sented as a full number of 3, and
0.06 is represented as a full number
of 8. The sum should be 0.08, or a
full number of 10. The actual result
is 11, which is closer to 0.09. To limit
this error, use a larger number such
as 16 bits, and increase the granular-
ity from 7 bits to 15 bits.

Fixed-point math provides a
small, fast alternative to floating-
point numbers in situations where
small rounding errors are accept-
able. After implementing the algo-

rithms described in this article, your
application will be able to harness
the power of C and still retain the
efficiency of assembly.

All examples in this article were test-
ed using Microsoft Visual C++ v. 4.0
Standard edition. The source code for
the test files can be found on the web at
www.embedded.com/code.htm. esp

Joseph Lemieux is a senior applied special-
ist with EDS Embedded Solutions in Troy,
MI. He holds an MS in electrical engineer-
ing from the University of Michigan and
has been writing software for embedded sys-
tems in the automotive industry for over 17
years. He can be reached by e-mail at
joe.lemieux@eds.com.

50 APRIL 2001 Embedded Systems Programming

fixed-point m
ath

LISTING 5 Multiplication and division on same granularity variables

void Test7_9_X(FIXED7_9 a, FIXED7_9 b)

{

FIXED7_9 temp;

printf(“\nResults of multiply and divide on 7_9 variables.\n”);

temp.full = MULT7_9(a,b);

printf(“Multiply result is %d.%1.1d\n”, temp.part.integer,

(temp.part.fraction*10+256)/512);

temp.full = DIV7_9(a,b);

printf(“Divide result is %d.%1.1d\n”, temp.part.integer,

(temp.part.fraction*10+256)/512);

}

LISTING 6 Multiplication and division on different granularity

void Test11_21(FIXED11_21 a, FIXED7_9 b)

{

FIXED11_21 temp;

printf(“\nResults of multiply and divide on 11_21 and 7_9 variables.\n”);

temp.full = b.full << 12;

temp.full = MULT11_21(a,temp);

printf(“Multiply result is %d.%2.2d\n”, temp.part.integer,

(temp.part.fraction*100+1048576)/2097152);

temp.full = b.full << 12;

temp.full = DIV11_21(a,temp);

printf(“Divide result is %d.%2.2d\n”, temp.part.integer,

(temp.part.fraction*100+1048576)/2097152);

}

	return:

