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Abstract—A gossip network is considered in which a source
node updates its status while other nodes in the network aim
at keeping track of it as it varies over time. Information gets
disseminated by the source sending status updates to the nodes,
and the nodes gossiping with each other. In addition, the nodes
in the network are mobile, and can move to other nodes to
get information, which we term contact mobility. The goal for
the nodes is to remain as fresh as possible, i.e., to have the
same information as the source’s. To evaluate the freshness of
information, we use the Version Age-of-Information (VAoI) met-
ric, defined as the difference between the version of information
available at a given node and that at the source. We analyze
the effect of contact mobility on information dissemination in
the gossip network using a Stochastic Hybrid System (SHS)
framework for different topologies and mobility scalings with
increasing number of nodes. It is shown that with the presence
of contact mobility the freshness of the network improves in both
ends of the network connectivity spectrum: disconnected and
fully connected gossip networks. We mathematically analyze the
average version age scalings and validate our theoretical results
via simulations. Finally, we incorporate the cost of mobility for
the network by formulating and solving an optimization problem
that minimizes a weighted sum of version age and mobility cost.
Our results show that contact mobility, with optimized mobility
cost, improves the average version age in the network.

I. INTRODUCTION

Real-time status updating systems need to transmit time-
sensitive information in order to make real-time inference.
Information freshness is crucial for successful operations in
autonomous vehicular systems [1], wireless networks [2],
Unmanned Aerial Vehichles (UAVs) and Internet of Things
(IoT) networks [3] and many other emerging applications
which can be modeled as gossip networks.

Timeliness and information freshness are usually quantified
using the Age-of-Information (AoI) metric [4], which has
found widespread usage in different systems [5]. A variant of
AoI, Version Age-of-Information (VAoI) [6], keeps track of the
version of the source’s information to quantify age. VAoI has
been the main metric to quantify freshness in gossip networks
using Stochastic Hybrid System (SHS) frameworks [7]–[10],
with other works studying it using methods other than SHS
[11]–[13]. Our motivation to incorporate and analyze mobility
in gossip networks stems from the fact that mobility is well
known to improve performance in ad-hoc networks [14], where
the information transmission between source-destination (S-D)
pairs using mobile intermediate relays is shown to enhance
performance. It has been shown that mobility can improve

Fig. 1. (a) A disconnected network without contact mobility. (b) A discon-
nected network with contact mobility. Nodes can come in contact with other
nodes in the network (orange) or the source node (red). The arrows indicate
direct updates from the source to nodes; if the network is not disconnected,
there would be update links between nodes as well.

freshness and timeliness in wireless networks in a similar S-D
pair setting [15]. In the gossip network we model and work
with, there is a single source node and n destination nodes.
We expect mobility to significantly improve freshness in such
network model as well.

In fact, the effect of mobility in gossip networks has been
studied in [16] where the nodes in a gossip network exchange
their positions pairwise according to a Poisson process. We
term this exchange mobility where ages of nodes switch
based on position exchange. To show the effect of mobility
scaling on the network, the mobility rate is parametrized as
λm = λ

f(n) where λ is the update rate from the source and
f(n) models how mobility rate decays with n. The study
shows that exchange mobility lowers age and enhances its
scaling properties in disconnected networks. However, in fully
connected networks the results show that the system does not
benefit from exchange mobility.

In this paper, we ask the following question: instead of
the nodes exchanging positions in the gossip network, what if
nodes meet and exchange information, and update their VAoI
accordignly? We term this model of mobility contact mobility,
see Fig. 1. In contrast to the exchange mobility model, we
no longer assume nodes exchange positions according to a
Poisson process, rather we assume they meet each other
according to one and retain the minimum age. We first derive
equations of age in the network with contact mobility of nodes
included and then we bound the age with different scalings of
mobility (i.e., f(n)) with increasing number of nodes n. We
also incorporate the cost of mobility into the framework and



formulate an optimization problem to characterize the trade-off
between age and cost mobility. Our results show that contact
mobility always helps in decreasing the age of nodes, even if
the network is fully connected.

II. SYSTEM MODEL

Consider a gossip network comprised of a source commu-
nicating with n nodes. The source updates itself (receives a
new information version) according to a Poisson process of
rate λe. Let N = {1, 2, . . . , n} denote the set of nodes in the
network, and let the source node be denoted by 0. The source
pushes updates to node j ∈ N according to a Poisson process
of rate λ0j . In addition, nodes exchange information via two
mechanisms. First, node i ∈ N can gossip with another node
j ∈ N , j ̸= i, according to a Poisson process of rate λij ,
provided they have a connection in the network topology.
Second, nodes have contact mobility; a node i ∈ {0}∪N can
move to another node j, j ̸= i, according to a Poisson process
of rate λm{i,j}, and upon meeting they share their information
with each other. All four kinds of Poisson processes (source
self-updates, source-to-nodes updates, nodes’ gossiping and
contact mobility) are assumed to be independent.

Let Ns(t) and Ni(t) denote the information version avail-
able at the source node and at node i ∈ N , respectively. We
define the Version Age-of-Information (VAoI), or merely age,
at node i as

∆i(t) = Ns(t)−Ni(t). (1)

Thus, when node i receives an update from the source directly
at time t, its age resets to zero at t+. Whereas when it receives
a gossip update from node j its age updates as the minimum
of its own age and that of node j. On the other hand, when
nodes i and j undergo contact mobility, both their ages are
updated as

∆i(t
+) = ∆j(t

+) = min{∆i(t), ∆j(t)}. (2)

For any subset S ⊆ N , let N(S) denote the set of nodes
that can send gossip updates into S, and M(S) denote the set
of nodes that can meet nodes in S via contact mobility. In
this work, we focus on the case in which the network has full
mobility, where for every singleton S = {i} we have∣∣M({i}) ∪ {i}

∣∣ = n, (3)

where | · | denotes cardinality. This condition implies that any
node in the network can come in contact with any other node.

III. SHS FRAMEWORK & MAIN RESULTS

We utilize the Stochastic Hybrid Systems (SHS) framework
[17] and follow the same framework and steps as in [6] to
derive the average version age ṽS of a subset S of nodes in
the network.

The transitions in the system are described by a transition
map L which is defined as

L = {(0, 0, u)}
∪ {(0, j, u) : j ∈ N}
∪ {(i, j, g) : i, j ∈ N , i ̸= j}
∪ {(i, j,m) : i, j ∈ {0} ∪ N , i ̸= j}. (4)

From the transition map L, there are four types of transitions.
First, the source can update itself, denoted as (0, 0, u). Second,
the source can send an update to a node j, represented by
(0, j, u). Third, gossiping between two nodes i and j is denoted
by (i, j, g). Finally, contact mobility between any two nodes i
and j is represented by (i, j,m). The transition rates for each
event type (i, j, k) ∈ L are given by

λi,j,k =



λe, i = 0, j = 0, k = u,

λ0j , i = 0, j ∈ N , k = u,

λij , i, j ∈ N , i ̸= j, k = g,

λm{i,j}, {i, j} ⊆ {0} ∪ N , i ̸= j, k = m.

(5)

Here, λm{i,j} denotes the pairwise mobility rate between nodes
i and j.

The state at time t is X(t) = [X1(t), . . . , Xn(t)], where
Xi(t) is the version age of node i ∈ N . For a transition
(i, j, k) ∈ L, the post-transition state ϕi,j,k(X(t)) has the
following values for its lth component:

X ′
l =



Xl + 1, if i = 0, j = 0, k = u,

0, if i = 0, j = l, k = u,

min{Xl, Xi}, if j = l, k = g,

min{Xi, Xj}, for l ∈ {i, j}, k = m,

Xl, otherwise.

(6)

We apply the extended generator of SHS to compute the
dynamics. Let

ψS(X(t)) = min
i∈S

Xi(t).

The extended generator is

(LψS)(X(t)) =
∑

(i,j,k)∈L

[
ψS(ϕi,j,k(X(t)))−ψS(X(t))

]
λi,j,k.

(7)
By Dynkin’s formula, we have

d

dt
E[ψS(X(t))] = E

[
LψS(X(t))

]
. (8)
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Fig. 2. Theoretical and simulated values of average version age of a single
node ṽ1 with f(n) = n in DC and FC networks.

At steady state, the left-hand side is zero. Substituting the
expectation of the extended generator and letting t → ∞,
yields

0 = λe
(
(ṽS + 1)− ṽS

)
+
∑
i∈S

[
λ0i + λm{0,i}

]
(0− ṽS)

+
∑

i∈N(S)

∑
j∈S

λij (ṽS∪{i} − ṽS)

+
∑

i∈M(S)

∑
j∈S

λm{i,j} (ṽS∪{i} − ṽS). (9)

Now let us define the total rates of the considered subset as

λ0(S) =
∑
i∈S

λ0i, λm0 (S) =
∑
i∈S

λm{0,i},

λi(S) =
∑
j∈S

λij , λmi (S) =
∑
j∈S

λm{i,j}, i /∈ S. (10)

Rewriting (9) and solving for ṽS gives Proposition 1.

Proposition 1. In a mobile gossip network with contact
mobility, for any subset of nodes S ⊆ N , the steady-state
average version age ṽS is given by

ṽS =
λe +

∑
i∈N(S) λi(S) ṽS∪{i} +

∑
i∈M(S) λ

m
i (S) ṽS∪{i}

λ0(S) +
∑

i∈N(S) λi(S) + λm0 (S) +
∑

i∈M(S) λ
m
i (S)

.

(11)

We note from the (11) that contact mobility between nodes
can be interpreted as additional gossip links between them.

From now on, we consider a symmetric setting in which the
following holds: λ0j = λ/n, ∀j ∈ N , and hence the overall
source-to-nodes update rate is λ; λij = λ/(n − 1), ∀i, j ∈
N ; and λm{i,j} = λ/f(n), ∀i, j ∈ {0} ∪ N . The function
f(n) controls the rate of mobility as the number of nodes
grow. We focus on three main choices for f(n): n, c lnn, and
c, for some c > 0. We simulate gossip networks to validate
the theoretical results employing an event-driven simulation

to model the evolution of version age in both disconnected
(DC) and fully connected (FC) network topologies. The results
for simulation and corresponding theoretical values calculated
using recursive methods are shown in Figs. 2, 3, 4, 5 and
6. The parameter values used for the simulation are: λe ∈
{0.5, 1, 2, 5} with λ = 1 and c = 5.

For f(n) = n, the theoretical plots in Fig. 2 are obtained
by recursively solving (29) (cf. Appendix) for DC network
and (38) for FC network in order to get ṽ1. We see that
the average version age is significantly lower in FC network
for different combinations of λe/λ. Figs. 3 and 4 consider
f(n) = c lnn, where the theoretical curves are obtained from
recursively solving (46) and (55) for the DC and FC networks,
respectively. Simulated average age is consistent with the
theoretical findings and one can notice the age of a FC network
being lower than DC network. Finally, for f(n) = c, we use
the recursions from solving (66) for the DC network and (76)
for the FC network to get the results in Fig. 5 which matches
with simulated results in Fig. 6. In this case as well, the age
in a FC network is slightly lower than DC network.

Next, we apply the above results to DC and FC network
topologies in order to further analyze the impact of contact
mobility on how version age scales with the number of nodes.

IV. AGE SCALING WITH CONTACT MOBILITY

In this section, we present an asymptotic analysis of how
the version age scales with n under contact mobility. We have
the following lemma:

Lemma 1. In a gossip network with contact mobility and
symmetric rates, for both the DC and FC network topologies,
the steady-state version age at any node scales as follows:

ṽ1 = O(lnn), for f(n) = n, (12)

ṽ1 = O
(
(lnn)2

n

)
, for f(n) = c lnn, c > 0, (13)

ṽ1 = O
(
lnn

n

)
, for f(n) = c, c > 0. (14)

The proofs of all 6 cases contained in Lemma 1’s results
are in the Appendix.

The results show that with contact mobility, the age scaling
for both the DC and FC mobile networks is asymptotically
the same. However, we argue that the FC network would still
achieve a lower age because the additional gossip links provide
more opportunities for information to spread.

Let us consider two parallel network systems operating
with same sequence of random events for source updates and
contact mobility meetings. In system A (mobile DC network),
information spreads only through source transmissions and
contact mobility. In system B (mobile FC network), informa-
tion spreads through source transmissions, contact mobility,
and an additional independent set of Poisson processes repre-
senting the gossip links. At any point in time t, any node
in system B has had every opportunity for an update that
its counterpart in system A has had, plus extra opportunities
from the fixed gossip links. Because of these additional update



opportunities, the version number of any node i in system
B, NB

i (t), must be greater than or equal to the version
number of the corresponding node in system A, NA

i (t). Thus,
NB

i (t) ≥ NA
i (t), ∀i, t. It follows by (1) that the age of any

node in system B is always less than or equal to the age of
its counterpart in system A:

∆B
i (t) ≤ ∆A

i (t), ∀i, t. (15)

This means that the steady-state average version age in the FC
network will be lower than or equal to that in the DC network:

ṽFC
1 ≤ ṽDC

1 . (16)
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Fig. 3. Theoretical ṽ1 with f(n) = 5 lnn in DC and FC networks.
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Fig. 4. Simulated ṽ1 with f(n) = 5 lnn in DC and FC networks.

We note that similar arguments have been used in [9] where
it is shown that the age in a push-pull network is lower that in
push-only or pull-only networks due to more gossiping links.
A. Contact Mobility vs. Exchange Mobility

We observe that contact mobility provides a variant view
point from the exchange mobility model introduced in [16].
In exchange mobility, two nodes can exchange their positions
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Fig. 5. Theoretical ṽ1 with f(n) = 5 in DC and FC networks.

according to a Poisson process of a certain mobility rate.
Specifically, exchange mobility does not provide an improve-
ment in age in symmetric networks. Take for example the DC
network topology. Following the model in [16], one can show
that for any node j, the steady-state average age is given by

v̄j =
λe + λm(v̄1 + v̄2 + · · ·+ v̄j−1 + v̄j+1 + · · ·+ v̄n)

λ
n + (n− 1)λm

,

(17)

where λm is the exchange mobility rate. The difference
between the ages at the jth and the ith nodes can then be
written as:

v̄j − v̄i =
λmv̄i

λ
n + (n− 1)λm

− λmv̄j
λ
n + (n− 1)λm

, (18)

which further implies that

v̄j

(
1 +

λm
λ
n + (n− 1)λm

)
= v̄i

(
1 +

λm
λ
n + (n− 1)λm

)
.

(19)
Since

(
1 + λm

λ
n+(n−1)λm

)
̸= 0, we conclude that v̄j =

v̄i, ∀i, j, must hold in the DC network. Whence, (17) can
be written as

v̄j =
λe + (n− 1)λmv̄j

λ
n + (n− 1)λm

, (20)

which finally gives

v̄j =
nλe
λ
. (21)

Therefore, we get that v̄j is independent of the mobility rate
λm. In particular, even when λm = 0, the value of v̄j remains
nλe

λ . Thus, and as elaborated in [16] for the FC network,
exchange mobility does not reduce the version age in a DC
network.

We note that the DC network considered in [16] is a 1-
regular graph, meaning there is still some gossiping between
adjacent nodes. For this kind of network, the age scales as

O
(
min{f(n),

√
n}
)
. (22)
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Fig. 6. Simulated ṽ1 with f(n) = 5 in DC and FC networks.

That is, for f(n) given by n, c lnn and c, age scales as O(
√
n),

O(lnn) and O(1), respectively. Since the network we consider
in contact mobility modeling is strictly disconnected, we can
conclude that the contact mobility DC network is working
under more stringent conditions. Thus, one can compare the
scalings above to those of Lemma 1 for different values of
f(n) and conclude that contact mobility provides a better age
improvement than exchange mobility. This, however, comes at
the expense of a mobility cost, which we discuss next.

V. MOBILITY COST OPTIMIZATION

We define a joint cost function Jα(λ) to analyze the trade-
off between the average version age ṽ1(λ) and the rate
parameter λ, which represents both mobility and update rates.
We define the cost function as:

Jα(λ) = αṽ1(λ) + (1− α)λ, (23)

for some α ∈ (0, 1). The intuition is that lower values of α
emphasize higher average mobility costs, and vice versa. Our
goal is to find λ∗ that minimizes Jα(λ).

To get a handle on Jα, we consider an upper bound on
αṽ1(λ) for the DC network. Such bound will also work for
the FC network since it achieves a lower age. We assert that

ṽ1(λ) ≤
K

λ
, (24)

for some specific values K given by

K =


λe(lnn+ 1), if f(n) = n
cλe(lnn)2

n + cλe lnn
n + cλe lnn

n(n+c lnn) , if f(n) = c lnn
cλe(lnn+1)

n + cλe

n(c+n) , if f(n) = c

,

(25)

where the above equations are direct implications of (36), (51),
(52) and (74) in Appendix.

With some abuse of notation, we now minimize the follow-
ing cost function:

Jα(λ) = α
K

λ
+ (1− α)λ. (26)

Observe that Jα(λ) is convex in λ. Hence, setting the deriva-
tive to 0 gives

λ∗ =

√
αK

1− α
. (27)

Therefore, the minimum cost Jα(λ∗) is found by substituting
λ∗ back into (26):

Jα(λ
∗) = 2

√
α(1− α)K. (28)

For the specific expression for K, (28) gives the optimal cost
for a given choice of α.

The trade-offs between mobility cost and age are visualized
in Fig. 7, which plots Jα(λ) versus λ for different values of
α across various network scenarios. We notice that in case of
f(n) = c, the cost Jα is minimized for a very small value
of λ. The optimal value of λ increases as we move to the
case of f(n) = c ln n and then to the case f(n) = c . The
minimum cost achievable also has the same pattern where we
get the lowest cost in the case of f(n) = c, followed by
f(n) = c ln n , and for f(n) = n the cost at minima is
highest.

VI. CONCLUSION

We analyzed how contact mobility effects the Version Age
of Information (VAoI) in gossip networks. By employing
the Stochastic Hybrid Systems (SHS) framework, we derived
analytical models for the average version age under various
network topologies and mobility scaling scenarios. Our anal-
ysis shows that contact mobility always helps in lowering
age, even for fully connected networks, which is in contrast
to exchange mobility. Finally, we formulated and analyzed a
cost function that balances the gains in information freshness
against the cost of mobility and updates. By minimizing an
upper bound on this cost, we derived the optimal rate that
balances the trade-off between freshness and mobility.
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APPENDIX

In this appendix we provide detailed proofs for the 6 cases
discussed in Lemma 1.

A. Disconnected Network with f(n) = n

Proof. We begin with the recursion in (11) for the average age
ṽj of a subset of j nodes. We have

ṽj =
λe + j(n− j)λn ṽj+1

j λn + j λn + j(n− j)λn
. (29)

Note that for a DC network we have λi(S) = 0, ∀i.
Multiplying the numerator and denominator by n

jλ , we get

ṽj =

nλe

jλ + (n− j)ṽj+1

n− j + 2
. (30)

From this, ṽ1 can be found recursively as follows:

ṽ1 =

n−1∑
k=1

(
nλe

kλ

n− k + 2

)
k−1∏
i=1

n− i

n− i+ 2
+ ṽn

n−1∏
i=1

n− i

n− i+ 2
.

(31)
The product is evaluated as:

k−1∏
i=1

n− i

n− i+ 2
=

(n− k + 1)(n− k + 2)

n(n+ 1)
(32)

Substituting this and noting that ṽn = λe

2λ (acquired directly
from setting j = n in (29)) gives:

ṽ1 =
λe

λ(n+ 1)

n−1∑
k=1

n+ 1− k

k
+

λe
λn(n+ 1)

(33)

Next, we evaluate the summation:
n−1∑
k=1

n+ 1− k

k
=

n−1∑
k=1

(
n+ 1

k
− 1

)
= (n+1)Hn−1−(n−1),

(34)
where Hn denotes the nth harmonic number. Substituting this
result back into the expression for ṽ1:

ṽ1 =
λe

λ(n+ 1)
((n+ 1)Hn−1 − (n− 1)) +

λe
λn(n+ 1)

=
λe
λ
Hn−1 −

λe(n− 1)

λ(n+ 1)
+

λe
λn(n+ 1)

. (35)

Using the bound Hn−1 ≤ lnn + 1, and noticing the other
terms result in a negative value for n ≥ 2, we have

ṽ1 ≤ λe
λ
(lnn+ 1) (36)

We conclude that the average age of a node scales as

ṽ1 = O(lnn). (37)

B. Fully Connected Network with f(n) = n

Proof. We begin from (11), for the average age ṽj of a subset
of j nodes in the FC network. We have

ṽj =
λe + j(n− j) λ

n−1 ṽj+1 + j(n− j)λn ṽj+1

jλ
n + j(n−j)λ

n−1 + jλ
n + j(n−j)λ

n

. (38)

Defining λeff =
λ

n−1 + λ
n , we get

ṽj =
λe + j(n− j)λeffṽj+1

2jλ
n + j(n− j)λeff

(39)



Dropping the positive term 2jλ
n from the denominator, we get

an upper bound:

ṽj ≤
λe + j(n− j)λeffṽj+1

j(n− j)λeff

=
λe

j(n− j)λeff
+ ṽj+1. (40)

Repeating this recursively, one can get that

ṽ1 ≤ λe
λeff

n−1∑
k=1

1

k(n− k)
+ ṽn (41)

Observe that the sum term can be simplified as follows:
n−1∑
k=1

1

k(n− k)
=

1

n

n−1∑
k=1

(
1

k
+

1

n− k

)
=

2Hn−1

n
. (42)

Upon noting that ṽn = λe

2λ (acquired directly from setting
j = n in (38)), we get that

ṽ1 ≤ λe
λeff

2Hn−1

n
+
λe
2λ

(43)

Next, substituting λeff = λ 2n−1
n(n−1) we have

ṽ1 ≤ λe

λ 2n−1
n(n−1)

2Hn−1

n
+
λe
2λ

=
λe
λ

2(n− 1)Hn−1

2n− 1
+
λe
2λ

(44)

This shows that the average version age scales as

ṽ1 = O(lnn). (45)

C. Disconnected Network with f(n) = c ln n

Proof. Starting with the recursion in (11) for the DC network
with f(n) = c lnn, we have

ṽj =
λe +

j(n−j)λ
c lnn ṽj+1

jλ
n + jλ

c lnn + j(n−j)λ
c lnn

. (46)

Note that for a DC network we have λi(S) = 0, ∀i. Dropping
the positive term jλ

n from the denominator gives

ṽj <=
λe +

j(n−j)λ
c lnn ṽj+1

j(n−j+1)λ
c lnn

. (47)

This can be expressed as

ṽj <
cλe lnn

j(n− j + 1)λ
+

n− j

n− j + 1
ṽj+1. (48)

Repeating the above recursively one gets that

ṽ1 <

n−1∑
k=1

[
c λe lnn

k(n− k + 1)λ

k−1∏
i=1

n− i

n− i+ 1

]

+

(
n−1∏
i=1

n− i

n− i+ 1

)
ṽn. (49)

The value of ṽn is found by setting j = n in (46):

ṽn =
λe

nλ
n + nλ

c lnn

=
c λe lnn

λ (n+ c lnn)
. (50)

Simplifying the product
∏k−1

i=1
n−i

n−i+1 = n−k+1
n , we can write

ṽ1 <
cλe lnnHn−1

nλ
+

1

n

(
c λe lnn

λ (n+ c lnn)

)
. (51)

Using the bound Hn−1 ≤ lnn + 1, the first term above is
bounded as follows:

c λe lnnHn−1

nλ
=
c λe (lnn)

2

λn
+
c λe lnn

λn
. (52)

Combining all these results gives:

ṽ1 ≤
(
c λe (lnn)

2

λn
+
c λe lnn

λn

)
+

c λe lnn

nλ (n+ c lnn)
. (53)

Thus, we conclude that the average age of a node scales as

ṽ1 = O
(
(lnn)2

n

)
. (54)

D. Fully Connected Network with f(n) = c ln n

Proof. Starting with the recursion in (11) for the FC network
with f(n) = c lnn, we have

ṽj =
λe +

(
j(n−j)λ

n−1 + j(n−j)λ
c lnn

)
ṽj+1

jλ
n + jλ

c lnn +
(

j(n−j)λ
n−1 + j(n−j)λ

c lnn

) . (55)

We drop the terms jλ
n and jλ

c lnn to get

ṽj <
λe +

(
j(n−j)λ

n−1 + j(n−j)λ
c lnn

)
ṽj+1

j(n−j)λ
n−1 + j(n−j)λ

c lnn

(56)

Defining λeff =
λ

n−1 + λ
c lnn , the inequality simplifies to

ṽj <
λe

j(n− j)λeff
+ ṽj+1. (57)

Repeating the above recursively we get

ṽ1 <

n−1∑
k=1

λe
k(n− k)λeff

+ ṽn (58)

Using the harmonic series identity
∑n−1

k=1
1

k(n−k) = 2Hn−1

n ,
the bound becomes

ṽ1 <
2λeHn−1

nλeff
+ ṽn. (59)

Now since

λeff = λ

(
1

n− 1
+

1

c lnn

)
= λ

(
c lnn+ n− 1

c(n− 1) lnn

)
, (60)

we have

2λeHn−1

nλeff
=

2λeHn−1

n

(
c(n− 1) lnn

λ(c lnn+ n− 1)

)
. (61)



Using the bounds: Hn−1 ≤ lnn+1, n− 1 < n, and c ln n+
n− 1 > n− 1 for n ≥ 2, the following holds:

2λeHn−1 · c(n− 1) lnn

nλ(c lnn+ n− 1)
<

2λe(lnn+ 1) · c · n · lnn
nλ(n− 1)

(62)

<
2cλe(lnn+ 1) lnn

λ(n− 1)
. (63)

Finally, we get ṽn by setting j = n in (46) and putting all
this together to have

ṽn =
λe

nλ
n + nλ

c lnn

=
λe

λ+ nλ
c lnn

=
cλe lnn

λ(c lnn+ n)
(64)

We conclude that

ṽ1 = O
(
(lnn)2

n

)
. (65)

E. Disconnected Network with f(n) = c

Proof. As always, we start with the recursion in (11) for the
average age ṽj of a subset of j nodes for the case of a DC
network with f(n) = c to get

ṽj =
λe +

j(n−j)λ
c ṽj+1

jλ
n + jλ

c + j(n−j)λ
c

. (66)

Dropping the positive term jλ
n from the denominator gives

ṽj ≤
λe + j(n− j)λc ṽj+1

j(n− j + 1)λc
(67)

=
cλe

j(n− j + 1)λ
+

n− j

n− j + 1
ṽj+1. (68)

Repeating this recursively gives

ṽ1 ≤
n−1∑
k=1

(
cλe

k(n− k + 1)λ

k−1∏
i=1

n− i

n− i+ 1

)

+

(
n−1∏
i=1

n− i

n− i+ 1

)
ṽn,

(69)

and upon simplifying the product terms we further have

ṽ1 ≤
n−1∑
k=1

(
cλe

k(n− k + 1)λ
· n− k + 1

n

)
+

1

n
ṽn (70)

≤ cλe
nλ

n−1∑
k=1

1

k
+
ṽn
n

(71)

We find ṽn by setting j = n in (66) to get

ṽn =
λe

λ+ nλ
c

=
cλe

λ(c+ n)
. (72)

Substituting this back and noting that the summation repre-
sents the (n− 1)th Harmonic number we have

ṽ1 ≤ cλe
nλ

Hn−1 +
1

n

(
cλe

λ(c+ n)

)
(73)

≤ cλe(lnn+ 1)

nλ
+

cλe
nλ(c+ n)

. (74)

The age, therefore, scales as

ṽ1 = O
(
lnn

n

)
. (75)

F. Fully Connected Network with f(n) = c

Proof. The recursion in (11) for the case of a FC network
with f(n) = c gives

ṽj

λe +
j(n− j)λ

n− 1
ṽj+1 +

j(n− j)λ

c
ṽj+1

jλ

n
+
j(n− j)λ

n− 1
+
jλ

c
+
j(n− j)λ

c

. (76)

Defining λeff = λ
n−1 + λ

c , we have

ṽj =
λe + j(n− j)λeff ṽj+1

jλ
n + jλ

c + j(n− j)λeff
. (77)

Dropping the term jλ
n + jλ

c ≥ 0, we get

ṽj ≤
λe + j(n− j)λeff ṽj+1

j(n− j)λeff

=
λe

j(n− j)λeff
+ ṽj+1. (78)

Applying this recursively, we have

ṽ1 ≤
n−1∑
k=1

λe
k(n− k)λeff

+ ṽn

=

n−1∑
k=1

λe
k(n− k)λeff

+
λe

λ+ n
(
λ/c
) , (79)

where we find ṽn by setting j = n in (76). Noting that
n−1∑
k=1

1

k(n− k)
= 2Hn−1

n , we get

ṽ1 ≤ λe
λeff

2Hn−1

n
+

λe

λ+ n
(
λ/c
) (80)

≤ λe
λeff

2(lnn+ 1)

n
+

λe

λ+ n
(
λ/c
) . (81)

Substituting back the value of λeff , we get

ṽ1 ≤ λe

λ
(

1
n−1 + 1

c

) · 2(lnn+ 1)

n
+

λe

λ
(
1 + n

c

) (82)

=
λe
λ

· c(n− 1)

c+ n− 1
· 2(lnn+ 1)

n
+
λe
λ

· c

c+ n
(83)

=
2c(n− 1)λe(lnn+ 1)

λn(c+ n− 1)
+

cλe
λ(c+ n)

(84)

<
2cλe(lnn+ 1)

λn
+

cλe
λ(c+ n)

(85)

It follows that age of a node ṽ1 scales as

ṽ1 = O
(
lnn

n

)
. (86)


