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Abstract

We consider the problem of privately updating a message out of K messages from N
replicated and non-colluding databases where a user has an outdated version of the message
Ŵθ of length L bits that differ from the current version Wθ in at most f bits. The user
also has a cache containing coded combinations of the K messages (with a pre-specified
structure), which are unknown to the N databases (unknown prefetching). The cache Z
contains ℓ linear combinations from all K messages in the databases with r = ℓ

L being
the caching ratio. The user needs to retrieve Wθ correctly using a private information
retrieval (PIR) scheme without leaking information about the message index θ to any
individual database. Our objective is to jointly design the prefetching (i.e., the structure of
said linear combinations) and the PIR strategies to achieve the least download cost. We
propose a novel achievable scheme based on syndrome decoding where the cached linear
combinations in Z are designed to be bits pertaining to the syndrome of Wθ according to a
specific linear block code. We derive a general lower bound on the optimal download cost
for 0 ≤ r ≤ 1, in addition to achievable upper bounds. The upper and lower bounds match
for the cases when r is exceptionally low or high, or when K = 3 messages for arbitrary
r. Such bounds are derived by developing novel cache-aided arbitrary message length PIR
schemes. Our results show a significant reduction in the download cost if f < L

2 when
compared with downloading Wθ directly using typical cached-aided PIR approaches.

Keywords: private information retrieval; coded caching; private updating; syndrome
decoding

1. Introduction
The problem of private information retrieval (PIR), introduced by Chor et al. in [1],

seeks to find the most efficient way for a user to privately retrieve a single message from a
set of K messages from N fully replicated and non-communicating databases. PIR schemes
are designed to download a mixture of all K messages, with the least number of overhead
downloaded bits, such that no single database can infer the identity of the desired message.
The user accomplishes this task by sending a query to each database. The databases respond
truthfully to the submitted query with an answer string. The user can then reconstruct the
desired message from jointly decoding the returned answer strings. Recently, the problem of
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PIR has received growing interest from the information and coding theory communities.
The classical PIR problem is reformulated using information-theoretic measures in the
seminal work of Sun–Jafar [2]. In there, the performance metric of the PIR scheme is the
retrieval rate, which is the ratio of the number of the desired message symbols to the total
number of downloaded bits. The supremum of this ratio is denoted by the PIR capacity, C.
Sun and Jafar characterize the PIR capacity of the classical PIR model to be

C =

(
1 +

1
N

+
1

N2 + · · ·+ 1
NK−1

)−1
. (1)

Following [2], the capacity (or its reciprocal, the normalized download cost) of many
variations of the problem have been investigated; see [3–17], and the surveys in [18,19].

In all these works, the user is assumed to have no information about the desired
message prior to retrieval. Thus, the queries are designed independently of the message
contents. This is not always the case in practice. To see that, consider the following classical
motivational example of PIR: in the stock market, investors need to privately retrieve
some of the stock records since showing interest in a specific record may undesirably
affect its value. PIR is a natural solution to this problem. Now, consider the case when an
investor has already retrieved a specific stock record some time ago but this record has been
changed. The investor needs to update the record at his/her side. A trivial solution to this
problem is to reapply the original PIR scheme again. Nevertheless, this solution overlooks
the fact that stock records are correlated in time. Another example arises in the context of
private federated submodel learning [20], in which a user needs to retrieve the up-to-date
desired submodel without leaking any information about its identity. The weights of each
submodel are usually correlated in time as in the stock market example. In both examples,
it is interesting to investigate whether or not the investor (user) can exploit the correlation
between the outdated record (submodel) and its up-to-date counterpart to drive down the
download cost. In this work, we focus our attention on a specific type of correlation, in
which the up-to-date message is a distorted version of the outdated message according to a
Hamming distortion measure.

The most closely related works to this problem are the PIR problems with side in-
formation, e.g., [21–27]. We also assume that the user has access to a private local cache
containing equal portions of each message. Caching systems of this variety have been
explored before in the PIR setting, e.g., [28,29], but not in conjunction with other forms of
side information (outdated or updated). In the works regarding PIR with side information,
the user has side information in the form of a subset of undesired messages, which are
utilized to assist in privately retrieving the desired message. This is different from our
setting, in which the user possesses side information in the form of an outdated desired
message. Furthermore, these works differ from each other in whether the privacy of the
side information should be maintained or not. This is different from our problem in which
the identity of the desired and side information is the same, and therefore the privacy
constraint in our problem is modified to reflect this fact.

In this work, we introduce the problem of cache-aided private updating with unknown
prefetching for an L-bit length message out of a K-message library from N replicated and
non-colluding databases. In this problem, the user has an outdated version Ŵθ of the desired
message θ, and wishes to update it to its up-to-date version Wθ . Furthermore, the user has
information about the maximum Hamming distance f between the up-to-date message and
its outdated counterpart, i.e., the user possesses Ŵθ , which differs in at most f bits from the
desired up-to-date message Wθ . Based on Ŵθ and f , the user needs to design a query set
to reliably and privately decode the up-to-date version of the desired message Wθ with
the least number of downloaded bits. Equivalently, the user needs to privately retrieve
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an auxiliary message that corresponds to the flipped bit positions in the desired message.
Similar to the works of [30,31], we assume that the databases can construct a mapping from
the original library of messages into a more appropriate form that can assist the user in
the retrieval process (in this work, we assume that the databases are semi-honest, in the
sense that they truthfully obey the retrieval process, but the databases are curious to learn
the identity of the desired file). The user also has access to a private cache Z containing
ℓ linear combinations of each message, with r = ℓ

L being the caching ratio. The structure
of such linear combinations is pre-specified to facilitate the retrieval procedure. By jointly
designing the prefetching (i.e., the structure of the aforementioned cache contents) and
the updating procedures, we aim at characterizing the optimal download cost needed to
update Ŵθ to Wθ given Z without disclosing the desired message index θ to any of the
databases for arbitrary K, N, f , L, and r.

To that end, we propose a novel achievable scheme that is based on the syndrome
decoding idea introduced in [32], and adapt it to our setting to exploit the correlation
between Wθ and Ŵθ . Hence, syndrome decoding is used to compress the desired message
based on the user’s side information (i.e., the outdated message Ŵθ). More specifically, the
databases apply a linear transformation to the stored library of messages using the parity
check matrix of a linear block code with carefully chosen parameters. The existence of such
a code can be readily inferred from the Gilbert–Varshamov and the Hamming bounds [33].
This transformation, in effect, maps the messages into their corresponding syndromes.
Thus, the problem is reduced to retrieving the syndrome representation of the messages
(i.e., the auxiliary messages) that comprises ⌈L̄⌉ =

⌈
log2

(
∑

f
i=0 (

L
i )
)⌉

≤ L bits, where L is
the original message length.

In the case of r = 0, we directly apply the PIR scheme in [34] to the auxiliary messages
of length ⌈L̄⌉, which is optimal under the message length constraints. In the case where r
satisfies 0 < r ≤ 1

1+N+N2+···+NK−1 (denoted as very low r), 1
1+N ≤ r ≤ 1 (denoted as very

high r), we extend the PIR scheme in [34] to the cache-aided setting in [29], and develop a
novel cache-aided arbitrary message length PIR scheme to solve our problem. We also present
an achievable scheme for the mid-range r, satisfying 1

1+N+N2+···+NK−1 < r < 1
1+N , tailored

for the case of K = 3 messages, and discuss possible extensions for arbitrary K afterwards.
Like with the r = 0 case, we can then use this new cache-aided arbitrary message length
scheme to download the auxiliary messages of length ⌈L̄⌉ with an effective caching ratio
of r̃ = ℓ

⌈L̄⌉ . This is in effect a higher caching ratio than r, which in turns lead to a lower
download cost as in [29]. For each of these cases, we confirm the validity of our proposed
scheme by deriving a matching converse proof. Our converse proof is inspired by the
converse proof of the cache-aided PIR problem with unknown and uncoded prefetching
in [29], with the main difference being the fact that in addition to a private cache, the
user has access to the outdated message Ŵθ , the index of which they wish to keep private.
Consequently, we show that the optimal download cost is perfectly characterized for very
high caching ratios, and is characterized within a maximum gap of only 2 bits otherwise.
Notably, such a gap is 0 if L̄ is an integer. This justifies the efficacy of using syndromes as a
message-mixing technique in our setting. Furthermore, our results show that performing
direct PIR on the original library of messages is strictly sub-optimal as long as the maximum
Hamming distance f < L

2 .
The rest of the paper is organized as follows. Our system model is described in

Section 2. The main results are presented in Section 3, with the main converse proof
following in Section 4, and the achievability proofs in Sections 5 and 6. Section 7 includes a
discussion on extending our achievability results, and the paper is concluded in Section 8.



Entropy 2025, 27, 828 4 of 26

2. System Model
We consider a classical PIR problem with K independent, uncoded, messages

W1, . . . , WK, with each message consisting of L independent and uniformly distributed bits.
We have

H(Wi) = L, 1 ≤ i ≤ K, (2)

H(W1, . . . , WK) = H(W1) + . . . + H(WK). (3)

The K messages are stored in N replicated and non-communicating databases. The user
(retriever) has a local copy of one of the messages whose index θ ∈ [K] is known to the
user ([K] denotes the set {1, 2, . . . , K}) but not the database (this is true if message θ, for
example, has been previously obtained in a private manner). However, this message stored
locally is outdated, and the user wishes to update it so that it is consistent with the copies in
the databases without revealing to any of the databases what the message index is.

The user also has a local cache memory whose contents are denoted by a random
variable Z. The cache is populated through a prefetching phase in which the user caches pre-
specified linear combinations from each message Wi, i ∈ [K], with ℓ < L bits (specifically,
we consider the case when the prefetching and retrieval strategies can be jointly designed,
i.e., we assume that the information source performing the prefetching may provide a
linear combination of its content with any desired structure to assist the user in minimizing
the download cost in the retrieval phase). Such linear combinations are represented by a
matrix multiplication WiRi, where Ri is of dimension L × ℓ. Thus, we have

Z = [W1R1, W2R2, · · · , WKRK]. (4)

The explicit design of Ri, i ∈ [K] is specified along the lines of the achievability proof. We
assume that the contents of the cache are unknown to the databases, as in, e.g., [21,27,29].
We define the caching ratio as

r =
ℓ

L
. (5)

Observe that the number of cached bits pertaining to each message is equal to Lr. It now
follows that

H(Z) =
K

∑
i=1

H(WiRi) ≤ KLr, (6)

I(Wi; Z) = H(WiRi) ≤ Lr, 1 ≤ i ≤ K. (7)

The setting described above defines the cache-aided private updating problem with un-
known prefetching.

Since each message is a string of L bits, the problem can be formulated as privately
determining which subset of the message bits need to be flipped in order to fully update it.
To model this, we use Ŵθ to represent the locally stored outdated message, W̄θ to represent
the subset of bit indices that need to be flipped, and f to represent the maximum Hamming
distance between Wθ and Ŵθ (clearly, f ≥ 1 must hold; otherwise, there is no need to
update Ŵθ). Therefore, in order to update message θ, the user needs to flip at most f bits,
i.e., W̄θ takes a value out of ∑

f
i=0 (

L
i ) choices. We assume that such choices are uniformly

distributed and independently realized from Ŵθ . Based on this model, the following holds:



Entropy 2025, 27, 828 5 of 26

H(Wθ) = H(Ŵθ) = L, (8)

H(W̄θ) = log2

(
f

∑
i=0

(
L
i

))
≜ L̄, (9)

H(Wθ |Ŵθ) = H(W̄θ |Ŵθ) = L̄, (10)

H(W̄θ |Ŵθ , Wθ) = 0, (11)

|W̄θ | ≤ f ≤ L, (12)

where | · | denotes cardinality. We assume that the maximum Hamming distance f between
the outdated and updated message is known to the user. By (9), one can see that ⌈L̄⌉ bits
should be sufficient to update Ŵθ . Hence, one can set a maximum value on the number of
cached bits from each message as follows (in case the number of cached bits is greater than
this bound in (13), the extra bits can be ignored by the user):

ℓ ≤ ⌈L̄⌉. (13)

In order to retrieve Wθ , the user sends a set of queries Q[θ]
1 , . . . , Q[θ]

N to the N databases
to efficiently obtain W̄θ . The queries are generated according to Ŵθ , f , and Z, and are jointly
independent of the realizations of the [K]\{θ} messages and W̄θ given Ŵθ . Therefore we
have (we use the notation xS to denote the collection of {xi, i ∈ S})

I
(

W[K]\{θ}, W̄θ ; Q[θ]
1:N

∣∣∣Ŵθ , Z
)
= 0. (14)

Upon receiving the query Q[θ]
n , the nth database replies with an answering string A[θ]

n ,
which is a function of Q[θ]

n and all the K messages stored. Therefore, ∀θ ∈ [K], ∀n ∈ [N],
we have

H
(

A[θ]
n

∣∣∣Q[θ]
n , W1:K

)
= 0. (15)

To ensure that individual databases do not know which message is being updated, we
need to satisfy the following privacy constraint, ∀n ∈ [N], ∀k ∈ [K]:(

Q[1]
n , A[1]

n , Ŵ1, W1:K

)
∼
(
Q[k]

n , A[k]
n , Ŵk, W1:K

)
, (16)

where ∼ denotes statistical equivalence. After receiving the answering strings A[θ]
1:N from all

the N databases, the user needs to decode the desired information Wθ with no uncertainty,
satisfying the following correctness constraint:

H
(

Wθ

∣∣∣A[θ]
1:N , Q[θ]

1:N , Ŵθ , Z
)
= 0. (17)

The overall system model is depicted in Figure 1. We also include a list of notation
with their definitions in Table 1 for ease of presentation.

For fixed N, K, f , and r, a pair (D̄, L) is achievable if there exists a cache-aided private
updating with unknown prefetching scheme for messages of length L bits long satisfying
the privacy constraint (16) and the correctness constraint (17). In this pair, D̄ represents the
expected number of downloaded bits received from the N databases independently via the
answering strings A[k]

1:N , i.e.,



Entropy 2025, 27, 828 6 of 26

D̄ =
N

∑
n=1

H
(

A[θ]
n

)
. (18)

Our goal is to characterize the optimal download cost D̄L for the cache-aided private updating
problem with unknown prefetching for fixed arbitrary L, N, K, f , and r. That is, we solve for

D̄L = min{D̄ : (D̄, L) is achievable}. (19)

Clearly, the user can ignore its outdated message Ŵθ and re-download the whole new
message Wθ using standard cache-aided PIR schemes [2,29]. Our main result, however,
shows that we can use Ŵθ to do strictly better.

W1

W2

Wθ

WK

.

.

.

.

.

.

DB 1

W1

W2

Wθ

WK

.

.

.

.

.

.

DB 2

W1

W2

Wθ

WK

.

.

.

.

.

.

DB N

. . .

user

Q
[θ]
1

Q
[θ]
2

Q
[θ]
N

A
[θ]
1

A
[θ]
2

A
[θ]
N

Ŵθ
outdated message

Zcache

Wθ⇒

θ θ θ

Figure 1. Cache-aided private updating with unknown prefetching system model.

Table 1. Key notations and system parameters.

Symbol Definition

K number of messages

N number of databases

L message length

θ index of the required message

Ŵθ outdated message

Wθ current message

f upper bound on differences between outdated and current messages

Z cache content

ℓ number of linearly-combined bits cached from each message

r caching ratio: ℓ/L

L̄ number of bits sufficient to update the message: log2(∑
f
i=0 (

L
i ))

3. Main Results
Our first result characterizes a converse bound for the optimal download cost D̄L for

general N, K, f , and r.
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Theorem 1 (Converse). In the cache-aided private updating problem with unknown prefetching,
the optimal download cost is lower bounded by

D̄L ≥
⌈

max
i∈{2,...,K+1}

(L̄−Lr)
K+1−i

∑
j=0

1
N j −Lr

K−i

∑
j=0

K+1−i− j
N j

⌉
, (20)

with L̄ defined in (9).

The proof of Theorem 1 is provided in Section 4.
For our next result, we characterize an achievability bound for specific values of the

caching ratios, and otherwise general L, N, K, and f . Before we present our result, we need
to introduce some notation. Specifically, as in [29], for s ∈ {1, 2, . . . , K − 1}, we define a
caching ratio rs as

rs =
(K−2

s−1 )

(K−2
s−1 ) + ∑K−1−s

i=0 (K−1
s+i )(N − 1)i N

. (21)

Now, we say that a caching ratio r is very low if 0 ≤ r ≤ r1 = 1
1+N+N2+···+NK−1 , very high

if rK−1 = 1
1+N ≤ r ≤ 1, and mid-range otherwise. We are now ready to present our first

achievability result.

Theorem 2 (Very Low and Very High Achievability). In the cache-aided private updating
problem with unknown prefetching, for very low caching ratios, the optimal download cost is upper
bounded by

D̄L ≤
⌈
(⌈L̄⌉−Lr) ·

K−1

∑
i=0

1
Ni − Lr ·

K−2

∑
i=0

K − 1 − i
Ni

⌉
, (22)

and for very high caching ratios, the optimal download cost is upper bounded by

D̄L ≤ ⌈L̄⌉ − Lr, (23)

with L̄ defined in (9).

The proof of Theorem 2 is provided in Section 5.
Combining the achievability bounds in Theorem 2 with the converse bound in

Theorem 1, we obtain a fairly tight, up to a ceiling difference of L̄, characterization of
the optimal download cost D̄L for very low and very high caching ratios. This is stated in
the following corollary.

Corollary 1. In the cache-aided private updating problem with unknown prefetching, for very low
caching ratios, we have

⌈
(L̄−Lr)

K−1

∑
j=0

1
N j −Lr

K−2

∑
j=0

K − 1 − j
N j

⌉
≤ D̄L ≤

⌈
(⌈L̄⌉−Lr)

K−1

∑
j=0

1
N j −Lr

K−2

∑
j=0

K − 1 − j
N j

⌉
, (24)

and for very high caching ratios, we have

D̄L = ⌈L̄⌉ − Lr (25)
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Proof. The right-hand side inequality of (24) is given directly by Theorem 2. By choosing
i = 2 in (20), we obtain the left-hand side inequality in (24). Similarly, by choosing i = K − 1
in (20), we obtain the result in (25) (note that Lr is an integer, and so in this case, the converse
and achievability bounds match). This concludes the proof.

We now have the following remarks.

Remark 1. The result in Corollary 1 generalizes our preliminary work on the private updating
problem with no caching involved [35]. Specifically, plugging in r = 0 in Corollary 1 directly gives
([35], Theorem 1).

Remark 2. Consider the result in (24). From (9) and (12), it follows that ⌈L̄⌉ = L for all values
of f ≥ L

2 , and that ⌈L̄⌉ < L for all values of f < L
2 (this can be readily shown using the binomial

theorem; details are in Appendix A). Combining this with the results in ([29], Corollary 2) (which is
the analog of our result in case the user does not have an outdated message), this means that there
is a Hamming distance threshold of L

2 beyond which there is no advantage to using a private
updating strategy, and below which there will always be some savings in download cost. This can
be seen in Figure 2, where we also note that the non-linearity of the upper and lower bounds are a
result of the ceiling functions that appear in these bounds.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

Figure 2. Download cost of cache-aided private updating with unknown prefetching with L = 32
bits, N = 2 databases, K = 3 messages, and r = 1

10 caching ratio (Corollary 1’s results for the very
low caching ratio).

Remark 3. If L and f are such that L̄ = ⌈L̄⌉, then the upper and lower bounds in (24) match. We
will see that this holds if a perfect code (a code that attains the Hamming bound with equality [33])
by which the queries are sent exists (cf. Section 5). Otherwise, if L̄ < ⌈L̄⌉, one can show using
similar arguments as in ([34], Section 7.2) that the two bounds are within 2 bits for N ≥ 2 databases.

Next, we have the following achievability result regarding mid-range caching ratios.

Theorem 3 (Mid-Range Achievability). In the cache-aided private updating problem with
unknown prefetching with K = 3 messages, for mid-range effective caching ratios, the optimal
download cost is upper bounded by

D̄L ≤
⌈
(⌈L̄⌉ − Lr)

(
1 +

1
N

)
− Lr

⌉
(26)

with L̄ defined in (9).
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The proof of Theorem 3 is provided in Section 6. In Section 7, we include a discussion
on extending the above achievability result for arbitrary K.

Combining the mid-range achievability bound in Theorem 3 and the converse bound
in Theorem 1 for i = K, we characterize the optimal download cost for D̄L for mid-range
caching ratios when K = 3. Furthermore, combining this characterization with the result of
Corollary 1 gives a complete characterization of D̄L when K = 3 for any caching ratio. To
this end, we define the K = 3 converse bound D̄K=3(r) and the K = 3 achievability bound
D̄K=3(r) to express this characterization:

D̄K=3(r) =


⌈
(L̄−Lr)·∑2

i=0
1

Ni −Lr·∑1
i=0

2−i
Ni

⌉
, if 0 ≤ r ≤ r1;⌈

(L̄ − Lr)
(

1 + 1
N

)
− Lr

⌉
, if r1 ≤ r ≤ r2;

⌈L̄⌉ − Lr, if r2 ≤ r ≤ 1.

(27)

D̄K=3(r) =


⌈
(⌈L̄⌉−Lr)·∑2

i=0
1

Ni −Lr·∑1
i=0

2−i
Ni

⌉
, if 0 ≤ r ≤ r1;⌈

(⌈L̄⌉ − Lr)
(

1 + 1
N

)
− Lr

⌉
, if r1 ≤ r ≤ r2;

⌈L̄⌉ − Lr, if r2 ≤ r ≤ 1.

(28)

We have now proved the following corollary.

Corollary 2 (K = 3 Characterization). In the cache-aided private updating problem with un-
known prefetching where K = 3, for any caching ratio, we have

D̄K=3(r) ≤ D̄L ≤ D̄K=3(r) (29)

4. Proof of Theorem 1: Converse
In this section, we derive the general (converse) lower bound for the download cost

in Theorem 1. To do so, we prove two useful lemmas, analogues to their counterparts
in the cache-aided PIR setting of [29], for the case of our cache-aided private updating
problem. The two lemmas are then combined to prove the general lower bound. The
key difference between our lemmas and those in [29] is that in addition to some uniform
portion of each message being cached, the user is given an outdated message Ŵθ , requiring
careful handling of the correlation between Wθ and Ŵθ .

Lemma 1 (Interference Lower Bound). In the cache-aided private updating problem with
unknown prefetching, the interference from undesired messages within the answering strings,
D̄ − (L̄ − Lr), satisfies

D̄ − (L̄ − Lr) ≥ I
(

Wk:K; Q[k−1]
1:N , A[k−1]

1:N

∣∣∣W1:k−1, Ŵk−1, Z
)

(30)

for all k ∈ {2, . . . , K}.

Proof. We start with the right-hand side of (30),

I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1, Ŵk−1, Z)

= I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N , Wk−1|W1:k−2, Ŵk−1, Z)− I(Wk:K; Wk−1|W1:k−2, Ŵk−1, Z) (31)

= I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N |W1:k−2, Ŵk−1, Z) + I(Wk:K; Wk−1|Q
[k−1]
1:N , A[k−1]

1:N , W1:k−2, Ŵk−1, Z)
(17)
= I(Wk:K; Q[k−1]

1:N , A[k−1]
1:N |W1:k−2, Ŵk−1, Z) (32)
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(14)
= I(Wk:K; A[k−1]

1:N |Q[k−1]
1:N , W1:k−2, Ŵk−1, Z) (33)

= H(A[k−1]
1:N |Q[k−1]

1:N , W1:k−2, Ŵk−1, Z)− H(A[k−1]
1:N |Q[k−1]

1:N , W1:k−2, Wk:K, Ŵk−1, Z) (34)
(17)
= H(A[k−1]

1:N |Q[k−1]
1:N , W1:k−2, Ŵk−1, Z)−H(A[k−1]

1:N , Wk−1|Q
[k−1]
1:N , W1:k−2, Wk:K, Ŵk−1, Z) (35)

≤ H(A[k−1]
1:N |Q[k−1]

1:N , W1:k−2, Ŵk−1, Z)− H(Wk−1|Q
[k−1]
1:N , W1:k−2, Wk:K, Ŵk−1, Z) (36)

(14)
= H(A[k−1]

1:N |Q[k−1]
1:N , W1:k−2, Ŵk−1, Z)− H(Wk−1|Ŵk−1, Z) (37)

(18),(3)
≤ D̄ − H(Wk−1|Ŵk−1, Wk−1Rk−1) (38)

= D̄ −
(

H(Wk−1, Wk−1Rk−1|Ŵk−1)− H(Wk−1Rk−1|Ŵk−1)
)

(39)

= D̄ −
(

H(Wk−1|Ŵk−1) + H(Wk−1Rk−1|Ŵk−1, Wk−1)− H(Wk−1Rk−1|Ŵk−1)
)

(40)

(10),(7)
≤ D̄ − (L̄ − Lr). (41)

This concludes the proof.

Note that if privacy was not a constraint, then D̄ = L̄ − Lr and the interference from
undesired messages would be non-existent. However, when the privacy constraint is
present, D̄ − (L̄ − Lr) characterizes the number of bits that will be downloaded and used
as side information to preserve privacy from the databases in a given scheme.

Lemma 2 (Induction Lemma). For all k ∈ {2, . . . , K}, the mutual information term in Lemma 1
can be inductively lower bounded as

I
(

Wk:K; Q[k−1]
1:N , A[k−1]

1:N

∣∣∣W1:k−1, Ŵk−1, Z
)

≥ 1
N

I
(

Wk+1:K; Q[k]
1:N , A[k]

1:N

∣∣∣W1:k, Ŵk, Z
)
+

L̄ − Lr
N

− (K − k + 1)Lr. (42)

Proof. We start with the left-hand side of (42),

I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1, Ŵk−1, Z)

= I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N , Z, Ŵk−1|W1:k−1)− I(Wk:K; Z, Ŵk−1|W1:k−1) (43)

= I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1) + I(Wk:K; Z, Ŵk−1|W1:k−1, Q[k−1]
1:N , A[k−1]

1:N )

− I(Wk:K; Z, Ŵk−1|W1:k−1) (44)

≥ I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1)− I(Wk:K; Z, Ŵk−1|W1:k−1). (45)

Now, for the first term in (45), we have

I(Wk:K; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1) (46)

≥ 1
N

N

∑
n=1

I(Wk:K; Q[k−1]
n , A[k−1]

n |W1:k−1) (47)

(16)
=

1
N

N

∑
n=1

I(Wk:K; Q[k]
n , A[k]

n |W1:k−1) (48)

=
1
N

N

∑
n=1

I(Wk:K; A[k]
n |W1:k−1, Q[k]

n ) (49)

(15)
=

1
N

N

∑
n=1

H(A[k]
n |W1:k−1, Q[k]

n ) (50)



Entropy 2025, 27, 828 11 of 26

≥ 1
N

N

∑
n=1

H(A[k]
n |W1:k−1, Ŵk, Z, Q[k]

1:N , A[k]
1:n−1) (51)

(15)
=

1
N

N

∑
n=1

I(Wk:K; A[k]
n |W1:k−1, Ŵk, Z, Q[k]

1:N , A[k]
1:n−1) (52)

=
1
N

I(Wk:K; A[k]
1:N |W1:k−1, Ŵk, Z, Q[k]

1:N) (53)

(14)
=

1
N

I(Wk:K; Q[k]
1:N , A[k]

1:N |W1:k−1, Ŵk, Z) (54)

(17)
=

1
N

I(Wk:K; Wk, Q[k]
1:N , A[k]

1:N |W1:k−1, Ŵk, Z) (55)

=
1
N

I(Wk:K; Q[k]
1:N , A[k]

1:N |W1:k, Ŵk, Z) +
1
N

I(Wk:K; Wk|W1:k−1, Ŵk, Z) (56)

=
1
N

I(Wk:K; Q[k]
1:N , A[k]

1:N |W1:k, Ŵk, Z)+
1
N

H(Wk|Ŵk, Z) (57)

(10),(7)
≥ 1

N
I(Wk+1:K; Q[k]

1:N , A[k]
1:N |W1:k, Ŵk, Z) +

L̄ − Lr
N

. (58)

Note that (58) follows from a similar argument in Lemma 1 starting at (37). Next, for the
second term in (45), we have

I(Wk:K; Z, Ŵk−1|W1:k−1)

= H(Wk:K|W1:k−1)− H(Wk:K|Wk−1, Z, Ŵk−1) (59)

= (K − k + 1)L − (K − k + 1)L(1 − r) (60)

= (K − k + 1)Lr (61)

Combining the above results concludes the proof.

We now apply the result of Lemma 2 recursively on that of Lemma 1 to get the general
lower bound through the following series of inequalities:

D̄
(30)
≥ (L̄−Lr)+ I(Wk:K; Q[k−1]

1:N , A[k−1]
1:N |W1:k−1, Ŵ1, Z) (62)

(42)
≥ (L̄ − Lr) +

L̄ − Lr
N

+
1
N

I(Wk+1:K; Q[k]
1:N , A[k]

1:N |W1:k, Ŵk, Z)

− (K − k + 1)Lr (63)
(42)
≥ (L̄ − Lr) +

L̄ − Lr
N

+
L̄ − Lr

N2

+
1

N2 I(Wk+2:K; Q[k+1]
1:N , A[k+1]

1:N |W1:k+1, Ŵk+1, Z)

− (K − k + 1)Lr +
(K − k + 2)Lr

N
(64)

(42)
≥ . . . (65)

= (L̄ − Lr)
K+1−k

∑
j=0

1
N j − Lr

K−k

∑
j=0

K + 1 − k − j
N j (66)



Entropy 2025, 27, 828 12 of 26

Next, since the bound in (66) is valid for arbitrary k, it is still valid for k correspond-
ing to the maximum possible lower bound, i.e., (66) gives K intersecting line segments,
therefore, the download cost D̄ is lower bounded by their maximum value

D̄ ≥ max
i∈{2,...,K+1}

(L̄−Lr)
K+1−i

∑
j=0

1
N j −Lr

K−i

∑
j=0

K+1−i− j
N j . (67)

Since (67) lower bounds the download cost D̄ for any cache-aided private updating
with unknown prefetching scheme, it also lower bounds the download cost of the optimal
private updating scheme D̄L. Finally, since D̄L is an integer, we take the ceiling of (67) to
get (20).

This concludes the converse proof.

5. Proof of Theorem 2: Achievability for Very Low and Very High
Caching Ratios

Our achievability scheme makes use of the correlation between Wθ and Ŵθ through
the knowledge of their maximum Hamming distance f in order to reduce the download
cost. This approach is related to the problem tackled in [32] (without privacy constraints),
in which a source is compressed given that it is correlated with some side information that
is available only at the decoder. The retrieving user represents the decoder in our case,
with side information Ŵθ . By the Slepian–Wolf coding theorem [36], one can noiselessly
compress the source Wθ at the rate of H(Wθ |Ŵθ) = L̄. The compressed source is treated as a
new message to be downloaded using a PIR scheme, as opposed to downloading the whole
message Wθ . Such a scheme, however, has a message length constraint (unlike most of the
PIR works in the literature). For that reason, we leverage tools from the PIR scheme with
an arbitrary message length in [34], and extend them to work in the caching setting at hand,
to accomplish our task.

While our achievability schemes make use of the local cache Z, we will first give some
motivating examples without the user having knowledge of Z, which represents the case
r = 0 tackled in our preliminary work [35].

5.1. Motivating Examples without Caching
5.1.1. L = 3, N = 2, K = 2, f = 1, and r = 0

In this example, we have L̄ = log2(1 + 3) = 2, and C = 2/3 (from (1)). Setting
r = 0 in (22), we need to show that D̄ = ⌈⌈L̄⌉/C⌉ = 3 bits is achievable. We first start
by constructing a [3, 1, 3] linear block code, which is in this case a repetition code with
generator matrix G and parity check matrix H given by

G =
[
1 1 1

]
, H =

[
1 1 0
1 0 1

]
. (68)

Note that such code is capable of correcting at most f = 1 error. The syndromes associated
with this code are s ∈ {00, 01, 10, 11}. Observe that the length of s is exactly ⌈L̄⌉.

Instead of requesting Wθ , the user retrieves the index of the coset in which Wθ resides
in the code’s standard array. That is, its corresponding syndrome

sθ = WθH
T . (69)

The user then compares Ŵθ to all the words in that coset, and decodes Wθ as the one
closest in Hamming distance. This is guaranteed to yield the unique correct message [32].
Therefore, the syndrome sθ efficiently represents the flipped bits’ indices W̄θ , and one is
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able to reduce the effective message length from L = 3 to ⌈L̄⌉ = 2 by dealing with the
syndrome sθ instead of Wθ .

Let W1 = [a1, a2, a3], and W2 = [b1, b2, b3]. The syndromes (the new messages) are
given by

s1 = W1H
T =

[
a1 + a2 a1 + a3

]
≜
[

ā1 ā2

]
, (70)

s2 = W2H
T =

[
b1 + b2 b1 + b3

]
≜
[
b̄1 b̄2

]
. (71)

Assume θ = 1. Since ⌈L̄⌉ = NK−1, we can apply a non-symmetric PIR scheme [34] to decode
s1. This scheme is shown in Table 2, and has a download cost of D̄ = 3 bits, which is
optimal in this case since it meets the converse bound.

Table 2. Query table for N = K = 2, L = 3, f = 1, and r = 0.

Database 1 Database 2

ā1, b̄1 ā2 + b̄1

The repetition code used in this example is a perfect code. While this makes L̄ an integer,
and meets the converse bound, perfect codes are scarce. In the next example, we show how
the proposed scheme performs with non-perfect codes.

5.1.2. L = 5, N = 2, K = 2, f = 1, and r = 0

In this example, we have L̄ = log2(1 + 5) = 2.58, and C = 2/3. We show that
D̄ = ⌈⌈L̄⌉/C⌉ = 5 bits is achievable. As in the previous example, we start by construct-
ing a [5, 2, 3] linear block code. Differently though, this is not a repetition code, and is
characterized by

G =

[
1 0 1 1 1
0 1 1 1 0

]
, H =

1 1 1 0 0
1 1 0 1 0
1 0 0 0 1

. (72)

The syndromes s have length ⌈L̄⌉. Specifically,

s1 = W1H
T =

[
a1 + a2 + a3 a1 + a2 + a4 a1 + a5

]
≜
[

ā1 ā2 ā3

]
, (73)

s2 = W2H
T =

[
b1 + b2 + b3 b1 + b2 + b4 b1 + b5

]
≜
[
b̄1 b̄2 b̄3

]
. (74)

Since ⌈L̄⌉ = NK−1 + 1, we follow the methodology in [34]; we privately download
NK−1 = 2 bits (ā1 and ā2) using the non-symmetric PIR scheme in the previous example,
and then privately download the remaining 1 bit (ā3) using the scheme in [37]. The
technique in [37] in this case is such that the user requests random linear combinations of
[ā3 b̄3] from database 1 using a random binary vector h, and the same from database 2 yet
with h′ = h + eθ , where ei is the ith standard basis vector. The full PIR scheme is shown in
Table 3, and it has a download cost of D̄ = 5 bits, which is 1 bit away from the converse
bound since the code used is non-perfect.
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Table 3. Query table for N = K = 2, L = 5, f = 1, and r = 0.

Database 1 Database 2

ā1, b̄1 ā2 + b̄1

h1 ā3 + h2b̄3 (h1 + 1)ā3 + h2b̄3

5.2. The General Scheme with Caching

For general L, N, K, and f , we construct an [L, L − ⌈L̄⌉, 2 f + 1] linear block code. From
the Gilbert–Varshamov bound [33], we know that such a code exists if

2⌈L̄⌉ ≤
2 f

∑
j=0

(
L
j

)
. (75)

In addition, such a code must satisfy the Hamming bound [33]:

f

∑
j=0

(
L
j

)
≤ 2⌈L̄⌉. (76)

By the definition of L̄ in (9), both (75) and (76) are satisfied, and so the code exists and is
able to correct f bit flips.

Next, we map each message to its corresponding syndrome of the constructed code,
which is of length L − (L − ⌈L̄⌉) = ⌈L̄⌉. The user then retrieves the syndrome sθ according
to a PIR scheme with N databases, K messages, and ⌈L̄⌉ message length. For the case
r = 0, by ([34], Theorem 1), a download cost of ⌈⌈L̄⌉/C⌉ is achievable in this case. Finally,
correctness is guaranteed since querying for the syndrome sθ allows the user to decode Wθ

as the unique word in the syndrome’s coset with the least Hamming distance from Ŵθ [32].
This shows that (22) holds specifically when r = 0.

For the case when r ̸= 0, the user will have access to cached linear combinations of Wi

for all i ∈ [K]. These cached linear combinations are given by WiRi, where Ri is a matrix of
dimension (L × ⌈L̄⌉). For the purposes of our cache-aided achievability, we let

Ri = HT , ∀i ∈ [K], (77)

where H is the parity check matrix of the code. This means that during the prefetching phase,
bits from our desired syndrome are being cached, and what is left to download is the remaining
⌈L̄⌉ − Lr bits.

To this end, we develop some novel schemes for cache-aided PIR with an arbitrary
message length that utilize the results from [29]. In particular, for all s ∈ {1, 2, . . . , K − 1}, we
define the message length of a cache-aided PIR scheme from [29] with caching ratio rs as

Lr(s) =
(

K − 2
s − 1

)
+

K−1−s

∑
i=0

(
K − 1
s + i

)
(N − 1)i N, (78)

and the normalized download cost of such a scheme as

Dr(s) =
∑K−1−s

i=0 ( K
s+1+i)(N − 1)i N

(K−2
s−1 ) + ∑K−1−s

i=0 (K−1
s+i )(N − 1)i N

. (79)
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For very low caching ratio r, we recall from [29] that the optimal normalized download
cost of a cache-aided PIR scheme is

D∗(r) = (1 − r) ·
K−1

∑
i=0

1
Ni − r ·

K−2

∑
i=0

K − 1 − i
Ni , (80)

and that for very high caching ratio r (in the context of this work), the optimal normalized
download cost of a cache-aided PIR scheme is

D∗(r) = (1 − r). (81)

With these tools in hand, in the remainder of this section, we describe our achievable
schemes for very low and very high caching ratios for cache-aided PIR with arbitrary
message length, and show that they achieve the download costs in Theorem 2.

5.3. Very Low Caching Ratio: Proof of (22)

What follows is a cache-aided achievable scheme for retrieving an arbitrary L bits
for very low caching ratios (0 < r ≤ r1 = 1

1+N+N2+···+NK−1 ). We first use an optimal
cache-aided PIR scheme with message size Lr(1). Within the desired L bits (including the
cached bits), we view each Lr(1) bits as a group, and proceed until the number of desired
bits remaining is strictly less than Lr(1). To this end, we have

L = G0Lr(1) + L0, (82)

where G0 =
⌊

L
Lr(1)

⌋
and 0 ≤ L0 ≤ Lr(1)− 1. If L0 = 0, then the retrieval is completed.

If not, then for the L0 bits that remain, we use an optimal asymmetric PIR scheme with
message size NK−1 (without caching). Within the remaining L0 desired bits, we view each
NK−1 bits as a group, and proceed until the number of desired bits remaining is strictly less
than NK−1. To this end, we have

L0 = G1NK−1 + L1, (83)

where G1 =
⌊

L0
Nk−1

⌋
and 0 ≤ L1 ≤ NK−1 − 1. If L1 = 0, then the retrieval is completed.

If not, then for the L1 bits that remain, we use the scheme in [37] with N databases and
message size N − 1. Within the remaining L1 bits, we view each N − 1 bits as a group, and
proceed until the number of desired bits remaining is strictly less than N − 1. To this end,
we have

L1 = G2(N − 1) + L2, (84)

where G2 =
⌊

L1
N−1

⌋
and 0 ≤ L2 ≤ N − 2. If L2 = 0, then the retrieval is completed. If

L2 bits still remain, we use the scheme in [37] with L2 + 1 databases and message size L2.
Therefore, the message size and the achievable download cost are

L = G0Lr(1) + G1NK−1 + G2(N − 1) + L2, (85)

D =

G0Lr(1)D∗(r1) + G1
NK−1

C + G2N, if L2 = 0,

G0Lr(1)D∗(r1) + G1
NK−1

C + G2N + L2 + 1, otherwise.
(86)

We next show that the achievable download cost in (86) satisfies D ≤ ⌈D∗(r) · L⌉. To this
end, we have the following lemma.
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Lemma 3. For two very low caching ratios ra and rb with 0 ≤ ra ≤ rb ≤ r1, we have

D∗(ra)− D∗(rb) = (rb − ra) · Dc, (87)

where Dc = ∑K−1
i=0

K−i
Ni .

Proof. We begin from the left-hand side of (87) and use (80) to write

D∗(ra)− D∗(rb)

=

(
(1 − ra) ·

K−1

∑
i=0

1
Ni − ra ·

K−2

∑
i=0

K − 1 − i
Ni

)
−
(
(1 − rb) ·

K−1

∑
i=0

1
Ni − rb ·

K−2

∑
i=0

K − 1 − i
Ni

)
(88)

= (rb − ra) ·
K−1

∑
i=0

1
Ni + (rb − ra) ·

K−2

∑
i=0

K − 1 − i
Ni (89)

= (rb − ra) ·
K−1

∑
i=0

1 + (K − 1 − i)
Ni (90)

= (rb − ra) ·
K−1

∑
i=0

K − i
Ni . (91)

Defining Dc = ∑K−1
i=0

K−i
Ni concludes the proof.

Now towards proving D ≤ ⌈D∗(r) · L⌉, it suffices to show that D < D∗(r) · L + 1 for
two cases. For the first case, let L2 = 0. We wish to show that

G0Lr(1)D∗(r1) + G1
NK−1

C
+ G2N + L2

<D∗(r)·
(

G0Lr(1)+G1NK−1+G2(N−1)+L2

)
+1. (92)

First, we group the terms in (92); we need to show that

− G0Lr(1)·(D∗(r)− D∗(r1)) + G1NK−1 ·
(

1
C
− D∗(r)

)
− (G2(N − 1) + L2)D∗(r)

< 1 − G2N − L2. (93)

Focusing on the left-hand side of (93), we use Lemma 3 to simplify the expression, while
noting that D∗(0) = 1

C , as follows:

− G0Lr(1) · (D∗(r)− D∗(r1)) + G1NK−1 ·
(

1
C
− D∗(r)

)
− (G2(N − 1) + L2)D∗(r)

= −G0Lr(1)Dc(r1 − r) + G1NK−1Dcr − (G2(N − 1) + L2)

(
1
C
− Dcr

)
(94)

= Dc ·
(
− G0Lr(1)r1 + G0Lr(1)r + G1NK−1r + G2(N − 1)r + L2r

)
− G2(N − 1) + L2

C
(95)

= Dc · (−G0Lr(1)r1 + Lr)− G2(N − 1) + L2

C
(96)

= Dc · (−G0 + Lr)− G2(N − 1) + L2

C
. (97)

Note that Lr is the number of cached bits, and that G0 is the number of times a cache-aided
PIR scheme is used. For very low caching ratios, these quantities are equal, and so we have

Dc · (Lr − G0)−
G2(N − 1) + L2

C
= −G2(N − 1) + L2

C
. (98)
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Now, substituting (98) back into (93), we now need to show

0 < 1 − G2N − L2 +
G2(N − 1) + L2

C
. (99)

If N = 1, then G2 = 0, and so (99) clearly follows. For the case when N ≥ 2, plugging in

C = NK−1(N−1)
NK−1 to the right-hand side of (99) gives

1 − G2N − L2 +
G2(N − 1) + L2

C
(100)

= 1 − G2N + G2
NK − 1
NK−1 + L2

(
NK − 1

NK−1(N − 1)
− 1
)

= 1 − G2
1

NK−1 + L2

(
NK−1 − 1

NK−1(N − 1)

)
. (101)

We wish to find a lower bound for (101). To this end, we want to maximize G2 and minimize
L2. We know that L2 ≥ 1, but this also means that G2(N − 1) < L1 ≤ NK−1 − 1 from (84).
Plugging these values into (101) gives

1 − G2
1

NK−1 + L2

(
NK−1 − 1

NK−1(N − 1)

)
≥ 1 − G2(N − 1)

NK−1(N − 1)
+

NK−1 − 1
NK−1(N − 1)

(102)

> 1 − NK−1 − 1
NK−1(N − 1)

+
NK−1 − 1

NK−1(N − 1)
= 1. (103)

and so (99) holds for N ≥ 2.
For the second case, let L2 ≥ 1. We wish to show that

G0Lr(1)D∗(r1) + G1
NK−1

C
+ G2N + L2 + 1

< D∗(r) ·
(

G0Lr(1) + G1NK−1 + G2(N − 1) + L2

)
+ 1. (104)

First, we group the terms in (104); we need to show that

G1NK−1 ·
(

1
C
− D∗(r)

)
− G0Lr(1) · (D∗(r)− D∗(r1))− (G2(N − 1) + L2)D∗(r)

< 1 − G2N − L2 − 1. (105)

By (98), we substitute the left-hand side of (105) so that we have

0 < 1 − G2N − L2 +
G2(N − 1) + L2

C
− 1. (106)

Since L2 ≥ 1, we have N ≥ 2, and so (106) holds by (103). This completes the proof that
D ≤ ⌈D∗(r) · L⌉ for very low caching ratios.

Since the above PIR scheme is constructed as a concatenation of several PIR schemes
that are both correct and private, by ([34], Theorem 4), the above scheme is both correct
and private. To conclude our proof, we define a normalized version of r:

r̃ =
Lr
⌈L̄⌉

, (107)
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as the effective caching ratio. Clearly, by (13), 0 ≤ r̃ ≤ 1. Now, since the above PIR scheme
retrieves L bits (including cached bits) at a download cost of D ≤ ⌈D∗(r) · L⌉, this scheme
can be used to retrieve ⌈L̄⌉ bits (including some Lr cached bits) at a download cost of
D̄ ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉. Expanding this statement gives

D̄ ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉ (108)

=

⌈
⌈L̄⌉(1 − r̃) ·

K−1

∑
i=0

1
Ni − ⌈L̄⌉r̃ ·

K−2

∑
i=0

K − 1 − i
Ni

⌉
(109)

=

⌈
(⌈L̄⌉ − Lr) ·

K−1

∑
i=0

1
Ni − Lr ·

K−2

∑
i=0

K − 1 − i
Ni

⌉
, (110)

which is precisely (22).

5.4. Very High Caching Ratio: Proof of (23)

What follows is a cache-aided achievable scheme for retrieving an arbitrary L bits, for
very high caching ratios (rK−1 = 1

1+N ≤ r ≤ 1). In this scheme, we only use an optimal
cache-aided PIR scheme with message size Lr(K − 1) = 1 + N. We note that in this scheme,
for each bit we have cached, we can download 1 bit from each of the N databases to get a
total of N unknown bits at a download cost of N bits.

Within the desired L bits (including cached bits), we view each Lr(K − 1) bits as a
group, and proceed until the number of desired and unknown L − Lr bits remaining is
strictly less than N. To this end, we have

L = G0Lr(K − 1) + L0, (111)

where G0 =
⌊

L−Lr
N

⌋
, and L0 = L − G0Lr(K − 1). We define C0 = Lr − G0 as the number

of unused cached bits thus far in our scheme. If we have L0 = C0, then we have all of our
desired information, and we are done. Otherwise, we still have L0 − C0 < N bits left to
download. Since the caching ratio r is very high, we have C0 ≥ 1, and so we can use this
bit, as noted above, to download 1 bit from L0 − C0 < N databases each to obtain the
remaining L0 − C0 unknown bits at a download cost of L0 − C0 bits. Therefore, the message
size and the achievable download cost are

L = G0Lr(K − 1) + L0, (112)

D = G0Lr(K − 1)D∗(rK−1) + L0 − C0. (113)

We next show that the achievable download cost in (113) satisfies D ≤ ⌈D∗(r) · L⌉. To
this end, it it suffices to show that D < D∗(r) · L + 1, or more specifically, that

G0Lr(K−1)D∗(rK−1)+L0−C0 < D∗(r) · L+1. (114)

First, we rearrange the terms in (114) as

G0Lr(K−1)D∗(rK−1)+L0−C0−D∗(r) · L < 1, (115)

and then we reduce the left-hand side of (115) as follows
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G0Lr(K−1)D∗(rK−1)+L0−C0−D∗(r) · L

= G0(1 + N)(1 − 1
1 + N

) + L0 − C0 − (1 − r) · L (116)

= G0N + L0 − C0 − L + Lr (117)

= −C0 − G0 + Lr = 0. (118)

Thus, (114) holds, and so this completes the proof that D ≤ ⌈D∗(r) · L⌉ for very high
caching ratios.

Again, since the above PIR scheme is constructed as a concatenation of several PIR
schemes that are both correct and private, by ([34], Theorem 4), the above scheme is both
correct and private. Furthermore, since the above PIR scheme retrieves L bits (including
cached bits) at a download cost of D ≤ ⌈D∗(r) · L⌉, this scheme can be used to retrieve ⌈L̄⌉
bits (including some Lr cached bits) at a download cost of D̄ ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉. Expanding
this statement gives

D̄ ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉ (119)

= ⌈(1 − r̃) · ⌈L̄⌉⌉ (120)

= ⌈⌈L̄⌉ − Lr⌉ = ⌈L̄⌉ − Lr, (121)

which is precisely (23).

6. Proof of Theorem 3: Achievability for K = 3 with Mid-Range
Caching Ratios

What follows is a cache-aided achievable scheme for retrieving an arbitrary L bits, for
mid-range caching ratios given fixed K = 3 setting

(
1

1+N+N2 = r1 < r < r2 = 1
1+N

)
. This

scheme leverages cache-aided PIR schemes for very high and very low caching ratios but
within an asymmetric PIR setting instead.

First, consider the asymmetric cache-aided PIR scheme with N = 3 and L = 3 in
Table 4. This scheme does not utilize all of the databases, nor does it utilize the cache in full.
This scheme downloads one useful bit privately at a cost of 1 bit, and it is an asymmetric
version of the cache-aided PIR scheme for very high caching ratios. This scheme can be
repeated up to five more times to get up to five more useful bits, and each additional bit is
obtained privately.

Table 4. Asymmetric query table with N = K = L = 3 and very high r. Here, we have Z =

{a1, a2, b1, b2, c1, c2}.

Database 1 Database 2 Database 3

a3 + b1 + c1

Next, consider the asymmetric cache-aided PIR scheme with N = 3 and L = 6 in
Table 5. While this scheme does utilize all of the databases, it has asymmetric traffic
between the databases, and it also does not utilize the cache in full. This scheme downloads
1 + N useful bits at a cost of 2 + N, and it is an asymmetric version of the cache-aided PIR
scheme for very low caching ratios. Once again, this scheme can be repeated up to five
more times to get up to 5 · (1 + N) more useful bits, and each additional set of 1 + N bits is
obtained privately.
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In these examples, we see that each scheme can be used a total of N · Lr = 6 times. Now,
note that these two schemes can be used in conjunction with one another, and that rather
than repeating the same scheme over and over again, we can just use them interchangeably
to suit our needs.

Table 5. Asymmetric query table with N = K = 3, L = 6 and very low r. Here, we have Z =

{a1, a2, b1, b2, c1, c2}.

Database 1 Database 2 Database 3

a3 + b1

a4 + c1

b3 + c3

a5 + b3 + c3 a6 + b3 + c3

Consider a cache-aided PIR example where N = 3, L = 14, and r = 2
14 . Note that r

is now mid-range. We can use a combination of the asymmetric very high caching ratio
scheme and very low caching ratio scheme to download the remaining 12 useful bits as
shown in Table 6. First, we use the asymmetric very high caching ratio scheme four times
to obtain four useful bits at a cost of 4 bits total. Then, we use the the asymmetric very low
caching ratio scheme two times to download the remaining 2 · (1 + N) = 8 useful bits at a
cost of 2 · (2 + N) = 10, and so the total download cost is 14.

Table 6. Query table for N = K = 3, L = 14, and mid-range caching ratio r = 2
14 . Here, we have

Z = {a1, a2, b1, b2, c1, c2}.

Database 1 Database 2 Database 3

a3 + b1 + c1 a4 + b1 + c1 a5 + b1 + c1

a6 + b2 + c2

a7 + b2 a11 + b2

a8 + c2 a12 + c2

b3 + c3 b4 + c4

a9 + b3 + c3 a10 + b3 + c3

a13 + b4 + c4 a14 + b4 + c4

It is also worth noting that in the same scenario, but with L = 13 and r = 2
13 , we can

use almost the almost the same query structure as in Table 6. The only difference is that
we truncate the given scheme by not making the query for a14. In this particular case, this
truncation strategy can be performed again to obtain an L = 12, r = 2

12 query structure.
In general, one can use a combination of N · Lr − 1 very high and very low caching

ratio schemes, and then if the remaining number of useful bits left to download is some
ℓ with 1 < ℓ < N + 1, use a truncated very low caching ratio scheme. Otherwise, just a
normal very high or very low caching ratio scheme can be used.

In order to determine the number of times these very high and very low schemes are
used, along with the number of bits that are downloaded via the truncation strategy, we
define three terms as follows:
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G1 =

⌊
Lr(1) · Lr − L

N

⌋
, (122)

G2 =

⌊
L − Lr(2) · Lr

N

⌋
, (123)

L3 = L − (G1 + G2(1 + N))− Lr. (124)

The G1 term is the number of times a very high caching ratio scheme is used, while G2 is
the number of times a very low caching ratio scheme is used. The L3 term is the number
of bits obtained from the truncation strategy when it is used. According to these terms, it
follows that the message size and the achievable download cost are

L = G1 + G2(1 + N) + L3 + Lr, (125)

D =

G1 + G2(2 + N), if L3 = 0,

G1 + G2(2 + N) + L3 + 1, otherwise.
(126)

Lastly, for mid-range caching ratios with K = 3, we recall from [29] that the optimal
normalized download cost of a cache-aided PIR scheme is

D∗(r) = (1 − r)
(

1 +
1
N

)
− r. (127)

We next show that the achievable download cost in (126) satisfies D ≤ ⌈D∗(r) · L⌉.
To this end, it suffices to show that D < D∗(r) · L + 1 for two cases. For the first case, let
L3 = 0. We wish to show that

G1 + G2(2 + N) + L3 − D∗(r) · L < 1. (128)

Reducing the left-hand side of (128), we have

G1 + G2(2 + N) + L3 − D∗(r) · L

= G1+G2(2+N)+L3−((1−r)·(1+ 1
N
)−r) · L (129)

= G1 + G2(2 + N) + L3 −(1−2r+
1−r

N
)·(G1+G2(1+N)+L3+Lr) (130)

= G2 − Lr + (2r − 1 − r
N

) · L (131)

= G2 + Lr − L − Lr
N

(132)

= G2 −
L − (1 + N) · Lr

N
(133)

= G2 −
L − Lr(2) · Lr

N
. (134)

Substituting (134) into (128), we need to show that

G2 −
L − Lr(2) · Lr

N
< 1, (135)

which clearly holds by (123). It follows that (128) holds when L3 = 0. To show that this is
also the case when L3 ≥ 1, we use a lemma.
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Lemma 4. In the K = 3 setting, for any caching ratio r with 1
1+N+N2 = r1 < r < r2 = 1

1+N ,
we have

L3 = 0 ⇐⇒ L − Lr(2) · Lr
N

∈ Z (136)

The proof of Lemma 4 can be found in Appendix B.
Now, for the second case, let L3 ≥ 1. We wish to show that

G1 + G2(2 + N) + L3 − D∗(r) · L < 0. (137)

By (134), we substitute the left-hand side of (137) so that we have

G2 −
L − Lr(2) · Lr

N
< 0, (138)

which holds by Lemma 4. Thus, this completes the proof that D ≤ ⌈D∗(r) · L⌉ for mid-
range caching ratios in the K = 3 setting.

Since the above PIR scheme is constructed as a concatenation of several PIR schemes
that are both correct and private (by [34], Theorem 4), the above scheme is both correct
and private. Furthermore, since the above PIR scheme retrieves L bits (including cached
bits) at a download cost of D ≤ ⌈D∗(r) · L⌉, this scheme can be used to retrieve ⌈L̄⌉ bits
(including some Lr cached bits) at a download cost of D̄ ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉. Expanding this
statement gives

D̄ ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉ (139)

=

⌈
⌈L̄⌉(1 − r̃)

(
1 +

1
N

)
− ⌈L̄⌉r̃

⌉
(140)

=

⌈
(⌈L̄⌉ − Lr)

(
1 +

1
N

)
− Lr

⌉
(141)

which is precisely (26).

7. Discussion
As seen in Corollary 1, for very low and very high effective caching ratios, we obtain

full characterizations of the optimal download cost D̄L for fixed L, N, K, and f . What
remains is to perform the same for an effective caching ratio r̃, defined in (107), with

1
1+N+N2+···+NK−1 = r1 ≤ r̃ ≤ rK−1 = 1

1+N , i.e., such caching ratios that are mid-range. With
Theorem 3 and Corollary 2, this has been performed for the K = 3 case. However, this is
still an open question for when K is arbitrary.

Our approach for our achievability when r̃ ̸= 0 has been to describe an arbitrary
message length PIR scheme for a setting with unknown prefetching, and then show that
the download cost D of such a scheme satisfies D ≤ ⌈D∗(r̃) · ⌈L̄⌉⌉. This approach mirrors
what was performed in [34] for the classical PIR setting.

From [29], for rs < r < rs+1 and α ∈ [0, 1] with r = αrs + (1 − α)rs+1, we define

D̄(r) = αDr(s) + (1 − α)Dr(s + 1). (142)

We know that D̄(r) = D∗(r) for very low and very high caching ratio r, and this is used
in our approach for Theorem 2. This is likewise the case for mid-range caching ratios r
when K = 3 in Theorem 3. For when D̄(r) ̸= D∗(r), as is the case for most mid-range
caching ratios, we can still attempt to describe a scheme, and show that the download cost
D ≤ ⌈D̄(r̃) · ⌈L̄⌉⌉ to obtain some useful result.
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Our goal in this section is to present a motivating example that shows what these
results may look like. Consider the following example setting: N = 3, K = 4, and
rK−2 ≤ r ≤ rK−1. We have r1 = 1

40 and rK−1 = 1
4 , and so a caching ratio is mid-range in this

setting if 1
40 ≤ r ≤ 1

4 . However, for our purposes, we will focus on the subset of mid-range
caching ratios r satisfying rK−2 = 2

17 ≤ r ≤ 1
4 . With this in mind, let us consider some

scenarios with a caching ratio r = 1
7 starting with the case when the number of cached bits

is 3, and so the total message length is 21. Using the methods found in this work, we have
a scheme satisfying D ≤ ⌈D̄(r̃) · ⌈L̄⌉⌉ given in Table 7.

Using these same methods, if there are two cached bits with a total message length of
14, then we also have a scheme satisfying D ≤ ⌈D̄(r̃) · ⌈L̄⌉⌉ using a subset of the queries in
Table 7. However, for the case when there is only one cached bit with a total message length
of seven, we have no scheme satisfying D ≤ ⌈D̄(r̃) · ⌈L̄⌉⌉, not with using the methods in this
work at least. It is worth noting that for some other mid-range caching ratios with this setting,
the scheme from [37] can be used to produce some satisfactory results (r = 1

6 for example) but
not for the case when r = 1

7 in this setting. This is discussed in more detail in [38].
The question remains: why does this pattern break, and why it is difficult to find an

alternative query structure? The answer we have come to is that it has not to do with with
the value of the r, but with the number number of cached bits Lr. More specifically, there
may be some additional limitation on how low of a download cost can be achieved with a
cache-aided arbitrary message length PIR scheme when Lr is relatively low (or in this case,
when Lr = 1). Investigating such limitations is left to future works.

Table 7. Query table for N = 3, K = 4, L = 21, and r = 3
21 . Here, we have Z =

{a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3}

Database 1 Database 2 Database 3

a4 + b1 + c1 a7 + b1 + c1 a10 + b1 + c1

a5 + b2 + d1 a8 + b2 + d1 a11 + b2 + d1

a6 + c2 + d2 a9 + c2 + d2 a12 + b2 + d2

b4 + c4 + d4 b5 + c5 + d5 b6 + c6 + d6

a13 + b5 + c5 + d5 a15 + b4 + c4 + d4 a17 + b4 + c4 + d4

a14 + b6 + c6 + d6 a16 + b6 + c6 + d6 a18 + b5 + c5 + d5

a19 + b3 + c3 + d3 a20 + b3 + c3 + d3 a21 + b3 + c3 + d3

8. Conclusions
In this work, we introduce the cache-aided private updating problem with unknown

prefetching, in which a user’s outdated message is to be privately updated by utilizing
a private cache and querying a set of replicated and non-colluding databases that have
the up-to-date version. To solve this problem, we develop novel arbitrary message length
cache-aided PIR schemes for different caching ratios. These schemes are then combined
with syndrome decoding techniques to guarantee privacy and efficiency. Such schemes are
optimal when the system parameters enable the construction of a perfect code according
to which the syndrome decoding technique is worked out. In other cases, the achievable
download cost has been shown to be within at most 2 bits from a derived converse bound.

Outside of the issues discussed in Section 7, another item that could be resolved in
this problem is the inflexible nature of the cache in our achievability. Specifically, the fact
that for each i ∈ [K], we fix Ri = HT during the prefetching phase. Imposing less control
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over the prefetching phase is one direction to be pursued in the research line of cache-aided
private updating.
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Appendix A. Bound on Effective Value of f
For completeness, we show that

f <
L
2

⇐⇒ ⌈L̄⌉ < L, (A1)

and hence if the maximum number of bit flips is more than half the message length, it is
optimal to ignore the outdated message (as per Corollary 1’s result).

First, suppose that f =
⌊

L−1
2

⌋
< L

2 . If L is odd, then f = L−1
2 and it follows that

L

∑
i=0

(
L
i

)
= 2·

L−1
2

∑
i=0

(
L
i

)
= 2L ⇔

f

∑
i=0

(
L
i

)
= 2L−1. (A2)

So for odd L, we have L̄ = log2

(
∑

f
i=0 (

L
i )
)
= L − 1, and so L−1

2 is the maximum value of f

satisfying ⌈L̄⌉ < L when L is odd.
Next, suppose that L is even. It follows that

L

∑
i=0

(
L
i

)
= 2·

⌊ L−1
2 ⌋

∑
i=0

(
L
i

)
+

(
L
L
2

)
= 2L ⇔

f

∑
i=0

(
L
i

)
< 2L−1. (A3)

So for even L, we have L̄ = log2

(
∑

f
i=0 (

L
i )
)
< L − 1. Also, note that for even L,

L
2

∑
i=0

(
L
i

)
=

⌊ L−1
2 ⌋

∑
i=0

(
L
i

)
+

(
L
L
2

)
> 2L−1. (A4)

This means that
⌊

L−1
2

⌋
is the maximum value of f satisfying ⌈L̄⌉ < L when L is even.

Therefore, for any message length L, we have the result in Remark 2. This completes
the proof.

Appendix B. Proof of Lemma 4
First, we note that

Lr(1) · Lr − L
N

+
L − Lr(2) · Lr

N
= N · Lr, (A5)
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and so it follows that G1 + G2 ∈ {N · Lr, N · Lr − 1}.
Consider the case when G1 +G2 = N · Lr. Plugging this into (124), it can be shown that

G2 =
L − Lr(2) · Lr

N
− L3

N
. (A6)

Substituting (A6) back into (124), it can be shown that

G1 =
Lr(1) · Lr − L

N
+

L3

N
. (A7)

If L3 > 0, then substituting such a value into (A7) would contradict (122). Likewise, if
L3 < 0, then substituting such a value into (A6) would contradict (123). Therefore,

G1+G2 = N·Lr ⇒ L3 = 0 ⇒ L − Lr(2) · Lr
N

∈ Z. (A8)

Now consider the case when G1 + G2 = N · Lr − 1. Plugging this into (124), it can be
shown that

G2 =
L − Lr(2) · Lr

N
− L3 − 1

N
. (A9)

If L3 ≤ 0, then substituting such a value into (A9) would contradict (123). Likewise, if
L3 ≥ N + 1, then substituting such a value into (A9) would also contradict (123). Therefore,
we have

G1+G2 = N·Lr−1 ⇒L3 ̸= 0 ⇒ L−Lr(2)·Lr
N

/∈Z. (A10)

Finally, by combining (A8) and (A10), we can obtain the result in the lemma. This
completes the proof.
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