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Abstract— We consider an energy harvesting two-way channel
with decoding costs. In this system, each node spends energy to
transmit data to the other user, and also to decode data coming
from the other user; that is, each user divides its harvested energy
for transmission and reception. The power needed for decoding
the incoming data is a function of the incoming data rate. We
determine the optimal offline power scheduling policies for both
users that maximize the sum throughput of the system by a given
deadline. We first consider the case with a single energy arrival
at each user. We show that the transmission is limited by the
user with the smaller energy. In this case, the user with larger
energy may not consume all of its energy. We next consider
the case with multiple energy arrivals at both users. We show
that the optimal power allocations are non-decreasing over time,
and they increase synchronously at both users. We then develop
an iterative algorithm based on two-slot updates to obtain the
optimal power allocations for both users.

I. INTRODUCTION

We consider an energy harvesting two-way channel with
decoding costs, see Fig. 1. In this system, users spend energy
to transmit data as well as to decode the incoming data.
Each user depends solely on energy harvested from nature
to transmit and receive data. In this paper, we characterize
the optimal offline power allocation policies for both users
that maximize the sum throughput of the system by a given
deadline. In these policies, each user divides its harvested
energy optimally for transmission and reception powers, and
also schedules available energy usage over upcoming slots.

Energy harvesting communication systems have been stud-
ied extensively in recent literature, see e.g., [1]–[29]. Refer-
ences [1]–[23] focus on energy harvesting at the transmitter
side, and consider the single-user setting [1]–[4], broadcast,
multiple access, and interference channels [5]–[10], two-hop
and relay channels [11]–[13], two-way channels [14], [15],
cooperative multiple access channels [16], diamond channels
[17], energy sharing and energy cooperation concepts [18]–
[20], battery imperfections [21], [22], and temperature con-
strained sensor operations [23]. These references optimize
the transmit power schedules of the users over time, using
concave rate-power relationships, to minimize the transmission
completion time or maximize the throughput by a deadline.

References [24]–[29] focus on energy harvesting at the
receivers. In these references, the energy needed for receiving
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Fig. 1. Two-way channel with an energy harvesting transmitter and receiver.

incoming data is modeled as a monotone increasing convex
function of the incoming rate (see also [30], [31]). In this
case, the receivers need to optimally allocate their harvested
energy for decoding, and the transmitters need to optimize
their transmit powers and therefore rates such that the receivers
can handle, i.e., decode and process, the incoming data with
their available energies. In the above references, each energy
harvesting node is either a transmitter or a receiver, i.e., each
node either needs to optimize its transmit power over time
slots or needs to optimize its decoding power over time slots.

In this paper, we consider an energy harvesting two-way
channel. Each node in this two-way channel transmits data
to the other user, and receives data from the other user.
Therefore, each node is simultaneously an energy harvesting
transmitter and an energy harvesting receiver, and needs to
optimize its power schedule over time slots by optimally
dividing its energy for transmission and decoding. The power
used for transmission is modeled through a concave rate-power
relationship as in the Shannon formula; and the power used
for decoding is modeled as a convex increasing function of the
incoming rate. In particular, throughout this paper, we focus
on decoding costs that are exponential in the incoming rate.

Even in the case of energy harvesting transmitters only
and energy harvesting receivers only, the energy availability
of one side limits the transmission and reception abilities of
the other side; energy harvesting introduces coupling between
transmitters and receivers. In the energy harvesting two-way
channel, this coupling is even stronger. We first consider the
case with a single energy arrival at each user. We show that
the transmission is limited by the user with smaller energy; the
user with larger energy may not consume all of its energy. We
next consider the case with multiple energy arrivals at both
users. We show that the optimal power allocations are non-
decreasing over time, and they increase synchronously at both



users. We develop an iterative algorithm based on two-slot
updates to obtain the optimal power allocations for both users.
We prove the convergence and the optimality of the proposed
algorithm, and provide simulation results on its performance.

II. SINGLE ENERGY ARRIVAL

In this section, we consider the case where both users have
a single energy arrival each. In particular, users 1 and 2 have
E1 and E2 amounts of energy available at the beginning of
communication. Without loss of generality, the communication
takes place over a time slot of unit length. The physical layer is
Gaussian with unit-variance noise at both users. The sum rate
is given by the sum of the single-user rates in the full-duplex
Gaussian two-way channel [32]. Therefore, the rate per user
is the single-user Shannon rate of 1

2 log(1 +p), where p is the
transmit power and log is the natural logarithm. The decoding
power at a receiver is exponential in the incoming rate r, i.e.,
φ(r) = a(ebr + c). In particular, we take b = 2 and c = −1
for convenience, without of loss of generality; any other such
exponential decoding power can be handled by appropriately
modifying the incoming energy. Then, if the first user transmits
with power p, the incoming rate is 1

2 log(1 + p), and the
second user spends a power of ap to decode the incoming
data. Therefore, the throughput maximization problem is:

max
p1,p2

1

2
log(1 + p1) +

1

2
log(1 + p2)

s.t. p1 + ap2 ≤ E1

p2 + ap1 ≤ E2 (1)

where p1 and p2 are the powers of the users. We assume a 6= 1,
for if a = 1, by concavity of the log, the optimal solution will
be given by p∗1 = p∗2 = min{E1, E2}/2.

We have the following lemma regarding this problem.

Lemma 1 In the optimal policy, at least one user consumes
all of its energy in transmission and decoding. This is the user
with the smaller energy.

Proof: We prove this by contradiction. Assume that in the
optimal policy {p∗1, p∗2}, neither user consumes its energy fully,
i.e., both constraints in (1) are strict. Then, we can increase p∗1
until one of them holds with equality. This strictly increases
the objective function, and thus, contradicts the optimality of
the original policy. This proves the first part of the lemma.

Now, assume without loss of generality that E1 ≤ E2, but
only the second user consumes all of its energy, i.e.,

p∗2 + ap∗1 = E2 ≥ E1 > p∗1 + ap∗2 (2)

which further leads to having

p∗1 < p∗2, if a < 1 (3)
p∗1 > p∗2, if a > 1 (4)

Let us consider the case in (3) (similar arguments follow for
(4)), choose some ε > 0, and define the following new policy:

p̃1 = p∗1 + ε, p̃2 = p∗2 − ε (5)

The new policy consumes the following amounts of energy

p̃2 + ap̃1 = p∗2 + ap∗1 − (1− a)ε < E2 (6)
p̃1 + ap̃2 = p∗1 + ap∗2 + (1− a)ε (7)

Since the first user did not consume all of its energy, we can
choose ε small enough such that the new policy is feasible
with respect to the first user. By concavity of the log, this
new policy strictly increases the sum rate, and therefore, the
original policy cannot be optimal, i.e., the first user has to
consume all of its energy. �

The above lemma states that, in the presence of decoding
costs, one user may not be able to use up all of its energy.
This is because each user now needs to adapt its power (and
rate) to both its own energy and to the energy of the other
user, in order to guarantee decodability. This makes the user
with smaller energy a bottleneck for the system.

Without loss of generality, we continue assuming E1 ≤ E2.
Therefore, by Lemma 1, we have p∗1 +ap∗2 = E1. Substituting
this condition in (1), we get the following problem for a < 1:

max
p2

1

2
log (1 + E1 − ap2) +

1

2
log (1 + p2)

s.t. 0 ≤ p2 ≤
E2 − aE1

1− a2
(8)

Alternatively, we get the following problem for a > 1:

max
p1

1

2
log (1 + p1) +

1

2
log

(
1 +

E1 − p1
a

)
s.t. 0 ≤ p1 ≤

aE2 − E1

a2 − 1
(9)

Let us focus on problem (8). By a first derivative analysis,
we obtain the optimal second user power as:

p∗2 = min

{[
1 + E1 − a

2a

]+
,
E2 − aE1

1− a2

}
(10)

where [x]+ = max(x, 0). Then, we find the optimal first user
power by substituting p∗1 = E1 − ap∗2. Similar arguments
follow for problem (9). In the next section, we use insights
from the solution of the single energy arrival case to solve the
multiple energy arrival case.

III. MULTIPLE ENERGY ARRIVALS

We now consider the case of multiple energy arrivals.
Energies arrive at the beginning of time slot i with amounts
E1i and E2i at the first and the second user, respectively, ready
to be used in the same slot. Unused energies are saved in
batteries to be used in later slots. The problem becomes:

max
p1,p2

N∑
i=1

1

2
log (1 + p1i) +

1

2
log (1 + p2i)

s.t.
k∑
i=1

p1i + ap2i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p2i + ap1i ≤
k∑
i=1

E2i, ∀k (11)



which is a convex optimization problem. The Lagrangian is:

L =−
N∑
i=1

1

2
log (1 + p1i)−

N∑
i=1

1

2
log (1 + p2i)

+

N∑
k=1

λ1k

(
k∑
i=1

p1i + ap2i −
k∑
i=1

E1i

)

+

N∑
k=1

λ2k

(
k∑
i=1

p2i + ap1i −
k∑
i=1

E2i

)
(12)

where {λ1k} and {λ2k} are the non-negative Lagrange mul-
tipliers associated with the energy causality constraints of the
first and the second user, respectively. The KKT optimality
conditions are:

p1i =
1∑N

k=i(λ1k + aλ2k)
− 1 (13)

p2i =
1∑N

k=i(λ2k + aλ1k)
− 1 (14)

along with the complementary slackness conditions:

λ1k

(
k∑
i=1

p1i + ap2i −
k∑
i=1

E1i

)
= 0, ∀k (15)

λ2k

(
k∑
i=1

p2i + ap1i −
k∑
i=1

E2i

)
= 0, ∀k (16)

In the following lemmas, we characterize the properties of
the optimal power control policies for this problem.

Lemma 2 In the optimal policy, both users’ powers are non-
decreasing in time, i.e., p1(i+1) ≥ p1i and p2(i+1) ≥ p2i.

Proof: The proof follows from (13) and (14) since the denom-
inators are non-negative and non-increasing as λ1k, λ2k ≥ 0.
�

Lemma 3 In the optimal policy, the power of user j ∈ {1, 2}
increases in a time slot only if at least one of the two users
consumes all of its available energy in transmission/decoding
in the previous time slot.

Proof: From (13) and (14), we see that powers can only
increase from slot i to slot i+1 if at least λ1i or λ2i is strictly
positive, or else powers will stay the same. By complementary
slackness conditions in (15) and (16), we see that the first
(resp., second) user’s energies must all be consumed by slot i
if λ1i > 0 (resp., λ2i > 0). �

Lemma 4 In the optimal policy, powers of both users increase
synchronously.

Proof: Let us assume that we have p1i < p1(i+1). By
Lemma 3, we must have at least λ1i > 0 or λ2i > 0. This
in turn makes p2i < p2(i+1) from (14). Similarly, if we have
p2i < p2(i+1), then we must also have p1i < p1(i+1) from
(13). Thus, the two users’ powers increase synchronously. �

A. The Case of Two Arrivals

We now solve the case of two energy arrivals at each user
explicitly. We will provide an iterative algorithm to solve the
general multiple energy arrivals case by using the two-slot
case. In a two-slot setting, it is optimal to have at least one
user consume all of its energy in the second slot. It is not clear,
however, if this is the case in the first slot. Towards that, we
check the feasible energy consumption strategies and choose
the one that gives the maximum sum rate. In each strategy,
we find the optimal residual energy transferred from the first
to the second slot for a given user. We begin by checking a
constant-power strategy which, by concavity of the objective
function, is optimal if it is feasible [1]. This occurs when
neither user consumes all of its energy in the first slot, and
hence, by Lemma 3, the powers of each user in the two slots
are equal, i.e., p11 = p12 , p1, and p21 = p22 , p2. This
leaves us with solving a single-arrival problem, as discussed
in Section II, with the average energy E1 = E11+E12

2 and
E2 = E21+E22

2 , at the first and the second user, respectively.
There can be four more consumption strategies to check if the
above is infeasible. We highlight one of them in the following
analysis. The remaining ones follow similarly.

We consider the strategy in which the first user consumes
all of its energy in the first slot, and the second user consumes
all of its energy in the second slot. The second user may have
some residual energy left from the first slot to be used in
the second slot. Denoting this energy residual by r, we have:
p11+ap21 = E11, and p21+ap11 = E21−r. Solving these two
equations for p11 and p21, we obtain: p11 = E11−a(E21−r)

1−a2 , and
p21 = E21−r−aE11

1−a2 . Since, the second user consumes all of its
energy in the second slot we have: p21 +ap11 + p22 +ap12 =
E21 + E22, which leads to: p22 + ap12 = E22 + r. Next, we
divide the energy consumption in the second slot between the
two users as: p12 = δ

a and p22 = E22 +r−δ, for some δ ≥ 0.
Finding the optimal sum rate in this strategy is tantamount to
solving for the optimal values of r and δ. Thus, problem (11)
in this case can be rewritten as:

max
r,δ

1

2
log

(
1 +

δ

a

)
+

1

2
log (1 + E22 + r − δ)

+
1

2
log

(
1 +

E11 − a(E21 − r)
1− a2

)
+

1

2
log

(
1 +

E21 − r − aE11

1− a2

)
s.t. 0 ≤ δ ≤ E22 + r(

E21 −
E11

a

)+

≤ r ≤ E21 − aE11

δ ≤ 1

1− a2
(E12 − a (E22 + r)) (17)

which is a convex optimization problem in (r, δ) [33]. Note
that for the above problem to be feasible, we need to have:
E21 ≥ aE11, and E12 ≥ aE22. Other consumption strategies
will have similar conditions.

To solve the above problem, we first assume that the



Lagrange multiplier associated with the last constraint is zero,
i.e., the constraint is not binding (this is the energy causality
constraint of the first user in the second time slot), and obtain
a solution. The solution is optimal if it satisfies that constraint
with strict inequality. Otherwise, the constraint is binding,
and needs to be satisfied with equality. In the latter case,
we substitute δ = 1

1−a2 (E12 − a (E22 + r)) in the objective
function and solve a problem of only one variable, r, which
can be solved directly by first derivative analysis over the
feasible region of r. We now characterize the solution after
removing that last constraint. We define r1 ,

(
E21 − E11

a

)+
,

r2 , E21 − aE11 and introduce the following Lagrangian:

L =− 1

2
log

(
1 +

δ

a

)
− 1

2
log (1 + E22 + r − δ)

− 1

2
log

(
1 +

E11 − a(E21 − r)
1− a2

)
− 1

2
log

(
1 +

E21 − r − aE11

1− a2

)
+ λδ(δ − E22 − r)

− ηδδ + λr(r − r1) + ηr(r2 − r) (18)

where λδ , ηδ , λr, and ηr are the non-negative Lagrange
multipliers. Taking the derivatives with respect to δ, r, and
equating to 0, we get the following KKT conditions

1

a+ δ
+ ηδ =

1

1 + E22 + r − δ
+ λδ (19)

1

1 + E22 + r − δ
+

a

1− a2 + E11 − a(E21 − r)
+ ηr

=
1

1− a2 + E21 − r − aE11
+ λr (20)

along with the usual complementary slackness conditions.
From (19), we solve for δ in terms of r as follows:

δ(r) =


0, a > 1 + E22 + r
1+E22+r−a

2 , 1− (E22 + r) ≤ a ≤ 1 + E22 + r

E22 + r, a < 1− (E22 + r)

(21)

Next, we find the optimal value of r. For that, we substitute
by δ(r) in (20). Assuming that the middle expression in (21)
holds, we have:

ηr + f1(r) = λr + f2(r) (22)

where f1 and f2 are given by

f1(r) =
2

1 + E22 + a+ r
+

a

1− a2 + E11 − aE21 + ar
(23)

f2(r) =
1

1− a2 + E21 − aE11 − r
(24)

To solve this, we first assume λr = ηr = 0, and equate both
sides of (22). The existence of a feasible solution of r in this
case depends on the extreme values of f1 and f2. In particular,
since f1(r) is decreasing in r, while f2(r) is increasing in r,
the solution exists if and only if f1(r2) ≤ f2(r2) and f1(r1) ≥

f2(r1). Note that such solution can be found, for example, by
a bisection search. If this condition is not satisfied, then one of
the Lagrange multipliers needs to be strictly positive in order
to equate both sides. In particular, if f1(r2) > f2(r2), then
we need λr > 0, which implies by complementary slackness
that r = r2. On the other hand, if f1(r1) < f2(r1), then we
need ηr > 0, which implies by complementary slackness that
r = r1. After solving for r, we check if it is consistent with
δ(r) by checking the conditions in (21). If not, then we check
the other two cases: δ(r) = 0 and δ(r) = E22+r, and re-solve
for r. The analysis in these cases follows similarly as above.
This concludes the solution of the two-slot case.

In the next section, we use the above analysis to find the
optimal solution in the general case of multiple energy arrivals.

B. Iterative Solution for the General Case

We solve problem (11) iteratively in a two-slot by two-slot
manner, starting from the last two slots and going backwards.
Once we reach the first the two slots, we re-iterate starting
from the last two slots, and go backwards again. These
iterations stop if the policy does not change after we reach
the first two slots. The details are as follows.

We first initialize the energy state of each slot of both users
by S1 = E1 and S2 = E2, and solve each slot independently,
as discussed in Section II, to get an initial feasible power
policy {p(0)

1 ,p
(0)
2 }. We then start by examining slots N−1 and

N . We solve the throughput maximization problem for these
two slots with energies {S1(N−1), S1N} and {S2(N−1), S2N}
at the first and second users, respectively, as discussed in
Section III-A. After we solve this problem, we update the
energy state vectors S1 and S2, and move back one slot to
examine slots N − 2 and N − 1. We solve the throughput
maximization problem for these two slots using the updated
energy state {S1(N−2), S1(N−1)} and {S2(N−2), S2(N−1)} at
the first and second users, respectively. We update the energy
state vector after solving this problem, and continue moving
backwards until we solve for slots 1 and 2. After that, we
get another feasible power policy {p(1)

1 ,p
(1)
2 }, where the

superscript stands for the iteration index. We then compare
this power policy with the initial one. If they are the same,
we stop. If not, we perform this process again starting from
the last two slots, going backwards, until we get an updated
power policy {p(2)

1 ,p
(2)
2 }. We stop after the kth iteration if

p
(k−1)
1 = pk1 and p

(k−1)
2 = pk2 . Since the sum throughput can

only increase with the iterations, and since it is also upper
bounded due to the energy constraints, the convergence of the
above two-slot iterations is guaranteed.

Next, we check whether the limit point satisfies the KKT
optimality conditions. Namely, we solve for the Lagrange
multipliers in (13) and (14). If they are all non-negative, then
the KKT conditions are satisfied and by the convexity of the
problem, the limit point is optimal [33]. If not, then the energy
state vectors need to be updated. This might be the case for
instance if while updating some given two slots, more than
necessary amount of energy is transferred forward. While this
may be optimal with respect to these two slots, it does not
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Fig. 2. Two-slot numerical example.

take into consideration the energy arrival vectors in the entire
N slots. Therefore, in such cases, we perform another round
of iterations where we take some of the energy back if this
increases the objective function. Taking energy back without
violating causality can be done, e.g., via putting measuring
meters in between the slots during the two-slot update phase
to record the amount of energy moving forward [18]. Since
the problem feasibility is maintained with each update, and by
the convexity of the problem, if we cycle through all the slots
infinitely often, iterations converge to the optimal policy.

IV. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the previous analysis. First, we consider a two-slot system
with energy arrivals E1 = [0.5, 3.5] and E2 = [1, 1.5], for the
first and the second user, respectively. The decoding power
factor is equal to a = 0.5. We first solve for each slot
independently using the single arrival result to get p1 = [0, 1]
and p2 = [0.33, 1.33]. Then, we find the optimal solution as
discussed in Section III-A. First, we check the constant-power
strategy, where neither user consumes its energy in the first
slot, and solve a single arrival problem with average energy
arrivals Ē1 = 2 and Ē2 = 1.25 to get p̄1 = 1.75 and p̄2 =
0.375, which are found infeasible. Thus, we move to check
on the second consumption strategy: the first user consumes
all energy in the first slot while the second user consumes
all energy in the second slot, i.e., we solve problem (17). We
first remove the last constraint, and take δ(r) = 1+E22+r−a

2 ,
the middle term of (21), and solve for r using (22). This gives
r = 0.55, which satisfies the middle constraint in (21), thus the
assumed δ(r) is correct, and gives δ = 1.27. Finally, we check
the relaxed (last) constraint of (17); we find that it is satisfied
with strict inequality. Therefore, (r∗ = 0.55, δ∗ = 1.27)
is the optimal solution for this consumption strategy. The
corresponding powers are given by p1 = [0.36, 2.55] and
p2 = [0.26, 0.77]. Next, we check the other strategies. Among
the feasible ones, we find that the maximum throughput is
given by that of the second strategy above, and is therefore
the optimal solution of this two-slot system.

In Fig. 2, we show the single-slot solution on the top and
the optimal solution on the bottom of the figure. The height of

4
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Fig. 3. Optimal power allocation for a four-slot system.

the water in blue represents the power level of a user in a given
slot. We note that the first user’s optimal power in the first slot
is larger than the corresponding single-slot power allocation.
That is because the second user’s optimal power is smaller
than the single-slot power allocation, which gives more room
for the first user to transmit. This shows how decoding costs
closely couple the performance of the two users.

Next, we consider a four-slot system with E1 = [3, 4, 2, 1],
E2 = [2, 5, 3, 6], and a = 0.1. We begin by solving the optimal
powers for slots 3 and 4. Then, fixing slot 4, we solve for slots
2 and 3, followed by slots 1 and 2. This is considered one
iteration of the algorithm. Whenever there is a residual energy
transferred from a slot to the next we perform another iteration.
The process is terminated when we converge to a point, i.e.,
further iterations do not change the power allocations. At
the convergence point, the limit powers are given by p∗

1 =
[2, 2.14, 2.14, 2.2] and p∗

2 = [1.8, 3.79, 3.79, 5.78], which
admit a non-negative solution for the Lagrange multipliers
in (13) and (14), and are therefore optimal. We plot the
optimal power allocations in Fig. 3. The powers of the two
users are non-decreasing as shown in Lemma 2, and they
increase simultaneously, as shown in Lemma 4. Also, since
some energy is transferred during the iterations from slot 2
to 3 at both users, the powers in these slots are equal. We
plot the squared error ‖p(k) − p∗‖22 in Fig. 4, and the the
sum throughput in Fig. 5 over the iterations for this case. We
observe that the error decreases monotonically and the sum
throughput increases monotonically with iterations.

To show the possible necessity of taking some of the energy
back after the two-slot updates, we consider another four-
slot system with energies E1 = [0.9, 0.1, 3, 0.8] and E2 =
[0.8, 1.5, 2, 2]; decoding cost parameter a = 0.7. The two-
slot updates converge to powers p1 = [0.24, 0.24, 0.82, 0.84]
and p2 = [0.31, 0.31, 1.56, 1.63]. However, this does not
admit non-negative Lagrange multipliers solution in (13) and
(14), and therefore we go through another round of iterations
where energy can be taken back to the extent allowed by
the meters. Iterations converge to the optimal powers p∗

1 =
[0.1, 0.1, 0.8, 0.8] and p∗

2 = [0.57, 0.57, 1.57, 1.57].

V. CONCLUSIONS

We considered throughput maximization for an energy har-
vesting two-way channel with decoding costs. In this system,
each user is an energy harvesting transmitter and an energy
harvesting receiver. The users need to allocate their harvested
energies for transmission power and decoding power. We
determined the optimal power control policies for both users
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under energy causality constraints. We showed that for the
single energy arrival case, the communication is limited by
the user with smaller energy. In the multiple energy arrival
case, we showed that the transmission powers of both users
are non-decreasing over time and increase synchronously. We
provided an iterative algorithm to obtain the optimal power
allocations based on two-slot updates.
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