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Abstract— We consider a mobile energy harvesting transmitter
where movement is motivated by finding better energy harvesting
locations. Movement comes with an energy cost expenditure, and
hence there exists a tradeoff between staying at the same location
and moving to a new one. On one hand, the transmitter may opt
not to move and use all its available energy for transmission;
on the other hand, it can choose to move to a potentially
better location, spending some of its available energy during the
movement process, and yet harvest larger amounts of energy at
the new location and achieve higher throughput. In this paper,
we characterize this tradeoff by designing throughput-optimal
power allocation policies subject to energy causality constraints
and moving costs. In our setup, the transmitter moves along a
straight line, where two energy sources are located at the opposite
ends of the line. We first study the case of a single energy arrival
at both sources, and then generalize it to the case of multiple
energy arrivals.

I. INTRODUCTION

We consider an energy harvesting single-user channel where
the transmitter uses its harvested energy in data transmission
and to move to different locations in search for better energy
harvesting spots, see Fig. 1. We design optimal power and
movement scheduling policies that maximize the throughput
by a given deadline subject to energy causality constraints.

Optimal energy management policies in energy harvesting
communication networks have been considered extensively in
the recent literature. Earlier works [1]–[4] consider the single-
user setting with various battery size assumptions, with and
without fading. References [5]–[11] extend this to broadcast,
multiple access, and interference settings; [12]–[15] consider
two-hop and relay channels; and [16], [17] study two-way
channels. Energy sharing and energy cooperation concepts
are studied in [18]–[20]. Most of the above works focus on
transmitter-side energy harvesting.

References [21]–[27] study energy harvesting receivers,
where energy harvested at the receiver is spent mainly for
sampling and decoding. Other works [28]–[33] study the
impact of processing costs, i.e., the power spent for circuitry,
on energy harvesting communications. Depending on energy
availability and system parameters, the above references show
that considering decoding and processing costs can change the
characteristics of optimal power policies.

In this paper, we study another aspect of power consumption
in energy harvesting sensor nodes, namely, the power con-
sumed in the process of harvesting energy. That is, there is a
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Fig. 1. Mobile energy harvesting node moving along a straight line.

cost to taking actions to harvest energy. In this paper, we model
this cost via the energy consumed in physical movement. We
consider an energy harvesting transmitter with the ability to
move along a straight line. Two energy sources are located
at the opposite ends of the line, and the amount of energy
harvested at the transmitter from each source depends on its
distance from the two sources. Movement is thus motivated
by finding better energy harvesting locations. However, the
transmitter incurs a moving cost per unit distance travelled.
Therefore, a tradeoff arises between staying in the same
position and using all available energy in transmission, and
spending some of the available energy to move to another
location where it harvests higher energy. In this work, we
characterize that tradeoff optimally, by designing throughput-
optimal power and movement policies.

We first study the case where each energy source has a
single energy arrival, and then generalize that to the case of
multiple energy arrivals. Although our problem formulation
is non-convex, we are able to solve it optimally for the
single energy arrival scenario. For the multiple energy arrivals
scenario, we design an iterative algorithm with guaranteed
convergence to a local optimal solution of our optimization
problem. For each iteration, we first show that given the
optimal movement energy expenditure in a given time slot,
the movement policy is greedy; the transmitter moves to the
better location (energy-wise) in that time slot only without
considering future time slots. We then find optimal movement
energy consumption using a water-filling algorithm.

Related system models are considered in [34], [35] where
some devices (energy-rich sources) move through a sensor net-
work and refill the batteries of the sensors with RF radiation.



II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single user AWGN channel with an energy
harvesting transmitter with moving abilities. The transmitter
has the ability to relocate itself to different positions in
search for better energy harvesting spots. Movement is along a
straight line, and energy is harvested from two energy sources
located at the two opposite ends of the line, see Fig. 1.
The transmitter’s position determines how much energy is
harvested from each source: the closer the transmitter is to
one source, the larger the amounts of energy it harvests from
that source compared to the other1.

We consider a time-slotted model, where the transmitter is
allowed to move during a fixed portion of time at the beginning
of each slot, and then starts communicating2. Energy arrives
in packets of amounts E1i and E2i in slot i at the first and
the second energy source, respectively. At the beginning of
slot i, the transmitter relocates itself to some position xi, and
harvests energy from both sources simultaneously according
to the following relationship [36]–[38]

E(i, xi) =
E1i

(xi + r)α
+

E2i

(L− xi + r)α
(1)

where α is the path loss factor, L is the distance between
the two energy sources, and r > 0 is a parameter added
to adjust the Friis’ free space equation for short distance
communication. That is, to keep the harvested energy bounded
when the transmitter lies at either ends of the line.

The transmitter incurs moving costs whenever it relocates
itself to a different position. We model the total moving cost
up to slot k as follows

cm(k) , εm

k∑
i=1

|xi − xi−1| (2)

where x0 is the initial position of the transmitter,
∑k
i=1 |xi −

xi−1| represents the total distance moved by the transmitter
up to slot k, and εm is the cost of movement in energy per
unit distance.

Our goal is to maximize the total number of bits delivered to
the receiver by a given deadline N , subject to energy causality
constraints and moving costs. Since movement is not cost-
free, a tradeoff arises between spending energy to move into
better spots (in the sense of energy availability), and staying
at the same location and spending all the available energy in
communicating. In this paper, we design power and movement
policies that capture the optimal tradeoff of this setting. The
physical layer is Gaussian with unit noise power. We formulate
the problem as follows

max
p,x

N∑
i=1

1

2
log(1 + pi)

1In our setting, the transmitter-receiver distance is much larger than the
distance between the two energy sources so as to ensure that the transmitter-
receiver channel characteristics are not affected by the transmitter’s movement.

2Without loss of generality, we assume that the remaining portion of the
time slot where the transmitter communicates is normalized to one time unit,
so that we may use energy and power interchangeably.

s.t. cm(1) ≤ E0

cm(k + 1) +

k∑
i=1

pi ≤ E0 +

k∑
i=1

E(i, xi), 1 ≤ k ≤ N

0 ≤ xi ≤ L, pi ≥ 0, 1 ≤ i ≤ N (3)

where cm(N + 1) , cm(N), and E0 is the initial energy
available at the transmitter. This initial energy enables the
transmitter to relocate itself during the first slot (if needed).
Note that if the transmitter needs to move in slot k + 1, then
it needs to save some energy by the end of slot k for that
purpose. In other words, it should not consume all its energy
in transmission by the end of slot k. That is why the energy
incurred for moving up to slot k+1 is bounded by the residual
energy remaining after slot k: E0 +

∑k
i=1E(i, xi) − pi. We

solve problem (3) in the remainder of this paper. We first note
the following necessary optimality conditions.

Lemma 1 In the optimal solution of (3), powers are non-
decreasing over time.

Proof: We show this by contradiction. Assume that at the
optimal policy {p∗,x∗}, there exists a time slot k such that
p∗k > p∗k+1. Keeping the movement policy x∗ the same, we
define another power policy p̃ where only the kth and k+1st
powers change to p̃k = p̃k+1 =

p∗k+p
∗
k+1

2 . It is direct to see
that {p̃,x∗} is a feasible policy. By concavity of the log, this
new policy strictly increases the objective function, and hence
the original policy {p∗,x∗} cannot be optimal. �

Lemma 2 In the optimal solution of (3), the transmitter con-
sumes all its harvested energy by the end of communication.

Proof: We show this by contradiction. If the statement of
the lemma were not true, then we can increase the value of
pN until all energy is consumed. This strictly increases the
objective function. �

III. SINGLE ENERGY ARRIVAL

In this section we study the case where each energy source
has only one energy packet arrival. That is, we have only one
pair of variables (p, x) to optimize. By Lemma 2, we have

p(x) = E0 +
E1

(x+ r)α
+

E2

(L− x+ r)α
− εm|x− x0| (4)

and therefore, by monotonicity of the log, problem (3) be-
comes

max
x

E1

(x+ r)α
+

E2

(L− x+ r)α
− εm|x− x0|

s.t. εm|x− x0| ≤ E0

0 ≤ x ≤ L (5)

Therefore, the problem now reduces to finding the optimal
position x∗.

Note that there are two possible movement strategies the
transmitter can make: move forward to some x ≥ x0, or



move backward to some x < x0. The transmitter chooses the
movement strategy that gives the maximum objective function
(and hence power/rate). To that end, we next solve the case
of moving forward. The problem in this case becomes

max
x

E1

(x+ r)α
+

E2

(L− x+ r)α
− εmx

s.t. x0 ≤ x ≤ min

{
E0

εm
+ x0, L

}
, xmax (6)

Now observe that the objective function is a convex function
in x that is maximized over an interval. It then follows that the
optimal solution x∗ has to be at the boundary of the feasible
set [39], i.e.,

x∗ ∈ {x0, xmax} (7)

Hence, we pick x∗ that gives the higher value after substituting
in (4), i.e., after comparing p (x0) and p (xmax).

Similarly, the problem in the case of moving backward is
given by

max
x

E1

(x+ r)α
+

E2

(L− x+ r)α
+ εmx

s.t. xmin , max

{
x0 −

E0

εm
, 0

}
≤ x ≤ x0 (8)

which again, by convexity of the objective function, yields a
solution at the boundary. That is

x∗ ∈ {xmin, x0} (9)

Hence, we pick x∗ that gives the higher value after substituting
in (4), i.e., after comparing p (x0) and p (xmin).

Based on the previous analysis, the optimal position in the
single energy arrival scenario can only have three possible val-
ues: x∗ ∈ {xmin, x0, xmax}. This means that if the transmitter
decides to move, it moves to the furthest possible distance
(forward or backward) allowed by its available initial energy
E0 and the physical length of the straight line L. Therefore,
the optimal power is given by

p∗ = max {p (xmin) , p (x0) , p (xmax)} (10)

and x∗ is the corresponding maximizing argument.

IV. MULTIPLE ENERGY ARRIVALS

In this section we study the multiple energy arrivals setting.
We note that problem (3) is not a convex optimization problem
due to the convexity of the energy harvesting function E(i, xi)
in (1). We therefore follow a majorization maximization
argument to find a local optimal solution for this problem
via successive convex optimization. Namely, we approximate
E(i, xi) around some feasible point to get a convex problem,
whose solution is then used to (better) approximate E(i, xi)
in the next iteration. Approximate functions should be chosen
carefully such that iterations converge to a local optimal
solution of the original problem [40], [41]. In particular, in

the (j + 1)st iteration, we solve the following problem

max
p,x

N∑
i=1

1

2
log(1 + pi)

s.t. cm(1) ≤ E0

cm(k + 1) +

k∑
i=1

pi ≤ E0 +

k∑
i=1

f (j)(i, xi), ∀k

0 ≤ xi ≤ L, pi ≥ 0, ∀i (11)

where f (j)(i, xi) is the first order Taylor series approximation
of E(i, xi) around x

(j)
i , the solution of the approximate

problem in the jth iteration. That is, we have

f (j)(i, xi) , b
(j)
i +m

(j)
i xi (12)

where

b
(j)
i ,

E1i

(x
(j)
i + r)α

+
E2i

(L− x(j)i + r)α

+

(
αE1i

(x
(j)
i + r)α+1

− αE2i

(L− x(j)i + r)α+1

)
x
(j)
i (13)

and

m
(j)
i , −

αE1i

(x
(j)
i + r)α+1

+
αE2i

(L− x(j)i + r)α+1
(14)

By convexity of E(i, xi), it is direct to see that f (j)(i, xi)
satisfies the conditions stated in [40] that guarantee conver-
gence of the iterative solution of problem (11) to a local
optimal point of problem (3). Namely, it holds that

(1) f (j)(i, xi) ≤ E(i, xi), ∀xi (15)

(2) f (j)
(
i, x

(j)
i

)
= E

(
i, x

(j)
i

)
(16)

(3)
df (j)

(
i, x

(j)
i

)
dxi

=
dE
(
i, x

(j)
i

)
dxi

(17)

We focus on problem (11) in the remainder of this paper.
In particular, we introduce some auxiliary variables {δi} to
denote the amount of energy used for movement in the ith
slot. That is, we have

εm|xi − xi−1| = δi, ∀i (18)

This allows us to rewrite the optimization problem as follows

max
p,x,δ

N∑
i=1

1

2
log(1 + pi)

s.t.
k∑
i=1

pi ≤ E0 +

k∑
i=1

b
(j)
i +m

(j)
i xi −

k+1∑
i=1

δi, ∀k

δ1 ≤ E0

εm|xi − xi−1| ≤ δi, ∀i
0 ≤ xi ≤ L, pi ≥ 0, δi ≥ 0, ∀i (19)

where the relaxation of the equality in (18) to an inequality
in the above problem does not change the solution. To see



this, note that if there exists some slot k such that δ∗k >
εm|x∗k − x∗k−1|, then one can simply decrease the value of δ∗k
until equality holds while keeping the values of x∗k and x∗k−1

the same. This strictly increases the feasible set and thereby
potentially increases the objective function. Also note that we
set δN+1 , 0. We now have the following lemma.

Lemma 3 In the optimal solution of problem (19), if δ∗i > 0
then the transmitter should move forward (resp. backward)
during slot i if m(j)

i is positive (resp. negative). Conversely, if
m

(j)
i = 0, then there exists an optimal policy with δ∗i = 0.

Proof: We show this by contradiction. Assume that we have
δ∗i > 0 and m

(j)
i > 0 but the transmitter moves backward

during time slot i, i.e., x∗i < x∗i−1. Now consider the following
alternative policy. Let δi = 0, i.e., xi = x∗i−1, and let
δi+1 = δ∗i + δ∗i+1. Since the cost to move is linear with
distance, this new policy reaches the position x∗i+1 from x∗i−1

with the same cost. At the same time, since m(j)
i > 0, this new

policy harvests higher energy at slot i, and thereby achieves
higher rates. Thus, the transmitter should move forward. The
case where m(j)

i < 0 implies that the transmitter should move
backward can be shown using similar arguments. This proves
the first part of the lemma.

To show the second part, note that since m(j)
i = 0, moving

during slot i does not make the transmitter gain any energy.
Hence, by linearity of the moving cost, given any optimal
policy with δ∗i > 0, setting δi = 0 and δi+1 = δ∗i + δ∗i+1 in
that case makes the transmitter harvest the same amount of
energy, and reach x∗i+1 with the same moving cost. �

Lemma 3 indicates that the optimal movement policy can
be greedy. That is, if the transmitter moves during some time
slot i, it moves towards the higher energy location in slot i
without considering upcoming slots’ energies. Next, we find
the optimal greedy policy by decomposing problem (19) into
inner and outer problems as follows.

A. Inner Problem

We first fix a feasible choice for {δi} and solve an inner
problem for the pair {pi, xi}. We denote the solution of
the inner problem by R(δ). By Lemma 3, once δ is fixed,
the position x is determined according to the sign of m(j).
Whence, the power p is found via directional water-filling [3].
Note that the choice of δi should be such that it is equal to
0 if m(j)

i = 0, according to Lemma 3. In addition, we note
that if we have some δi > 0 while the greedy movement
is not feasible, i.e., moving forward/backward with δi energy
gets the transmitter outside the straight line boundaries, then
surely this δi choice is not optimal and needs to change. How
to optimally find {δ∗i } is handled next.

B. Outer Problem

After we solve the inner problem, we find the optimal {δ∗i }
by solving an outer problem by maximizing R(δ) over the
feasible choices of δi. We have the following lemma regarding
this problem

Algorithm 1
1: repeat
2: Approximate E(i, xi) around the j − 1st iteration’s

location solution x(j−1)
i using (12)-(14), ∀i.

3: Fix a feasible movement energy allocation δ.
4: repeat
5: Solve inner problem for R(δ) as in Section IV-A.
6: Solve outer problem for δ∗ as in Section IV-B.
7: until Convergence of movement energy water levels.
8: until

∥∥(x(j),p(j)
)
−
(
x(j−1),p(j−1)

)∥∥ is small enough.

Lemma 4 R(δ) is a concave function in δ.

Proof: Let us pick two feasible points δ(1) and δ(2) and
denote the solutions of the inner problem for these two choices
by {p(1),x(1)} and {p(2),x(2)}, respectively. Now let δθ ,
θδ(1)+(1−θ)δ(2) for some 0 ≤ θ ≤ 1. Next, observe that by
linearity of the feasible set, the pair p(θ) , θp(1)+(1−θ)p(2)
and x(θ) , θx(1)+(1−θ)x(2) is feasible in the inner problem
for the choice of δ(θ). Therefore, we have

R
(
δ(θ)

)
≥

N∑
i=1

1

2
log
(
1 + p

(θ)
i

)
≥

N∑
i=1

θ

2
log
(
1 + p

(1)
i

)
+

1− θ
2

log
(
1 + p

(2)
i

)
= θR

(
δ(1)

)
+ (1− θ)R

(
δ(2)

)
(20)

where the second inequality follows by concavity of the log.
This concludes the proof. �

We now solve the following outer problem

max
δ

R(δ)

s.t. δ1 ≤ E0

k+1∑
i=1

δi ≤ E0 +

k∑
i=1

b
(j)
i +

[
m

(j)
i L

]+
, ∀k

δi ≥ 0, ∀i (21)

with δN+1 , 0, and [y]+ , max(y, 0). Note that the term[
m

(j)
i L

]+
ensures that all the feasible range of {δ} is covered

in the outer problem, and that the inner problem is energy-
feasible. By Lemma 4, the outer problem is a convex optimiza-
tion problem [39]. However, not all the available energy should
be used in movement, or else we achieve zero throughput.
Hence, we follow an iterative water-filling algorithm to solve
the outer problem similar to the one proposed in [20], [26]
that we summarize next. We add an extra N + 1st slot where
unused energy can be discarded. Initially, each slot is filled
up by its own energy arrival and the extra N + 1st slot is
left empty. We allow energy/water to move to the right only if
this increases the objective function. Meters are put in between
slots to measure the amount of water moving forward. This
allows us to pull water back to their sources if this increases
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Fig. 2. Optimal transmitter location in a four-slot system.

the objective function. Eventually, all the water in the N +1st
slot will be discarded but can be pulled back also during the
iterations if necessary. Since the objective function increases
with each water flow, problem feasibility is maintained during
iterations, and by convexity of the problem, iterations converge
to the optimal solution. We summarize the multiple energy
arrivals solution approach in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we present some numerical examples to
further illustrate our results. We consider a system of four
time slots. The transmitter has an initial amount of energy
of E0 = 0.1 energy units. The length of the straight line
between the energy sources is L = 7 distance units, and the
transmitter is initially positioned at x0 = 2.5. Energies arrive
at the two energy sources with amounts E1 = [0, 1, 7, 5] and
E2 = [8, 5, 1, 1], at the first and the second energy source,
respectively. The path loss factor α = 2.5, r = 0.3, and the
movement energy cost per distance εm = 0.5.

We solve problem (11) by initially approximating the
energy-position function at each time slot around x0. We then
do the problem decomposition to solve for {δ∗i } and {p∗i , x∗i }
as discussed in Sections IV-A and IV-B. Finally, we substitute
by {x∗i } in problem (11) and re-iterate until convergence. For
this example, it takes 5 iterations to converge to a local optimal
solution of problem (3).

In Fig. 2, we plot the results of this example. We show
the transmitter’s position at different slots in between the two
energy sources. Arrows at the sources represent the amounts
of energy arriving (emitted) by each source at a given time
slot. From the figure, we see that the transmitter stays at its
initial position in the first time slot, i.e., x∗1 = 2.5. This is
mainly because the initial position of the transmitter is inclined
towards the first source, and the fact that the energy amount at
the second source is higher than that of the first source in the
first time slot. One more reason for this movement behavior is
that the first source receives higher amounts of energy in later

41 2 3

Movement energy

Transmit power

Fig. 3. Transmit power and movement energy consumptions.

slots. Therefore, we see that the transmitter moves towards
the first source during slots 2 and 3 until it reaches the end
of the line in slot 4. The optimal position is given by x∗ =
[2.5, 1.98, 1.58, 0], with powers p∗ = [0, 0, 0.68, 101.44], and
movement energy consumption of [0, 0.25, 0.2, 0.67].

We plot the optimal transmit power and movement energy
consumptions over the four time slots in Fig. 3. The height in
blue and green represents the transmit power and the move-
ment energy costs, respectively. We see that the transmitter
neither moves nor transmits during the first time slot and
saves all its harvested energy for later slots’ movements and
transmission. It starts spending some energy in movement
during the second time slot while still not transmitting, and
then finally during the third and fourth time slots it both moves
and transmits to the receiver, achieving a throughput of 2.57.

Next, we show the effect of the movement energy cost
per unit distance, εm, on the throughput. We shift the initial
position to x0 = 3 and use the same parameter values from
the previous example except that we decrease εm to 0.01. The
solution in this case is x∗ = [7, 7, 0, 0] with a throughput equal
to 9.7. Due to the small movement energy cost, the transmitter
in this case rides the energy peaks from the two sources, i.e., it
harvests Ei = 1

rα max{E1i, E2i}, ∀i. The optimal location is
shown by the green transmitter in Fig. 4. We then increase εm
to 3 and re-solve. In this case, we get x∗ = [3.5, 3.5, 3.5, 3.5]
with a throughput equal to 0.484. Due to the large movement
energy cost, the transmitter does not move during the course
of communication and uses all of its available energy only for
transmission. The optimal location in this case is shown by
the brown transmitter in Fig. 4.

VI. CONCLUSION

We considered mobility effects on energy harvesting nodes.
Energy arrivals at a node depend on the node’s relative position
to energy emitting sources, and therefore movement is moti-
vated by finding better energy harvesting locations. However,
nodes incur a moving cost per unit distance travelled. We
considered movement along a straight line, where two energy
sources are located towards the opposite ends of the line. We
characterized the optimal tradeoff between staying at the same
spot so as to spend all available energy in transmission, and
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Fig. 4. Effect of moving cost on optimal location.

spending some energy to move to a potentially better energy
location so as to achieve higher throughput. We first solved
the case with a single energy arrival at each source, and then
generalized that to the case of multiple energy arrivals.
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