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Abstract—We consider the problem of privately updating a
message out of K messages from N replicated and non-colluding
databases. In this problem, a user has an outdated version of the
message Ŵθ of length L bits that differ from the current version
Wθ in at most f bits. The user needs to retrieve Wθ correctly
using a private information retrieval (PIR) scheme with the least
number of downloads without leaking any information about the
message index θ to any individual database. To that end, we
propose a novel achievable scheme based on syndrome decoding.
Specifically, the user downloads the syndrome corresponding to
Wθ , according to a linear block code with carefully designed
parameters, using the optimal PIR scheme for messages with
a length constraint. We derive lower and upper bounds for the
optimal download cost that match if the term log2

(∑f
i=0

(
L
i

))
is

an integer. Our results imply that there is a significant reduction
in the download cost if f < L

2
compared with downloading

Wθ directly using classical PIR approaches without taking the
correlation between Wθ and Ŵθ into consideration.

I. INTRODUCTION

The problem of private information retrieval (PIR), intro-
duced by Chor et al. in [1], seeks to find the most efficient way
for a user to privately retrieve a single message from a set of
K messages from N fully replicated and non-communicating
databases. PIR schemes are designed to download a mix-
ture of all K messages, with the least number of overhead
downloaded bits, such that no single database can infer the
identity of the desired message. The user accomplishes this
task by sending a query to each database. The databases
respond truthfully to the submitted query with an answer
string. The user can reconstruct the desired message from
jointly decoding the returned answer strings. Recently, the
problem of PIR has received a growing interest from the
information and coding theory communities. The classical PIR
problem is re-formulated using information-theoretic measures
in the seminal work of Sun-Jafar [2]. In there, the performance
metric of the PIR scheme is the retrieval rate, which is the
ratio of the number of the desired message symbols to the
total number of downloaded bits. The supremum of this ratio
is denoted by the PIR capacity, C. Sun and Jafar characterize
the PIR capacity of the classical PIR model to be

C =

(
1 +

1

N
+

1

N2
+ · · ·+ 1

NK−1

)−1

. (1)

Following [2], the capacity (or its reciprocal, the normalized
download cost) of many variations of the problem have been
investigated, see, e.g., [3]–[17].

In all these works, the user is assumed to have no infor-
mation about the desired message prior to retrieval. Thus, the
queries are designed independently from the message contents.
This is not always the case in practice. To see that, consider
the following classical motivational example of PIR: in the
stock market, investors need to privately retrieve some of
the stock records, since showing interest in a specific record
may undesirably affect its value. PIR is a natural solution to
this problem. Now, consider the case when an investor has
already retrieved a specific stock record some time ago but
this record has been changed. The investor needs to update
the record at his/her side. A trivial solution to this problem is
to re-apply the original PIR scheme again. Nevertheless, this
solution overlooks the fact that stock records are correlated
in time. Another example arises in the context of private
federated submodel learning [18], in which a user needs to
retrieve the up-to-date desired submodel without leaking any
information about its identity. The weights of each submodel
are usually correlated in time as in the stock market example.
In both examples, it is interesting to investigate whether or
not the investor (user) can exploit the correlation between the
outdated record (submodel) and its up-to-date counterpart to
drive down the download cost. In this work, we focus our
attention on a specific type of correlation, in which the up-to-
date message is a distorted version of the outdated message
according to a Hamming distortion measure. The most closely
related works to this problem are the PIR problems with side
information, e.g., [19]–[25]. In all these works, the user has
side information in the form of a subset of undesired messages,
which are utilized to assist in privately retrieving the desired
message. This is different from our setting, in which the
user possesses side information in the form of an outdated
desired message. Furthermore, these works differ from each
other in whether the privacy of the side information should
be maintained or not. This is different from our problem in
which the identity of the desired and side information is the
same, and therefore the privacy constraint in our problem is
modified to reflect this fact.

In this paper, we introduce the problem of private updating
for a message out of a K-message library from N replicated
and non-colluding databases. In this problem, the user has
an outdated version of the desired message Ŵθ, and wishes
to update it to its up-to-date version Wθ. Furthermore, the
user has information about the maximum Hamming distance f
between the up-to-date message and its outdated counterpart,
i.e., the user possesses Ŵθ, which differs in at most f bits



from the desired up-to-date message Wθ. Based on Ŵθ and
f , the user needs to design a query set to reliably and
privately decode the up-to-date version of the desired message
Wθ with the least number of downloaded bits. Equivalently,
the user needs to privately retrieve an auxiliary message
that corresponds to the flipped bit positions in the desired
message. Similar to the works of [26], [27], we assume that the
databases can construct a mapping from the original library of
messages into a more appropriate form that can assist the user
in the retrieval process. We aim at characterizing the optimal
download cost needed to update Ŵθ to Wθ without disclosing
the desired message index θ to any of the databases.

To that end, we propose a novel achievable scheme that is
based on the syndrome decoding idea introduced in [28], and
adapt it to our setting to exploit the correlation between Wθ

and Ŵθ. Hence, syndrome decoding is used to compress the
desired message based on the user’s side information (i.e., the
outdated message Ŵθ). More specifically, the databases apply
a linear transformation to the stored library of messages using
the parity check matrix of a linear block code with carefully
chosen parameters. The existence of such a code can be readily
inferred from the Gilbert-Varshamov and the Hamming bounds
[29]. This transformation, in effect, maps the messages into
their corresponding syndromes. Thus, the problem is reduced
to retrieving the auxiliary messages (i.e., the syndrome repre-
sentation) that comprises of

⌈
L̄
⌉

=
⌈
log2

(∑f
i=0

(
L
i

))⌉
≤ L

bits, where L is the original message length. This enables
us to directly apply the PIR scheme in [30] to the auxiliary
messages of length

⌈
L̄
⌉
, which is optimal under message

length constraints. We confirm the validity of our proposed
scheme by deriving a matching converse proof. Our converse
proof is inspired by the converse proofs of the PIR problem
with side information in [19], [20], with the main difference
being the fact that the side information in our case is the
outdated message Ŵθ in contrast to the cached messages.
Consequently, we show that the optimal download cost, D̄L, is
bounded by

⌈
L̄
C

⌉
≤ D̄L ≤

⌈
dL̄e
C

⌉
. Our achievable scheme is

optimal if L̄ is an integer, otherwise the gap between the upper
and lower bounds is upper bounded by 2 bits. This justifies the
efficacy of using syndromes as a message mixing technique
in our setting. Furthermore, our results show that performing
direct PIR on the original library of messages is strictly sub-
optimal as long as the maximum Hamming distance f < L

2 .

II. SYSTEM MODEL

We consider a classical PIR problem with K independent,
uncoded, messages W1, · · · ,WK , with each message consist-
ing of L independent and uniformly distributed bits. We have

H(Wi) = L, 1 ≤ i ≤ K, (2)
H(W1, · · · ,WK) = H(W1) + · · ·+H(WK). (3)

The K messages are stored in N replicated and non-
communicating databases. The user (retriever) has a local copy
of one of the messages whose index θ ∈ [K] is known to the

user,1 but not the database.2 However, this message stored
locally is outdated, and the user wishes to update it so that it
is consistent with the copies in the databases without revealing
to any of the databases what the message index is. This setting
defines the private updating problem.

Since each message is a string of L bits, the problem can
be formulated as privately determining which subset of the
message bits need to be flipped in order to fully update it. To
model this, we use Ŵθ to represent the locally stored outdated
message, W̄θ to represent the subset of bit indices that need to
be flipped, and f to represent the maximum Hamming distance
between Wθ and Ŵθ. Therefore, in order to update message
θ the user needs to flip at most f bits, i.e., W̄θ takes a value
out of

∑f
i=0

(
L
i

)
choices. We assume that such choices are

uniformly distributed and independently realized from Ŵθ.
Based on this model, the following holds:

H(Wθ) = H(Ŵθ) = L, (4)

H(W̄θ) = log2

(
f∑
i=0

(
L

i

))
, L̄, (5)

H(Wθ|Ŵθ) = H(W̄θ|Ŵθ) = L̄, (6)

H(W̄θ|Ŵθ,Wθ) = 0, (7)
|W̄θ| ≤ f ≤ L, (8)

where | · | denotes cardinality. For the purposes of this paper,
we assume that the maximum Hamming distance f between
the outdated and updated message is known to the user.

In order to retrieve Wθ, the user sends a set of queries
Q

[Ŵθ,f ]
1 , . . . , Q

[Ŵθ,f ]
N to the N databases to efficiently obtain

W̄θ. The queries are generated according to Ŵθ and f , and
are jointly independent of the realizations of the [K]\{θ}
messages and W̄θ given Ŵθ. Therefore we have3

I
(
W[K]\{θ}, W̄θ;Q

[Ŵθ,f ]
1:N

∣∣∣Ŵθ

)
= 0. (9)

Upon receiving the query Q
[Ŵθ,f ]
n , the nth database replies

with an answering string A
[Ŵθ,f ]
n , which is a function of

Q
[Ŵθ,f ]
n and all the K messages stored. Therefore, ∀θ ∈

[K], ∀n ∈ [N ], we have

H
(
A[Ŵθ,f ]
n

∣∣∣Q[Ŵθ,f ]
n ,W1:K

)
= 0. (10)

To ensure that individual databases do not know which
message is being updated, we need to satisfy the following
privacy constraint, ∀n ∈ [N ], ∀k ∈ [K]:(
Q[Ŵ1,f ]
n , A[Ŵ1,f ]

n , Ŵ1,W1:K

)
∼
(
Q[Ŵk,f ]
n , A[Ŵk,f ]

n , Ŵk,W1:K

)
,

(11)

where ∼ denotes statistical equivalence. After receiving the
answering strings A

[Ŵθ,f ]
1:N from all the N databases, the

1[K] denotes the set {1, 2, . . . ,K}.
2This is true if message θ has been previously obtained in a private manner.
3We use the notation xS to denote the collection of {xi, i ∈ S}.
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Fig. 1: Download cost of private updating with L = 32 bits,
N = 2 databases, and K = 10 messages.

user needs to decode the desired information Wθ with no
uncertainty, satisfying the following correctness constraint:

H
(
Wθ

∣∣∣A[Ŵθ,f ]
1:N , Q

[Ŵθ,f ]
1:N , Ŵθ

)
= 0. (12)

For fixed N , K, and f , a pair (D̄, L) is achievable if
there exists a private updating scheme for messages of length
L bits long satisfying the privacy constraint (11) and the
correctness constraint (12). In this pair, D̄ represents the
expected number of downloaded bits received from the N

databases independently via the answering strings A[Ŵk,f ]
1:N , i.e.,

D̄ =

N∑
n=1

H
(
A[Ŵθ,f ]
n

)
. (13)

Our goal is to characterize the optimal download cost D̄L for
fixed arbitrary N , K, and f . That is, to solve for

D̄L = min
{
D̄ : (D̄, L) is achievable

}
. (14)

Clearly, the user can ignore its outdated message Ŵθ and
re-download the whole new message Wθ using standard PIR
schemes [2]. In the next section, however, we show that we
can use Ŵθ to do strictly better.

III. MAIN RESULT

We present our main result in the following theorem:

Theorem 1 In the private updating problem, we have⌈
L̄

C

⌉
≤ D̄L ≤

⌈
dL̄e
C

⌉
, (15)

with C and L̄ defined in (1) and (5), respectively.

Fig. 1 shows the efficiency of our result by plotting the
upper and lower bounds of the download cost for the private
updating problem with L = 32 bits, N = 2 databases, and
K = 10 messages.

We show the first inequality in (15) by presenting a converse
proof for Theorem 1 in Section IV, which is based on similar
arguments to those used in cache-aided PIR settings [20]. The
second inequality in (15) is shown by a novel achievability
scheme for Theorem 1 in Section V, which is based on
distributed source coding [28]. We now have some remarks.

Remark 1 From (5) and (8), it follows that
⌈
L̄
⌉

= L for all
values of f ≥ L

2 ; and that
⌈
L̄
⌉
< L for all values of f < L

2 .4

This means that there is a Hamming distance threshold of L
2

beyond which there is no advantage to using a private updating
strategy, and below which there will always be some savings
in download cost (see Fig. 1).

Remark 2 If L and f are such that L̄ = dL̄e then the
two bounds in Theorem 1 match. We will see that this holds
if a perfect code5 by which the queries are sent exists (cf.
Section V). Otherwise, if L̄ < dL̄e, one can show that the
two bounds are within 2 bits for N ≥ 2 databases (see [30,
Section 7.2]).

IV. PROOF OF MAIN RESULT: CONVERSE

In this section, we show that dL̄/Ce serves as a general
lower bound for the download cost in (13). To do so, we prove
two useful lemmas, which were previously used in the cache-
aided PIR setting of [20], for the case of our private updating
problem. The two lemmas are then combined to prove the
general lower bound. The key difference between our lemmas
and those in [20] is that rather than a set of cached messages,
the user is given an outdated message Ŵθ, requiring careful
handling of the correlation between Wθ and Ŵθ. Without loss
of generality, we re-label the messages such that θ = 1.

Lemma 1 (Interference lower bound) In the private updat-
ing problem, the interference from undesired messages within
the answering strings, D̄ − L̄, satisfies

D̄ − L̄ ≥ I
(
W2:K ;Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N

∣∣∣W1, Ŵ1

)
. (16)

Proof: We start with the right hand side of (16),

I(W2:K ;Q
[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |W1, Ŵ1)

= I(W2:K ;Q
[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N ,W1|Ŵ1)

− I(W2:K ;W1|Ŵ1) (17)

= I(W2:K ;Q
[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |Ŵ1)

+ I(W2:K ;W1|Q[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N , Ŵ1) (18)

(12)
= I(W2:K ;Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |Ŵ1) (19)

(9)
= I(W2:K ;A

[Ŵ1,f ]
1:N |Q[Ŵ1,f ]

1:N , Ŵ1) (20)

= H(A
[Ŵ1,f ]
1:N |Q[Ŵ1,f ]

1:N , Ŵ1)

−H(A
[Ŵ1,f ]
1:N |Q[Ŵ1,f ]

1:N ,W2:K , Ŵ1) (21)

4This can be readily shown using the binomial theorem. Details are omitted.
5Perfect codes are those that attain the Hamming bound with equality [29].



(12)
= H(A

[Ŵ1,f ]
1:N |Q[Ŵ1,f ]

1:N , Ŵ1)

−H(A
[Ŵ1,f ]
1:N ,W1|Q[Ŵ1,f ]

1:N ,W2:K , Ŵ1) (22)

≤ H(A
[Ŵ1,f ]
1:N |Q[Ŵ1,f ]

1:N , Ŵ1)

−H(W1|Q[Ŵ1,f ]
1:N ,W2:K , Ŵ1) (23)

(9)
= H(A

[Ŵ1,f ]
1:N |Q[Ŵ1,f ]

1:N , Ŵ1)−H(W1|W2:K , Ŵ1) (24)
(13),(6)
≤ D̄ − L̄. (25)

This concludes the proof. �
Note that if privacy was not a constraint, then D̄ = L̄

and the interference from undesired messages would be non-
existent. However, when the privacy constraint is present,
D̄−L̄ characterizes the number of bits that will be downloaded
and used as side information to preserve privacy from the
databases in a given scheme.

Lemma 2 (Induction lemma) For all k ∈ {2, . . . ,K}, the
mutual information term in Lemma 1 can be inductively lower
bounded as

I
(
Wk:K ;Q

[Ŵk−1,f ]
1:N , A

[Ŵk−1,f ]
1:N

∣∣∣W1:k−1, Ŵk−1

)
≥ 1

N
I
(
Wk+1:K ;Q

[Ŵk,f ]
1:N , A

[Ŵk,f ]
1:N

∣∣∣W1:k, Ŵk

)
+
L̄

N
. (26)

Proof: We start with the left hand side of (26),

I(Wk:K ;Q
[Ŵk−1,f ]
1:N , A

[Ŵk−1,f ]
1:N |W1:k−1, Ŵk−1)

≥ 1

N

N∑
n=1

I(Wk:K ;Q[Ŵk−1,f ]
n , A[Ŵk−1,f ]

n |W1:k−1, Ŵk−1)

(27)

(11)
=

1

N

N∑
n=1

I(Wk:K ;Q[Ŵk,f ]
n , A[Ŵk,f ]

n |W1:k−1, Ŵk) (28)

(9)
=

1

N

N∑
n=1

I(Wk:K ;A[Ŵk,f ]
n |W1:k−1, Ŵk, Q

[Ŵk,f ]
n ) (29)

(10)
=

1

N

N∑
n=1

H(A[Ŵ1,f ]
n |W1:k−1, Ŵk, Q

[Ŵ1,f ]
n ) (30)

≥ 1

N

N∑
n=1

H(A[Ŵ1,f ]
n |W1:k−1, Ŵk, Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:n−1 ) (31)

(10)
=

1

N

N∑
n=1

I(Wk:K ;A[Ŵ1,f ]
n |W1:k−1, Ŵk, Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:n−1 )

(32)

=
1

N
I(Wk:K ;A

[Ŵ1,f ]
1:N |W1:k−1, Ŵk, Q

[Ŵ1,f ]
1:N ) (33)

(9)
=

1

N
I(Wk:K ;Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |W1:k−1, Ŵk) (34)

(12)
=

1

N
I(Wk:K ;Wk, Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |W1:k−1, Ŵk) (35)

=
1

N
I(Wk:K ;Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |W1:k, Ŵk)

+
1

N
I(Wk:K ;Wk|W1:k−1, Ŵk) (36)

(6)
=

1

N
I(Wk+1:K ;Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |W1:k, Ŵ1) +

L̄

N
. (37)

This concludes the proof. �
We now apply the result of Lemma 2 recursively on that of

Lemma 1 to get the general lower bound.

Lemma 3 The optimal private updating download cost satis-
fies the following lower bound:

D̄L ≥
⌈
L̄

(
1 +

1

N
+ · · ·+ 1

NK−1

)⌉
=

⌈
L̄

C

⌉
. (38)

Proof: Any private updating scheme’s download cost satisfies
the following series of inequalities:

D̄
(16)
≥ L̄+ I(W2:K ;Q

[Ŵ1,f ]
1:N , A

[Ŵ1,f ]
1:N |W1, Ŵ1) (39)

(26)
≥ L̄+

L̄

N
+

1

N
I(W3:K ;Q

[Ŵ2,f ]
1:N , A

[Ŵ2,f ]
1:N |W1:2, Ŵ2)

(40)
(26)
≥ L̄+

L̄

N
+

L̄

N2

+
1

N
I(W4:K ;Q

[Ŵ3,f ]
1:N , A

[Ŵ3,f ]
1:N |W1:3, Ŵ3) (41)

(26)
≥ . . . (42)

(26)
≥ L̄

(
1 +

1

N
+ · · ·+ 1

NK−1

)
(1)
=
L̄

C
. (43)

Since (43) lower bounds the download cost D̄ for any private
updating scheme, it also lower bounds the download cost of
the optimal private updating scheme D̄L. Finally, since D̄L is
an integer, we take the ceiling of (43) to get (38). �

This shows that the first inequality of (15) holds, and
concludes the converse proof.

V. PROOF OF THE MAIN RESULT: ACHIEVABILITY

Our achievability scheme makes use of the correlation
between Wθ and Ŵθ through the knowledge of their maximum
Hamming distance f in order to reduce the download cost.
This approach is related to the problem tackled in [28] (without
privacy constraints), in which a source is compressed given
that it is correlated with some side information that is available
only at the decoder. The retrieving user represents the decoder
in our case, with side information Ŵθ. By the Slepian-Wolf
coding theorem [31], one can noiselessly compress the source
Wθ at the rate of H(Wθ|Ŵθ) = L̄. The compressed source
is treated as a new message to be downloaded using a PIR
scheme, as opposed to downloading the whole message Wθ.
Such scheme, however, has a message length constraint (unlike
most of the PIR works in the literature). For that reason, we
leverage tools from the PIR scheme with arbitrary message
length in [30] to accomplish our task. The details are illustrated
in the motivating examples below.

A. Example: N = 2, K = 2, L = 3, and f = 1

In this example, we have L̄ = log2(1 + 3) = 2, and C =
2/3. We show that D̄ =

⌈
dL̄e/C

⌉
= 3 bits is achievable. We



first start by constructing a [3, 1, 3] linear block code, which
is in this case a repetition code with generator matrix G and
parity check matrix H given by

G =
[
1 1 1

]
, H =

[
1 1 0
1 0 1

]
. (44)

Note that such code is capable of correcting at most f = 1
error. The syndromes associated with this code are s ∈
{00, 01, 10, 11}. Observe that the length of s is exactly dL̄e.

Instead of requesting Wθ, the user retrieves the index of the
coset in which Wθ resides in the code’s standard array. That
is, its corresponding syndrome

sθ = WθH
T . (45)

The user then compares Ŵθ to all the words in that coset,
and decodes Wθ as the one closest in Hamming distance.
This is guaranteed to yield the unique correct message [28].
Therefore, the syndrome sθ efficiently represents the flipped
bits’ indices W̄θ, and one is able to reduce the effective
message length from L = 3 to dL̄e = 2 by dealing with
the syndrome sθ instead of Wθ.

Let W1 = [a1, a2, a3], and W2 = [b1, b2, b3]. The syn-
dromes (the new messages) are given by

s1 = W1H
T =

[
a1 + a2 a1 + a3

]
,
[
ā1 ā2

]
, (46)

s2 = W2H
T =

[
b1 + b2 b1 + b3

]
,
[
b̄1 b̄2

]
. (47)

Assume θ = 1. Since dL̄e = NK−1, we can apply a non-
symmetric PIR scheme as follows to decode s1 [30]:

Database 1 Database 2

ā1, b̄1 ā2 + b̄1

This has a download cost of D̄ = 3 bits, which is optimal in
this case since it meets the converse bound.

The repetition code used in this example is a perfect code.
While this makes L̄ an integer, and meets the converse bound,
perfect codes are scarce. In the next example, we show how
the proposed scheme performs with non-perfect codes.

B. Example: N=2, K=2, L=5, and f=1

In this example, we have L̄ = log2(1 + 5) = 2.58, and
C = 2/3. We show that D̄ =

⌈
dL̄e/C

⌉
= 5 bits is achievable.

As in the previous example, we start by constructing a [5, 2, 3]
linear block code. Differently though, this is not a repetition
code, and is characterized by

G =

[
1 0 1 1 1
0 1 1 1 0

]
, H =

1 1 1 0 0
1 1 0 1 0
0 1 0 0 1

 . (48)

The syndromes s have length dL̄e. Specifically,

s1 = W1H
T =

[
a1 + a2 + a3 a1 + a2 + a4 a2 + a5

]
,
[
ā1 ā2 ā3

]
, (49)

s2 = W2H
T =

[
b1 + b2 + b3 b1 + b2 + b4 b2 + b5

]
,
[
b̄1 b̄2 b̄3

]
. (50)

Since dL̄e = NK−1+1, we follow the methodology in [30];
we privately download NK−1 = 2 bits (ā1 and ā2) using the
non-symmetric PIR scheme in the previous example, and then
privately download the remaining 1 bit (ā3) using the scheme
in [32]. The technique in [32] in this case is such that the user
requests random linear combinations of [ā3 b̄3] from database
1 using a random binary vector h, and the same from database
2 yet with h′ = h + eθ, where ei is the ith standard basis
vector. The full PIR scheme is as follows:

Database 1 Database 2

ā1, b̄1 ā2 + b̄1

h1ā3 + h2b̄3 (h1 +1)ā3 +h2b̄3

This has a download cost of D̄ = 5 bits, which is 1 bit away
from the converse bound since the code used is non-perfect.

C. The General Scheme

For general N , K, L, and f , we construct an [L,L −
dL̄e, 2f + 1] linear block code. From the Gilbert-Varshamov
bound [29], we know that such a code exists if

2dL̄e ≤
2f∑
j=0

(
L

j

)
. (51)

In addition, such a code must satisfy the Hamming bound [29]:
f∑
j=0

(
L

j

)
≤ 2dL̄e. (52)

By the definition of L̄ in (5), both (51) and (52) are satisfied,
and so the code exists and is able to correct f bit flips.

Next, we map each message to its corresponding syndrome
of the constructed code, which is of length L− (L− dL̄e) =
dL̄e. The user then retrieves the syndrome sθ according to a
PIR scheme with N databases, K messages, and dL̄e message
length. By [30, Theorem 1], a download cost of

⌈
dL̄e/C

⌉
is

achievable in this case. Finally, correctness is guaranteed since
querying for the syndrome sθ allows the user to decode Wθ

as the unique word in the syndrome’s coset with the least
Hamming distance from Ŵθ [28].

This shows that the second inequality of (15) holds, and
concludes the achievability proof.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, a novel private updating problem has been
introduced, in which a user’s outdated message is to be
privately updated by querying a set of replicated and non-
colluding databases that have the up-to-date version. Under a
Hamming distortion measure between the outdated and the up-
to-date messages, a syndrome decoding technique is leveraged
to compress the number of bits that needs to be downloaded
in order to correctly update the message. This has been
combined with PIR schemes with message length constraints
to guarantee privacy. The proposed private updating scheme
has been shown to be optimal when the system parameters
enable the construction of a perfect code according to which



the syndrome decoding technique is worked out. In other
cases, the achievable download cost has been shown to be
within at most 2 bits from a derived converse bound.

The model of this paper assumes that the Hamming distor-
tion between Wθ and Ŵθ is upper bounded by f . If, instead,
the Hamming distortion is known to be exactly f ′, then the
download cost can be reduced, and using codes to map the
messages into syndromes may be unnecessary. To see this,
consider an example with N = 2, K = 2, L = 8, and f = 1.
In this case, dL̄e = 4, and by Theorem 1, a download cost of
6 bits is achievable.

Let us now set f ′ = 1, i.e., the user knows that Wθ and Ŵθ

differ in exactly 1 bit. Assuming θ = 1, define ā1 , a1 +a2 +
a3 + a4, ā2 , a1 + a2 + a5 + a6, and ā3 , a1 + a3 + a5 + a7,
where ai’s represent the bits of the desired message W1. The
user then constitutes similar combinations using the bits of
the outdated message Ŵ1 to get â1, â2, and â3. Now observe
that possessing the new message [ā1, ā2, ā3] is sufficient to
determine the position of the flipped bit by comparing it to
[â1, â2, â3]. For instance, if āi = âi, ∀i, then Ŵ1(8) needs to
be flipped. If on the other hand āi 6= âi, ∀i, then Ŵ1(1) needs
to be flipped. While if ā1 6= â1, and āi = âi, i = 2, 3, then
Ŵ1(4) needs to be flipped, and so on. Therefore, the effective
message length is reduced to 3 (as opposed to dL̄e = 4), and
a download cost of 5 bits is achievable.

The above procedure can be done using a bisection search
approach. The user can first retrieve a1 + a2 + a3 + a4, and
compares it to the sum of the outdated message’s first 4 bits.
If they are equal, then the error must lie in the last 4 bits of
Ŵ1. Assuming this is the case, the user downloads a5 + a6,
and compares it to Ŵ1(5)+Ŵ1(6). If they too are equal, then
the error must lie in the last 2 bits of Ŵ1. Assuming this is
the case as well, the user finally downloads a7 and compares
it to Ŵ1(7). If they are equal, then Ŵ1(8) needs to be flipped.
We see that this bisection approach has an effective message
length of log2(L) = 3 bits. However, since the next query
structure depends on the answers of the previous queries, a
multiround PIR scheme needs to devised in this case [33].

It would be interesting to extend the results of this paper to
work for the case of known distortion f ′ (and generally for
other notions of correlation measures between Wθ and Ŵθ),
which may be relevant in certain applications.
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