
Age and Value of Information Optimization for
Systems with Multi-Class Updates

Ahmed Arafa1 and Roy D. Yates2

1Department of Electrical and Computer Engineering, University of North Carolina at Charlotte
2Department of Electrical and Computer Engineering, Rutgers University

Abstract—Received samples of a stochastic process are pro-
cessed by a server for delivery as updates to a monitor. Each
sample belongs to a class that specifies a distribution for its
processing time and a function that describes how the value of
the processed update decays with age at the monitor. The class of
a sample is identified when the processed update is delivered. The
server implements a form of M/G/1/1 blocking queue; samples
arriving at a busy server are discarded and samples arriving at
an idle server are subject to an admission policy that depends on
the age and class of the prior delivered update. For the delivered
updates, we characterize the average age of information (AoI)
and average value of information (VoI). We derive the optimal
stationary policy that minimizes the convex combination of the
AoI and (negative) VoI. It is shown that the policy has a threshold
structure, in which a new sample is allowed to arrive to the server
only if the previous update’s age and value difference surpasses
a certain threshold that depends on the specifics of the value
function and system statistics.

I. INTRODUCTION

Consider a system in which time-stamped raw data samples
are processed into updates for a monitor. The server and the
monitor are co-located, and each sample incurs a processing
time before being delivered as an update to the monitor. Some
updates can be processed quickly, while others require longer
service times. Updates with long processing times may be
unusually important or valuable at the monitor. Occasionally,
an update may have a very long service time or be of
exceptional importance.

One such example is an augmented reality (AR) system
in which images are processed and analyzed, and an update
in the form of an image augmentation is delivered to the
monitor. In the AR system, time-stamped images are samples
that arrive at the input of a processing system. When an input
job is processed, the output, namely an image augmentation,
represents an update. The time-stamp of the update is the time-
stamp of the image from which it was derived.

For a second example, consider a camera system monitoring
an urban crosswalk. The video frame updates require process-
ing to generate bounding boxes that correspond to pedestrians
in the crosswalk. As the number of pedestrians increases,
the video frames require more processing time to identify
bounding boxes. However, in the context of pedestrian safety,
images with more pedestrians are more important and have
greater value.

This work was supported by the U.S. National Science Foundation under
Grants CNS 21-14537 and ECCS 21-46099.

Object recognition is typically a key step in these image
processing applications. To find a particular object in a given
image input, the system extracts key feature points from the
image input, and then matches all the feature points with those
of the particular object. With a high matching ratio, it assumes
the object has been detected [1]. However, when there is a
large number of objects in the input, there will be numerous
feature points and this will increase the matching complexity
and thus the processing time. The value of an image is likely
to be increasing with its number of classified objects.

To model such situations, samples are categorized into M
different classes. A sample belongs to class i with probability
pi. Each class i sample has a class-dependent processing time
and carries a value νi(t) at time t. Such value is only revealed
at the monitor after being processed by the server.

Both timeliness and value of the updates are important. We
evaluate the performance of the updating system using both
age of information (AoI) [2] and value of information (VoI)
[3] metrics. In particular, we develop a class of server policies
that minimize a convex combination of AoI and (negative) VoI.
This enables us to compare the characteristics of AoI and VoI
minimization as well as tradeoffs between AoI and VoI.

In prior work on updates with non-memoryless service times
[4]–[6], it has been observed that average AoI can be reduced
substantially by a simple preemption-in-service mechanism.
Preemption can replace an update that becomes stale while
in service with a fresh update and this can substantially
reduce the AoI. However, in the context of multiple classes of
updates, it is unclear whether this is a desirable approach.
Specifically, if updates with long processing times are the
important high-value updates, preemption will result in low
VoI at the monitor. Moreover, VoI alters how we should
process updates. Specifically, the system is earning a reward
over time for update k−1 following its delivery. In that same
time period, the system is either processing update k or waiting
to begin the processing of update k. The key question is

how long should the system accrue value from update k − 1
before initiating the process to deliver update k?

Based on these considerations, we believe that reducing
AoI via preemption in service may be inappropriate for some
applications. In particular, preemption in service will be biased
in that updates with longer service times are more likely to
be preempted. On the other hand, queueing of updates also



remains undesirable; timeliness is improved when the system
avoids processing updates that have become stale in a queue.
Hence, this work focuses on an M/G/1/1 queueing model with
blocking: if the server is busy, new arrivals are blocked and
discarded. This mechanism avoids queueing but also avoids a
bias against jobs with long service times. Whether an arriving
job goes into service (or is blocked) is independent of its
service class. Moreover, once a job goes into service, it is
guaranteed to finish processing, independent of its class.

A. Related Work

Prior work [7] on the AoI analysis of multi-class queueing
systems has examined peak AoI (PAoI) in multiclass M/G/1
and M/G/1/1 queues. Each traffic class is described by its
arrival rate, and the first and second moments of its service
time, and arrival rates are optimized to minimize maxi Ci(Ai),
where Ci(Ai) is the cost of stream i having PAoI of Ai. In a
study of the average AoI for multiple streams arriving at an
M/G/1/1 queue with preemption [8], with all streams having
the same general service time, it is shown that increasing the
arrival rate for one stream/class can reduce its AoI, but at the
expense of increased AoI for other classes.

This work differs from these prior M/G/1/1 studies in
that updates belong to different service classes but they all
originate from the same source. The overall update rate λ is
a controllable input but the probability pi that an arriving job
is class i is a property of the application scenario. In the AR
example, the service rates of the classes would depend on the
complexity and variety of the scenario-specific images.

B. Notation

We define [x]+ = max(x, 0). A random variable R has
probability density function fR(r), expected value E[R] and
moment generating function (MGF) ΦR(s) = E

[
esR

]
.

II. SYSTEM MODEL

At the processor, a received sample belongs to class i
with probability pi. A class i sample consumes time Ŷi in
processing. Let Yk denote the processing time of the kth
sample. For instance, if the Ŷi’s are exponential (λi), then Yk

would be hyperexponential. We assume that processing times
and class identities are independent and identically distributed
(i.i.d.) across samples.

Let Sk and Dk denote the sampling and delivery time of the
kth sample/update, respectively, and let ik indicate its class,
i.e., ik = i if sample k belongs to class i. Hence,

Dk = Sk + Yk. (1)

At the monitor, two quantities are observed over time: 1)
the age-of-information (AoI),

∆(t) ≜ t− Sk, Dk ≤ t < Dk+1; (2)

and 2) the value-of-information (VoI),

V (t) = νik(t− Sk), Dk ≤ t < Dk+1. (3)

V (t)

tS0 D0 S1 D1 Sk−1 Dk−1 Sk Dk

νi1(t− S1) νik−1(t− Sk−1)

Vk

W1 Y1 Wk Yk

∆(t)

tS0 D0 S1 D1 Sk−1 Dk−1 Sk Dk

Ak

W1 Y1 Yk−1 Wk Yk

Fig. 1. Sample paths of age ∆(t) and exponentially decaying value V (t).

That is, νik(τ) denotes the value carried by the kth update
when that update has age τ . Note that νik(τ) = νi(τ) in case
update k belongs to class i.

While our formulation allows for general forms of value
functions νi(τ), we will focus on exponentially-decaying value
functions given by

νi(τ) = νie
−αiτ , τ ≥ 0, (4)

for some αi ≥ 0. Thus the class i of an update specifies its
initial value νi (which we will often refer to as the value of a
class i update) and its value decay rate αi. When αi = 0, we
obtain the special case of fixed value functions.

An example sample path of AoI and VoI versus time is
shown in Figure 1.

Following the processing and delivery of update k − 1, let
Wk denote the waiting time before the server starts processing
the kth sample. We consider an external arrivals model, in
which samples arrive as an exogenous rate λ Poisson process.
In this model, our choice is to either block/discard an arriving
sample or to admit and process that sample. Consequently, the
waiting time Wk between the delivery of update k−1 and the
start of processing of sample k is

Wk = W ′
k +Xk, (5)

where W ′
k is a controlled waiting time during which arriving

samples are blocked and Xk is the uncontrolled random
exponential (λ) time until a new exogenous sample arrives
following the end of the controlled waiting/blocking period.
After a sample gets admitted, any arriving sample while the
server is busy processing will be blocked/discarded.

In the limit as λ → ∞, the uncontrolled wait Xk → 0 and
the external arrivals model becomes equivalent to a generate-
at-will model in which a fresh arrival is admitted following



the controlled waiting time Wk = W ′
k. In this limiting case,

the sampling times {Sk} are fully controlled.
Our goal is to design sampling policies, i.e., the controlled

waiting times {W ′
k}, to optimize a weighted sum of the long-

term average AoI and VoI. The long-term average AoI is
defined as

AoI ≜ lim sup
N→∞

∑N
k=1 E

[∫Dk−1+Wk+Yk

Dk−1
∆(t)dt

]
∑N

k=1 E [Dk −Dk−1]
, (6)

which, from Figure 1, can be more explicitly expressed as

AoI = lim sup
N→∞

∑N
k=1 E

[
Yk−1 (Wk+Yk)+

1
2 (Wk+Yk)

2 ]∑N
k=1 E [Dk −Dk−1]

. (7)

The long-term average VoI on the other hand is defined as

VoI ≜ lim sup
N→∞

∑N
k=1 E

[∫Dk−1+Wk+Yk

Dk−1
V (t)dt

]
∑N

k=1 E [Dk −Dk−1]
. (8)

Next, we discuss the optimization problem in detail.

III. PROBLEM FORMULATION AND OBJECTIVE

Our main goal is to choose the waiting times to minimize
a convex combination of the long-term average AoI and long-
term average negative VoI:

min
{W ′

k≥0}
(1− β)AoI− β VoI, (9)

for a weighting factor β satisfying 0 ≤ β ≤ 1.
To get a handle on the above problem, let us denote by

epoch k the time elapsed in between the delivery of update
k−1 and and the delivery of update k. During epoch k, value
is being accumulated from update k − 1, the most recently
delivered update. The key question that we posed in the
Introduction section now corresponds to how long should one
accrue value from update k−1, given that it has class ik−1 = i
with value νi and value decay rate αi, before initiating the
process to deliver update k.

Since processing times and class identities are i.i.d., we fo-
cus on stationary deterministic waiting policies, see, e.g., [9].
Specifically, when the most recent update has class ik−1 = i
and required processing time Yk−1 the controlled waiting time
in epoch k is given by

W ′
k ≜ wi (Yk−1) , (10a)

where wi(·) is a class-dependent waiting function to be
optimized. That is, the controlled waiting time in an epoch
is a deterministic function of the previous epoch’s processing
time and sample value. It follows from (5) that the waiting
time in epoch k is

Wk ≜ wi (Yk−1) +Xk. (10b)

Observe that such waiting policies induce a stationary distri-
bution across epochs.

Substituting the waiting policy structure in (10) back in
(7) and (8), the optimization problem in (9) can be reduced
to a functional optimization problem over a single epoch.

Specifically, over epoch k of duration Tk, it can be seen from
Figure 1 that the accumulated age and value are

Ak = Yk−1 (Wk + Yk) +
1

2
(Wk + Yk)

2
, (11)

Vk =

∫ Dk−1+Wk+Yk

Dk−1

νik−1
(t− Sk−1) dt. (12)

Since the expected duration of epoch k is

E[Tk] = E[Wk + Yk], (13)

the average AoI and VoI become

AoI =
E[Ak]

E[Tk]
, VoI =

E[Vk]

E[Tk]
. (14)

With the shorthand definition β̄ ≜ 1− β, problem (9) now
becomes

min
{wi(·)}

β̄ E
[
Ak

]
− β E

[
Vk

]
E[Tk]

, s.t. wi(t) ≥ 0, ∀t, i. (15)

IV. MAIN RESULT

In this section, we present our main result, namely the
solution of problem (15). Our solution will employ the Dinkel-
bach method [10] which requires optimization over a free
parameter θ. Because the problem and solution are somewhat
complicated, a summary of the optimal solution given in
Theorem 1 is presented in Section IV-A and this is followed
in Section IV-B by a discussion of its basic properties. We
then present some examples of the solution in Section V. The
derivation of Theorem 1 is deferred to Section VI.

A. Solution Summary
Recalling that raw updates arrive at the processor as a rate

λ Poisson process, the uncontrolled wait Xk is an exponential
(λ) random variable with moments E[X] = 1/λ, E

[
X2

]
=

2/λ2, and MGF ΦX(s) = λ/(λ− s) . Since a class i sample
has processing time denoted Ŷi, the (overall) processing time
Y has moments

E[Y ] =
∑
i

pi E
[
Ŷi

]
, (16a)

E
[
Y 2

]
=

∑
i

pi E
[
Ŷ 2
i

]
. (16b)

It follows that the independent sum Z = X+Y has moments

E[Z] = 1/λ+ E[Y ], (17a)

E
[
Z2

]
= 2/λ2 +

2

λ
E[Y ] + E

[
Y 2

]
. (17b)

The Dinkelbach parameter θ specifies a threshold

τ(θ) ≜ θ − β̄ E[Z] (18)

that is common to all classes.
The value delivered by a class i update depends on its decay

rate αi through the value decay factor

ϕi ≜ νiΦX(−αi)ΦŶi
(−αi) = νi

λ

λ+ αi
ΦŶi

(−αi), (19a)



which is used to define the class i threshold function

hi(t) ≜ β̄t− βϕie
−αit, (19b)

and this defines the class i minimum inter-update time

ȳi(θ) ≜

{
h−1
i (τ(θ)), τ(θ) ≥ −βϕi,

0, otherwise.
(19c)

Examples of these threshold functions and their inverses are
shown in Figure 2.

When the prior processed update belongs to class i and
has service time Ŷi, the controlled waiting time during which
arriving raw updates are discarded at the processor is

Ŵi = [ȳi(θ)− Ŷi]
+. (19d)

For fixed θ, the expected accumulated age and value over
one epoch are

E
[
Ak

]
=

∑
i

pi

(
(ȳi(θ) + E[Z])E

[
Ŵi

]
− E

[
Ŵ 2

i

]
/2
)

+ E[Y ]E[Z] + E
[
Z2

]
/2, (19e)

E
[
Vk

]
=

∑
i

pi
αi

(
νiΦŶi

(−αi)− ϕiΦŶi+Ŵi
(−αi)

)
, (19f)

and the expected duration of an epoch is

E[Tk] =
∑
i

pi E
[
Ŵi

]
+ E[Z]. (19g)

The average AoI and VoI are then given by (14). With

p(θ) ≜ β̄ E
[
Ak

]
− β E

[
Vk

]
− θE[Tk], (19h)

the following theorem describes how to find the optimal θ =
θ∗ that equals the minimum weighted AoI/VoI objective in (9).

Theorem 1 The optimal waiting policy of problem (9) is given
by the class-dependent threshold policy in (19d), with the class
i threshold ȳi(θ) in (19c). The value θ = θ∗ given by the
unique solution of p(θ∗) = 0 in (19h) is equal to the optimal
solution of problem (9).

In the derivation of the theorem in Section VI, we show
that θ∗ can be found by a simple bisection search.

B. Discussion
We observe that the solution of Theorem 1 generalizes the

AoI-optimal waiting strategy found in [11] for generate-at-will
systems. In that work, when the prior service time is y, the
source waits for time w = [y∗ − y]+ before generating the
next update, for some threshold y∗. Just like y∗ in [11], ȳi(θ)
can be interpreted as a minimum inter-update time.

Because the threshold functions hi(t) are monotone in-
creasing, the minimum inter-update time ȳi(θ) increases with
θ. Hence, increasing θ slows the processing rate of updates.
Specifically, if the prior update was processed quickly and
found to be in class i, the additional wait Ŵi is inserted before
permitting an arriving update to be processed. This additional
wait depends on the value decay factor ϕi; when the prior
update is more valuable, the additional wait is larger.

hi(t)

t0

β = 0
β = 0.3

β = 0.7

β = 1

h−1
i (τ)

τ
0

β = 0

β = 0.3

β = 0.7

β = 1

(a) αi = 0.5, ϕi = 3 (b) αi = 0.5, ϕi = 3

Fig. 2. Examples of (a) the threshold function hi(t) and (b) the corresponding
inverses h−1

i (τ). The minimum hi(0) = −βϕi occurs at t = 0 and hi(t) →
(1− β)t as t → ∞.

V. EXAMPLES: HYPEREXPONENTIAL SERVICE

Here we consider a multi-class system such that type i
samples occur with probability pi, and have sample value νi
and decay rate αi. The service time is hyperexponential in
that type i samples have exponential (µi) processing times
Ŷi. Hence,

E
[
Ŷi

]
=

1

µi
, E

[
Ŷ 2
i

]
=

2

µ2
i

, ΦŶi
(−αi) =

µi

µi + αi
. (20)

From (16), it follows that the service time Y has moments

E[Y ] =
∑
i

pi
µi

, E
[
Y 2

]
=

∑
i

2pi
µ2
i

, (21)

and Z has moments given by (17). With these values, (19a)
yields the class i value decay factor

ϕi = νi
λ

λ+ αi

µi

µi + αi
, (22a)

while hi(t), τ(θ), ȳi(θ), and Ŵi are specified by (19b)-(19d).
Finding E[Ak] in (19e) requires the moments E

[
Ŵi

]
and

E
[
Ŵ 2

i

]
. With the shorthand notation ȳi ≜ ȳi(θ), we use

integration by parts to calculate

E
[
Ŵi

]
=

∫ ȳi

0

(ȳi − y)µie
−µiy dy = ȳi −

1

µi
+

e−µiȳi

µi
, (23)

E
[
Ŵ 2

i

]
=

∫ ȳi

0

(ȳi − y)2µie
−µiy dy = ȳ2i −

2E
[
Ŵi

]
µi

. (24)

Applying (24) to (19e) yields

E
[
Ak

]
=

∑
i

pi

(
(ȳi + 1/µi + E[Z])E

[
Ŵi

]
− ȳ2i /2

)
+ E[Y ]E[Z] + E

[
Z2

]
/2. (25)

Substituting E[Y ] from (21) and E
[
Ŵi

]
from (23) in (25)

yields

E
[
Ak

]
=

∑
i

pi

(
ȳ2i /2−

1

µ2
i

+ ȳi E[Z]

+ (ȳi +
1

µi
+ E[Z])

e−µiȳi

µi

)
+

E
[
Z2

]
2

. (26)



Fig. 3. AoI vs. VoI tradeoff for a two class system with hyperexponential
service: [p1, p2] = [0.5, 0.5], [ν1, ν2] = [100, 1], [α1, α2] = [0.1, 1] and
[µ1, µ2] = [0.1, 1] (solid lines) or [µ1, µ2] = [1, 0.1] (dotted lines).

From (17b) and (21), we obtain

E
[
Z2

]
=

2

λ2
+ 2

∑
i

pi

(
1

λµi
+

1

µ2
i

)
. (27)

It follows that

E
[
Ak

]
=

∑
i

pi

(
ȳ2i /2 +

1

λµi
+ ȳi E[Z]

+
(
ȳi +

1

µi
+ E[Z]

)e−µiȳi

µi

)
+

1

λ2
. (28)

To find E[Vk], we need ΦŶi+Ŵi
(−αi). From the observation

Ŷi + Ŵi = max(ȳi, Ŷi), we can write

ΦŶi+Ŵi
(s) = E

[
esmax(ȳi,Ŷi)

]
= esȳi P

[
Ŷi ≤ ȳi

]
+

∫ ∞

ȳi

esyµie
−µiy dy

= esȳi(1− eµiȳi) +
µi

µi − s
e−(µi−s)ȳi . (29)

Substituting (20) and (29) with s = −αi into (19f) yields

E
[
Vk

]
=
∑
i

piνiµi

αi(µi + αi)

[
1− λe−αiȳi

λ+ αi

(
1−αie

−µiȳi

µi + αi

)]
. (30)

Furthermore, we see from (19g) and (23) that

E[Tk] =
∑
i

pi

[
ȳi +

e−µiȳi

µi

]
+

1

λ
. (31)

The selection of θ specifies the threshold τ(θ) and the
minimum wait ȳi = ȳi(θ). The AoI and VoI and the weighted
combination p(θ) in (19h) can then be calculated from E[Ak]
in (25), E[Vk] in (30), and E[Tk] in (31). Thus, for each value
of β ∈ [0, 1), we search for θ∗ satisfying p(θ∗) = 0 in order
to find the minimum combined AoI and VoI in (14). That is,
at θ = θ∗, we obtain an optimal AoI and VoI pair. By varying
β and finding the θ∗ for each β, we obtain the boundary of
feasible (AoI,VoI) pairs.

Fig. 4. AoI vs. VoI tradeoff for a two class system with hyperexponential
service: [p1, p2] = [0.5, 0.5], [ν1, ν2] = [100, 1], [µ1, µ2] = [1, 1] and
[α1, α2] = [0.1, 0.1] (solid lines) or [α1, α2] = [0.05, 0.05] (dotted lines).

In the example of Figure 3, class 1 and class 2 samples ar-
rive equiprobably but with [ν1, ν2] = [100, 1]; class 1 samples
are 100× more valuable. Moreover, with [α1, α2] = [0.1, 1],
the class 1 value decays 10× more slowly. The figure depicts
two collections (solid/dotted lines) of AoI/VoI tradeoff curves.
In the solid line case, [µ1, µ2] = [0.1, 1], corresponding to the
valuable updates requiring 10× greater processing time. In the
dotted line case, [µ1, µ2] = [1, 0.1], so the valuable samples
are now the updates that are processed quickly. In both cases,
we see that we can choose whether to minimize age or to
maximize value by varying the weight β. We also see that
increasing the sample arrival rate λ improves the tradeoff by
enabling more precise control of when to start processing the
next sample. In both cases, λ = 10 and λ = 1000 are almost
the same and λ = 1000 is essentially indistinguishable from
the generate-at-will system performance. We note, however,
that the dotted line curves offer better AoI/VoI tradeoffs simply
because processing the valuable updates fast results in less
value being lost in processing.

A second example in Figure 4 examines the effect of
decay parameters αi. Specifically, the two classes have the
same decay rate α1 = α2 = α and the figure compares
α = 0.1 against α = 0.05. As in the previous example,
class 1 and 2 samples are equiprobable and class 1 samples
have 100× higher value. As we would expect, reducing the
decay rate α increases the VoI at the monitor and improves
the AoI/VoI tradeoff. Similarly, increasing the sample arrival
rate λ improves the AoI-VoI tradeoff.

VI. DERIVATION OF THEOREM 1

Over the interval [Dk−1, Dk], value of information is ac-
crued from update k − 1, which was sampled at time Sk−1

and delivered to the monitor at time

Dk−1 = Sk−1 + Yk−1. (32)

With exogenous arrivals and decaying exponential value func-
tions, it follows from (12) and the substitution τ = t−Dk−1



that the accumulated VoI over the interval is

Vk =

∫ Wk+Yk

0

νik−1
e−αik−1

(τ+Yk−1) dτ

=
νik−1

αik−1

e−αik−1
Yk−1

(
1− e−αik−1

(Wk+Yk)
)
. (33)

When update k − 1 has class ik−1 = i, we denote the
update processing time as Yk−1 = Ŷi to highlight its known
class dependence. Similarly, we denote the class-dependent
controlled wait by Ŵi = wi(Ŷi). With this notation, (10b)
becomes

Wk = Ŵi +Xk. (34)

Averaging over the class ik−1 of update k− 1, (33) yields the
expected value

E
[
Vk

]
=

∑
i

piνi
αi

E
[
e−αiŶi

(
1− e−αi(Ŵi+Xk+Yk)

)]
. (35)

With the value decay factor ϕi defined in (19a), it follows
from mutual independence of (Ŵi, Ŷi), Xk and Yk that E[Vk]
is given by (19f).

Over the same epoch, (11), (34) and the definition Zk ≜
Xk + Yk imply that the expected accumulated age is

E
[
Ak

]
=

∑
i

pi E
[
Ŷi(Ŵi + Zk) +

1

2

(
Ŵi + Zk

)2]
. (36)

Since Zk is independent of Ŷi and Ŵi, we have

E
[
Ak

]
=

∑
i

pi E
[
ŶiŴi + Ŵ 2

i /2 + Ŵi E[Z]

]
+ E[Y ]E[Z] + E

[
Z2

]
/2. (37)

In addition, we observe from (13), (34), and the definition of
Zk that E[Tk] is given by (19g).

We now follow Dinkelbach’s approach [10] to transform
problem (15) into the following auxiliary problem:

p(θ) ≜ min
{wi(·)}

β̄ E
[
Ak

]
− β E

[
Vk

]
− θE[Tk] (38a)

s.t. wi(t) ≥ 0, ∀i, t, (38b)

for some θ ∈ R. The solution of problem (15) is now given
by the unique θ∗ that solves p(θ∗) = 0 [10], which can be
found by, e.g., a bisection search.

To solve problem (38), we define the Lagrangian

L = β̄ E
[
Ak

]
− β E

[
Vk

]
− θE[Tk]−

∑
i

∫
wi(y)ηi(y) dy, (39)

where ηi(y) is a Lagrange multiplier. It follows from (37),
(19f), and (19g) that

L =
∑
i

pi

∫
f̂i(y)

[
β̄ywi(y) +

β̄w2
i (y)

2
+ wi(y)(β̄ E[Z]− θ)

+β
ϕi

αi
e−αi[y+wi(y)]

]
dy

−
∑
i

∫
wi(y)ηi(y) dy + β̄ E[Y ]E[Z] + 1

2 β̄ E
[
Z2

]

−β
∑
i

pi
αi

νiΦŶi
(−αi)− θE[Z], (40)

where f̂i(y) denotes the density of Ŷi. Taking the functional
derivative of L with respect to wj(y) and equating to 0 yields

β̄[y + wj(y)]− βϕje
−αj(y+wj(y))

=
ηj(y)

pj f̂j(y)
+ θ − β̄ E[Z]. (41)

From the definition of the threshold function hj(t) in (19b)
and the threshold τ(θ) in (18), the condition (41) becomes

hj(y + wj(y)) =
ηj(y)

pj f̂j(y)
+ τ(θ). (42)

We observe that hj(t) is a strictly increasing function and thus
has an inverse h−1

j (·). Moreover, for w ≥ 0,

hj(y + w) ≥ hj(y) = β̄y − βϕje
−αjy. (43)

Hence, if hj(y) > τ(θ), or equivalently

y > ȳj(θ) ≜ h−1
j (τ(θ)), (44)

then (42) is satisfied with wj(y) = 0 and ηj(y) > 0.
Otherwise, (42) is satisfied with ηj(y) = 0 and wj(y) such that
y + wj(y) = ȳj(θ). Putting these facts together, the optimal
controlled-wait function is w∗

j (y) = [ȳj(θ)−y]+. Returning to
(37), we have shown that Ŵi = [ȳi(θ)− Ŷi]

+ and this implies

E
[
ŶiŴi

]
= E

[
(ȳi(θ)− [ȳi(θ)− Ŷi])[ȳi(θ)− Ŷi]

+
]

= E
[
ȳi(θ)Ŵi − Ŵ 2

i

]
. (45)

Substituting (45) in (37) yields (19e). This concludes the
derivation of Theorem 1.

REFERENCES

[1] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu. SIFT implementation and
optimization for multi-core systems. In Proc. IEEE IPDPS, April 2008.

[2] S. K. Kaul, R. D. Yates, and M. Gruteser. Real-time status: How often
should one update? In Proc. IEEE Infocom, March 2012.

[3] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis. Age and value
of information: Non-linear age case. In Proc. IEEE ISIT, June 2017.

[4] A. M. Bedewy, Y. Sun, and N. B. Shroff. The age of information in
multihop networks. IEEE/ACM Trans. Netw., 27(3):1248–1257, June
2019.

[5] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka. A general formula for
the stationary distribution of the age of information and its application
to single-server queues. IEEE Trans. Inf. Theory, 65(12):8305–8324,
December 2019.

[6] E. Najm, R. D. Yates, and E. Soljanin. Status updates through M/G/1/1
queues with HARQ. In Proc. IEEE ISIT, June 2017.

[7] L. Huang and E. Modiano. Optimizing age-of-information in a multi-
class queueing system. In Proc. IEEE ISIT, June 2015.

[8] E. Najm and E. Telatar. Status updates in a multi-stream M/G/1/1
preemptive queue. In Proc. IEEE Infocom, April 2018.

[9] A. Arafa, K. Banawan, K. G. Seddik, and H. V. Poor. Sample, quantize,
and encode: Timely estimation over noisy channels. IEEE Trans.
Commun., 69(10):6485–6499, October 2021.

[10] W. Dinkelbach. On nonlinear fractional programming. Management
Science, 13(7):492–498, 1967.

[11] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff.
Update or wait: How to keep your data fresh. IEEE Trans. Inf. Theory,
63(11):7492–7508, November 2017.


