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Abstract— We consider online scheduling for an energy har-
vesting communication system where a sensor node collects
samples from a Gaussian source and sends them to a destination
node over a Gaussian channel. The sensor is equipped with a
finite-sized battery that is recharged by an independent and
identically distributed (i.i.d.) energy harvesting process over time.
The goal is to minimize the long term average distortion of
the source samples received at the destination. We study two
problems: the first is when sampling is cost-free, and the second
is when there is a sampling cost incurred whenever samples are
collected. We show that fixed fraction policies [1], in which a fixed
fraction of the battery state is consumed in each time slot, are
near-optimal in the sense that they achieve a long term average
distortion that lies within a constant additive gap from the optimal
solution for all energy arrivals and battery sizes. For the problem
with sampling costs, the transmission policy is bursty; the sensor
can collect samples and transmit for only a portion of the time.

I. INTRODUCTION

A sensor node collects samples from an i.i.d. Gaussian
source and sends them to a destination over a Gaussian
channel. The sensor relies solely on energy harvested from
nature and is equipped with a finite-sized battery to save its
incoming energy. The goal is to characterize online power
control policies that minimize the long term average distortion
of the received samples at the destination.

Offline power scheduling in energy harvesting communica-
tion systems has been extensively studied in the recent liter-
ature. Earlier works [2]–[5] consider the single-user setting.
References [6]–[12] extend this to broadcast, multiple access,
and interference settings; and [13]–[16] consider two-hop
and relay channels. Energy sharing and energy cooperation
concepts are studied in [17], [18]. References [19]–[24] study
energy harvesting receivers, where energy harvested at the
receiver is spent mainly for sampling and decoding. Other
works [25]–[30] study the impact of processing costs, i.e.,
the power spent for circuitry, on energy harvesting commu-
nications. A source-channel coding problem with an energy
harvesting transmitter is formulated in [31] to minimize the
distortion of source samples sent to a destination. Impacts
of processing and sampling costs are also studied, and two-
dimensional water-filling interpretations are presented.

Recently, [1] has introduced an online power control policy
for a single-user energy harvesting channel that maximizes the
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long term average throughput. The proposed policy is near
optimal in the sense that it performs within a constant gap
from the optimal solution that is independent of energy arrivals
and battery sizes. This is extended to broadcast channels in
[32], multiple access channels in [33], [34], and systems with
processing costs in [35], [36].

In this paper, we follow the approaches in [1], [32]–[36]
to extend the offline results in [31] to online settings. We
characterize near-optimal online power control policies that
minimize the long term average distortion in a single-user en-
ergy harvesting channel, where a sensor node collects samples
from an i.i.d. Gaussian source and sends them to a destination
over a Gaussian channel. The sensor relies on energy harvested
from nature to transmit its packets and is equipped with a
finite-sized battery. Energy is harvested in packets following an
i.i.d. distribution with amounts known causally at the sensor,
and is consumed in sampling and transmission. We formulate
two problems: one with and the other without sampling energy
consumption costs. In both problems, we show that the policy
introduced in [1] achieves a long term average distortion that
lies within a constant additive gap from the optimal achieved
distortion for all energy arrivals and battery sizes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a sensor node collecting i.i.d. Gaussian source
samples, with zero-mean and variance σ2

s , over a sequence
of time slots. Without loss of generality, a slot duration is
normalized to one time unit. Samples are compressed and
sent over an additive white Gaussian noise channel, with
variance σ2

c , to an intended destination. We consider a strict
delay scenario where samples need to be sent during the same
time slot in which they are collected. With a mean squared
error distortion criterion, the average distortion of the source
samples in time slot t, Dt, is given by [37]

Dt = σ2
s exp (−2rt) (1)

where rt denotes the sampling rate at time slot t.
The sensor uses energy harvested from nature to send its

samples over the channel, with minimal distortion. Energy
arrives (is harvested) in packets of amount Et at the beginning
of time slot t, and follows an i.i.d. distribution with a given
mean. Our setting is online, in the sense that the amounts of
energy are known causally in time, i.e., after being harvested.
Only the mean of the energy arrivals is known a priori.



Energy is saved in a battery of finite size B. The sensor
consumes energy in sampling and transmission. Depending
on the physical settings, sampling energy can be a significant
system aspect and needs to be taken into consideration [31].
We formulate two different problems for that matter: one
without, and the other with sampling costs as follows.

A. No Sampling Costs Case

Let Et , {E1, E2, . . . , Et}, and let gt denote the the sen-
sor’s transmission power in time slot t. A feasible online policy
g is a sequence of mappings {gt : Et → R+} satisfying

gt ≤ bt , min{bt−1 − gt−1 + Et, B}, ∀t (2)

with b1 , B without loss of generality (using similar argu-
ments as in [1, Appendix B]). We denote the feasible set above
by F . By allocating power gt at time slot t to the Gaussian
channel, the sensor achieves an instantaneous communication
rate of [37]

rt =
1

2
log
(
1 + gt/σ

2
c

)
(3)

Given a feasible policy g, and using (1) and (3), we define
the n-horizon average distortion as

Dn(g) ,
1

n
E

[
n∑
t=1

σ2
s

1 + gt/σ2
c

]
(4)

Our goal is to minimize the long term average distortion,
subject to (online) energy causality constraints. That is, to
characterize the following

d∗ , min
g∈F

lim
n→∞

Dn(g) (5)

B. The Case With Sampling Costs

Next, we consider the case where sampling the source incurs
an energy cost ε per unit time, that is a constant independent
of the sampling rate. Due to the sampling cost, collecting all
the source samples might not be optimal. Hence, we allow the
sensor to be on during a θt ≤ 1 portion of time slot t, and turn
off for the remainder of the time slot. The expected distortion
achieved in time slot t under this setting is now given by

Dε
t = (1− θt)σ2

s + θtσ
2
s exp (−2rt) (6)

and the feasible set Fε is now given by the sequence of
mappings {(θt, gt) : Et → [0, 1]× R+} satisfying

θt(ε+ gt) ≤ bt , min{bt−1 − θt−1(ε+ gt−1) + Et, B}, ∀t
(7)

with b1 , B. We note that the problem with sampling costs
is formulated slightly different in [31]. In our formulation, the
expected distortion is interpreted by time sharing between not
transmitting (and hence achieving σ2

s ) and transmitting with
rate rt (and hence achieving σ2

s exp(−2rt)). Given a feasible
policy (θ, g), and using (3) and (6), we define the n-horizon

average distortion with sampling costs as

Dεn (θ, g) ,
1

n
E

[
n∑
t=1

(1− θt)σ2
s +

θtσ
2
s

1 + gt/σ2
c

]
(8)

whence our goal is to characterize

d∗ε , min
(θ,g)∈Fε

lim
n→∞

Dεn (θ, g) (9)

III. MAIN RESULTS

In this section we discuss the main results of this paper re-
garding problems (5) and (9). We first note that both problems
can be optimally solved via dynamic programming techniques,
since the underling system evolves as a Markov decision
process. However, the optimal solution is usually computa-
tionally demanding with few structural insights. Therefore, in
the sequel, we aim at finding relatively simple online power
control policies that are provably within a constant additive
gap of the optimal solution. Towards that end, we derive
lower and upper bounds on the optimal solution and bound the
additive gap between them. We show that the proposed policy
lies in between these bounds and is therefore of at most the
same additive gap from the optimal solution.

We assume that Et ≤ B ∀t a.s., since any excess energy
above the battery capacity cannot be saved or used. Let µ =
E[Et], where E[·] is the expectation operator, and define

q ,
E[Et]

B
(10)

Then, we have 0 ≤ q ≤ 1. For problem (5), we define the
power control policy as follows [1]

g̃t = qbt (11)

and for problem (9), we define it as

θ̃t(ε+ g̃t) = qbt (12)

That is, for either problem, in each time slot, the sensor uses
a fixed fraction of its available energy in the battery. Such
policies were first introduced in [1], and coined fixed fraction
policies (FFP). Clearly these policies are always feasible since
q ≤ 1. We note that using (12) in problem (9) decouples the
problem into multiple single-slot problems where the energy
consumption in time slot t is qbt. In upcoming sections, we
show that solving that single-slot problem for

(
θ̃t, g̃t

)
gives

θ̃t = min

{
qbt

ε+
√
εσ2
c

, 1

}
(13)

g̃t = max
{
qbt − ε,

√
εσ2
c

}
(14)

Observe that in the above assignment, for a single energy
arrival, either the transmission power or the on time decreases
over slots in a fractional manner, i.e., while one decreases the
other one is fixed. Let d (g̃) and dε

(
θ̃, g̃

)
denote the long

term average distortion under {g̃t} in (11) and {(θ̃t, g̃t)} in
(13) and (14), respectively. We now state the main results.



Theorem 1 For all i.i.d. energy arrivals with mean µ, the
optimal solution of problem (5) satisfies

d∗ ≥ f(µ) ,
σ2
s

1 + µ/σ2
c

(15)

and the FFP in (11) satisfies

f(µ) ≤ d (g̃) ≤ f(µ) +
1

2
σ2
s (16)

for all values of µ and σ2
c .

Theorem 2 For all i.i.d. energy arrivals with mean µ, the
optimal solution of problem (9) satisfies

d∗ε ≥ fε(µ) , min
θ,ḡ

(1− θ)σ2
s + θ

σ2
s

1 + ḡ
θσ2
c

s.t. θε+ ḡ ≤ µ, 0 ≤ θ ≤ 1 (17)

and the FFP in (13) and (14) satisfies

fε(µ) ≤ dε
(
θ̃, g̃

)
≤ fε(µ) +

1

2
σ2
s (18)

for all values of ε, µ, and σ2
c .

Note that the results in the theorems directly imply that the
average long term distortion under the FFP proposed for both
problems (9) and (5) lies within a constant additive gap from
the optimal solution. We also observe that the additive gap
indicated in Theorem 2 does not depend on the cost ε. We
prove these two theorems in the upcoming sections.

IV. NO SAMPLING COSTS: PROOF OF THEOREM 1

A. Lower Bounding d∗

In this section, we derive the lower bound in (15). Following
[1] and [35], we first remove the battery capacity constraint
setting B =∞. This way, the feasible set F becomes

n∑
t=1

gt ≤
n∑
t=1

Et, ∀n (19)

Then, we remove the expectation and consider the offline
setting of problem (5), i.e., when energy arrivals are known
a priori. Since the energy arrivals are i.i.d., the strong law
of large numbers indicates that limn→∞

1
n

∑n
t=1Et = µ a.s.,

i.e., for every δ > 0, there exists n large enough such that
1
n

∑n
t=1Et ≤ µ+δ a.s., which implies by (19) that the feasible

set, for such (δ, n) pair, is given by

1

n

n∑
t=1

gt ≤ µ+ δ a.s. (20)

Now fix such (δ, n) pair. The objective function is given by

1

n

n∑
t=1

σ2
s

1 + gt/σ2
c

=
1

n

n∑
t=1

f(gt) (21)

It is direct to see that f is convex. Therefore, the optimal power
allocation minimizing the objective function is gt = µ + δ,
1 ≤ t ≤ n [38] (see also [2]). Whence, the optimal offline

solution is given by f(µ + δ). We then have d∗ ≥ f(µ + δ).
Since this is true ∀δ > 0, we can take δ down to 0 by taking
n infinitely large. Therefore, (15) holds.

B. Upper Bounding d∗: Bernoulli Energy Arrivals

In this section, we derive an upper on d∗. Towards that,
we first the study a special energy harvesting i.i.d. process:
the Bernoulli process. Let {Êt} be a Bernoulli energy arrival
process with mean µ as follows

Êt ∈ {0, B}, with P[Êt = B] = p, and pB = µ (22)

where P[A] denotes the probability of A. Note that under
such specific energy arrival setting, whenever an energy packet
arrives, it completely fills the battery, and resets the system.
This constitutes a renewal. Then, by [39, Theorem 3.6.1] (see
also [1]), the following holds for any power control policy g

lim
n→∞

D̂n(g) = lim
n→∞

1

n
E

[
n∑
t=1

σ2
s

1 + gt/σ2
c

]

=
1

E[L]
E

[
L∑
t=1

σ2
s

1 + gt/σ2
c

]
a.s. (23)

where D̂n(g) is the n-horizon average distortion under
Bernoulli arrivals, and L is a random variable denoting the
inter-arrival time between energy arrivals, which is geometric
with parameter p, and E[L] = 1/p.

Now, substituting by the FFP (11) gives an upper bound on
d∗. Note that by (22), the fraction q in (10) is now equal to
p. Also note that in between energy arrivals, the battery state
decays exponentially, and the FFP in (11) gives

g̃t = p(1− p)t−1B = (1− p)t−1µ (24)

for all time slots t, where the second equality follows since
pB = µ. Therefore, using (23) and (24), we bound the
distortion under the FFP as follows

lim
n→∞

D̂n(g̃)

=
1

E[L]
E

[
L∑
t=1

σ2
s

1 + (1− p)t−1µ/σ2
c

]
(a)

≤ 1

E[L]
E

[
L∑
t=1

σ2
s

1 + µ/σ2
c

+
(
1− (1− p)t−1

)
σ2
s

]

= f(µ) + σ2
s

(
1− 1

E[L]
E

[
L∑
t=1

(1− p)t−1

])

= f(µ) + σ2
s

p(1− p)
1− (1− p)2

(b)

≤ f(µ) +
σ2
s

2
(25)

where (a) follows since 1
1+λx ≤

1
1+x + (1 − λ) for 0 ≤

λ ≤ 1 and x ≥ 0; and (b) follows since p(1−p)
1−(1−p)2 has a

maximum value of 1/2 for 0 ≤ p ≤ 1. Next, we use the
above result for Bernoulli arrivals to bound the distortion for
general i.i.d. arrivals under the FFP in the following lemma;
the proof follows by convexity and monotonicity of f , along
the same lines of [1, Section VII-C], and is omitted for brevity.



Lemma 1 Let {Êt} be a Bernoulli energy arrival process
as in (22) with parameter q as in (10) and mean qB = µ.
Then, the long term average distortion under the FFP for any
general i.i.d. energy arrivals, d(g̃), satisfies

d(g̃) ≤ lim
n→∞

D̂n(g̃) (26)

Using (15), (25), and Lemma 1, we have

f(µ) ≤ d∗ ≤ d(g̃) ≤ f(µ) +
σ2
s

2
(27)

V. SAMPLING COSTS: PROOF OF THEOREM 2

A. Lower Bounding d∗ε
In this section, we derive the lower bound in (17). Following

the same lines as in Section IV-A, we remove the battery limit
and consider the offline setting. We also apply the change of
variables: ḡt , θtgt ∀t. The feasible set Fε now becomes

n∑
t=1

θtε+ ḡt ≤
n∑
t=1

Et, ∀n; 0 ≤ θt ≤ 1, ∀t (28)

Next, we use the strong law of large numbers and apply the
same (δ, n) argument as in Section IV-A. Fixing a (δ, n) pair,
the objective function is given by

1

n

n∑
t=1

(1− θt)σ2
s +

θtσ
2
s

1 + ḡt
θtσ2

c

,
1

n

n∑
t=1

h (θt, ḡt) (29)

It is direct to see that h is jointly convex in (θt, ḡt) since the
second added term is the perspective of the convex function
f(ḡt) [38]. Therefore, the optimal power allocation minimiz-
ing the objective function is θtε + ḡt = µ + δ, 1 ≤ t ≤ n
[38] (see also [2]). We denote this optimal offline solution by
fε(µ + δ) as defined in (17). We then have d∗ε ≥ fε(µ + δ);
we take δ down to 0 by taking n infinitely large. Therefore,
(17) holds.

B. Upper Bounding d∗ε : Bernoulli Energy Arrivals

In this section, we derive an upper bound on d∗ε . Following
the same steps as in Section IV-B, we first consider Bernoulli
energy arrivals as in (22). In this case we have

lim
n→∞

D̂εn (θ, g) =
1

E[L]
E

[
L∑
t=1

(1− θt)σ2
s +

θtσ
2
s

1 + gt/σ2
c

]
a.s.

(30)

where D̂εn (θ, g) is the n-horizon average distortion under
Bernoulli arrivals. Next, we upper bound the long term average
distortion in this case by substituting the FFP in (12) setting

θ̃t(ε+ g̃t) = p(1− p)t−1B = (1− p)t−1µ (31)

for all time slots t. Note that the average minimal distortion in
time slot t is given by fε

(
(1− p)t−1µ

)
. We have the following

lemma regarding fε. The proof follows by convexity of h and
is omitted for space limits.

Lemma 2 The function fε is convex and non-increasing.
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Fig. 1. Performance of the FFP with no sampling costs.

Next, following the same steps used in showing (25), by
(30) and (31), we have

lim
n→∞

D̂εn
(
θ̃, g̃

)
≤ fε(µ) +

σ2
s

2
(32)

where step (a) in (25) follows by Lemma 2. Finally, we
use the above result to bound the distortion for general i.i.d.
arrivals under the FFP. We basically extend the statement of
Lemma 1 to the case with sampling costs since fε is convex
and monotone. We then have

dε

(
θ̃, g̃

)
≤ lim
n→∞

D̂εn
(
θ̃, g̃

)
(33)

Using (17), (32), and (33), we have

fε(µ) ≤ d∗ε ≤ dε
(
θ̃, g̃

)
≤ fε(µ) +

σ2
s

2
(34)

It now remains to show that the FFP corresponds to (13)
and (14). Towards that end, we solve fε (qbt) for θ and ḡ.
We first make the substitution ḡ = qbt − θε into the objective
function. The problem now becomes

min
0≤θ≤min{1,qbt/ε}

θ

1− ε
σ2
c

+ qbt
θσ2
c

− θ (35)

where the constraint θ ≤ qbt/ε ensures non-negativity of ḡ.
One can show that the objective function above is convex in
θ. Hence, we take the derivative, equate to 0, solve for θ, and
then project the solution onto the feasible set to get the optimal
solution of this problem [38]. This gives (13); while (14) is
directly derived by substituting g = qbt

θ − ε.

VI. NUMERICAL RESULTS

In this section we present some examples to illustrate our
results. We set both σ2

s and σ2
c to unity, and consider a system

with Bernoulli energy arrivals with probability p = 0.5. In
Fig. 1, we plot the lower bound on the long term average
distortion for the problem without sampling costs along with
the FFP, against the battery size B. We also plot the optimal
solution in this scenario. We see that the FFP performs very
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close to the optimal policy. We note that the empirical gap
between the optimal policy and the FFP is no larger than 0.03,
while the empirical gap between the lower bound and the FFP
is no larger than 0.15, which is lower than the theoretical gap
of 0.5 in Theorem 1.

In Fig. 2, we plot the same curves for the problem with
sampling costs. We set the sampling cost ε = 1.5. We notice
that the distortion levels are higher in general when compared
to the case without sampling costs, which is mainly due to
having some energy spent in sampling instead of reducing
distortion. The empirical gap in this case is 0.22, which is
lower than the theoretical gap of 0.5 in Theorem 2.
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