
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 12, DECEMBER 2015 2611

Optimal Policies for Wireless Networks With Energy
Harvesting Transmitters and Receivers:

Effects of Decoding Costs
Ahmed Arafa, Student Member, IEEE, and Sennur Ulukus, Senior Member, IEEE

Abstract—We consider the effects of decoding costs in energy-
harvesting communication systems. In our setting, receivers, in
addition to transmitters, rely solely on energy harvested from
nature, and need to spend some energy in order to decode their
intended packets. We model the decoding energy as an increasing
convex function of the rate of the incoming data. In this setting, in
addition to the traditional energy causality constraints at the trans-
mitters, we have the decoding causality constraints at the receivers,
where energy spent by the receiver for decoding cannot exceed
its harvested energy. We first consider the point-to-point single-
user problem where the goal is to maximize the total throughput
by a given deadline subject to both energy and decoding causal-
ity constraints. We show that decoding costs at the receiver can
be represented as generalized data arrivals at the transmitter, and
thereby moving all system constraints to the transmitter side.
Then, we consider several multiuser settings. We start with a two-
hop network where the relay and the destination have decoding
costs, and show that separable policies, where the transmitter’s
throughput is maximized irrespective of the relay’s transmis-
sion energy profile, are optimal. Next, we consider the multiple
access channel (MAC) and the broadcast channel (BC) where the
transmitters and the receivers harvest energy from nature, and
characterize the maximum departure region. In all multiuser set-
tings considered, we decompose our problems into inner and outer
problems. We solve the inner problems by exploiting the struc-
ture of the particular model, and solve the outer problems by
water-filling algorithms.

Index Terms—Energy harvesting, throughput maximization,
energy-harvesting transmitters, energy-harvesting receivers,
decoding costs, energy causality, decoding causality.

I. INTRODUCTION

E NERGY harvesting communications offer the promise
of energy self-sufficient, energy self-sustaining operation

for wireless networks with significantly prolonged lifetimes.
Energy harvesting communications have been considered
mostly for energy harvesting transmitters, e.g., [1]–[30], with
fewer works on energy harvesting receivers, e.g., [31]–[35]. In
this paper, we consider energy harvesting communications with
both energy harvesting transmitters and receivers.
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The energy harvested at the transmitters is used for data
transmission according to a rate-power relationship, which is
concave, monotone increasing in powers. The energy harvested
at the receivers is used for decoding costs, which we assume to
be convex, monotone increasing in the incoming rate [31], [32],
[36]–[39]. The transmission energy costs and receiver decoding
costs could be comparable, especially in short-distance commu-
nications, where high rates can be achieved with relatively low
powers, and the decoding power could be dominant; see [36]
and the references therein.

We model the energy needed for decoding at the receivers via
decoding causality constraints: the energy spent at the receiver
for decoding cannot exceed the receiver’s harvested energy. We
already have the energy causality constraints at the transmitter:
the energy spent at the transmitter for transmitting data can-
not exceed the transmitter’s harvested energy. Therefore, for
a given transmitter-receiver pair, transmitter powers need now
to adapt to both energy harvested at the transmitter and at the
receiver; the transmitter must only use powers, and therefore
rates, that can be handled/decoded by the receiver.

The most closely related work to ours is [31], where the
authors consider a general network with energy harvesting
transmitters and receivers, and maximize a general utility func-
tion, subject to energy harvesting constraints at all terminals.
Reference [31] carries the effects of decoding costs to the objec-
tive function. If the objective function is no longer concave after
this operation, it uses time-sharing to concavify it, leading to a
convex optimization problem, which it then solves by using a
generalized water-filling algorithm.

In this paper, we consider a similar problem with a spe-
cific utility function which is throughput, for specific network
structures, with different decoding costs informed by network
information theory. First, we consider the single-user channel,
and observe that the decoding costs at the receiver can be inter-
preted as a gate keeper at the front-end of the receiver that
lets packets pass only if it has sufficient energy to decode. We
show that we can carry this gate effect to the transmitter as a
generalized data arrival constraint. Therefore, the setting with
decoding costs at the receiver is equivalent to a setting with
no decoding costs at the receiver, but with a (generalized) data
arrival constraint at the transmitter [1]. We also note that the
energy harvesting component of the receiver can be separated
as a virtual relay between the transmitter and the receiver; and
again, the problem can be viewed as a setting with no decoding
costs at the receiver but with a virtual relay with a (generalized)
energy arrival constraint [10]–[15].
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We then consider several multi-user settings. We begin with a
decode-and-forward two-hop network, where the relay and the
receiver both have decoding costs. This gives rise to decode-
and-forward causality constraints at the relay in addition to
decoding causality constraints at the receiver and energy causal-
ity constraints at the transmitter. We decompose the problem
into inner and outer problems. In the inner problem, we fix the
relay’s decoding power strategy, and show that separable poli-
cies are optimal [10], [11]. These are policies that maximize the
throughput of the transmitter-relay link independent of maxi-
mizing the throughput of the relay-destination link. Thereby,
we solve the inner problem as two single-user problems with
decoding costs. In the outer problem, we find the best relay
decoding strategy by a water-filling algorithm.

Next, we consider a two-user multiple access channel (MAC)
with energy harvesting transmitters and receiver, and maxi-
mize the departure region. We consider two different decoding
schemes: simultaneous decoding, and successive cancellation
decoding [40]. Each scheme has a different decoding power
consumption. For the simultaneous decoding scheme, we show
that the boundary of the maximum departure region is achieved
by solving a weighted sum rate maximization problem that can
be decomposed into an inner and an outer problem. We solve
the inner problem using the results of single-user fading prob-
lem [3]. The outer problem is then solved using a water-filling
algorithm. In the successive cancellation decoding scheme, our
problem formulation is non-convex. We then use a succes-
sive convex approximation technique that converges to a local
optimal solution [41], [42]. The maximum departure region
with successive cancellation decoding is larger than that with
simultaneous decoding.

Finally, we characterize the maximum departure region of a
two-user degraded broadcast channel (BC) with energy harvest-
ing transmitter and receivers. With the transmitter employing
superposition coding [43], a corresponding decoding power
consumption at the receivers is assumed. We again decompose
the weighted sum rate maximization problem into an inner and
outer problem. We show that the inner problem is equivalent to
a classical single-user energy harvesting problem with a time-
varying minimum power constraint, for which we present an
algorithm. We solve the outer problem using a water-filling
algorithm similar to the outer problems of the two-hop network
and the MAC with simultaneous decoding.

II. SINGLE-USER CHANNEL

As shown in Fig. 1, we have a transmitter and a receiver,
both relying on energy harvested from nature. The time is slot-
ted, and at the beginning of time slot i ∈ {1, . . . , N }, energies
arrive at a given node ready to be used in the same slot or
saved in a battery to be used in future slots. Let {Ei }Ni=1 and
{Ēi }Ni=1 denote the energies harvested at each slot for the trans-
mitter and the receiver, respectively, and let {pi }Ni=1 denote the
transmitter’s powers.

Without loss of generality, we assume that the time slot
duration is normalized to one time unit. The physical layer is
a Gaussian channel with zero-mean unit-variance noise. The
objective is to maximize the total amount of data received

Fig. 1. Single-user channel with an energy harvesting transmitter and an energy
harvesting receiver.

and decoded by the receiver by the deadline N . Our setting is
offline in the sense that all energy amounts are known prior to
transmission.

The receiver must be able to decode the kth packet by the end
of the kth slot. A transmitter transmitting at power pi in the i th
time slot will send at a rate g(pi ) � 1

2 log2 (1+ pi ), for which
the receiver will spend φ(g(pi )) amount of power to decode,
where φ is generally an increasing convex function [31], [32],
[36]–[39]. In the sequel, we will also focus on the specific
cases of linear and exponential functions, where φ(r) = ar +
b, with a, b ≥ 0, and φ(r) = c2dr + e, with c, d ≥ 0 and c +
e ≥ 0. Continuing with a general convex increasing function
φ, we have the following decoding causality constraints for the
receiver:

k∑
i=1

φ(g(pi )) ≤
k∑

i=1

Ēi , k = 1, . . . , N (1)

Therefore, the overall problem is formulated as:

max
p

N∑
i=1

g(pi )

s.t.
k∑

i=1

pi ≤
k∑

i=1

Ei , ∀k

k∑
i=1

φ(g(pi )) ≤
k∑

i=1

Ēi , ∀k (2)

where p denotes the vector of powers. Note that the problem
above in general is not a convex optimization problem as (1)
in general is a non-convex constraint since φ is a convex func-
tion while g is a concave function [44]. Applying the change
of variables g(pi ) = ri , and defining f � g−1 (note that f is a
convex function), we have

max
r

N∑
i=1

ri

s.t.
k∑

i=1

f (ri ) ≤
k∑

i=1

Ei , ∀k

k∑
i=1

φ(ri ) ≤
k∑

i=1

Ēi , ∀k (3)
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which is now a convex optimization problem [44].
We note that the constraints in (1), i.e.,

∑k
i=1 φ(ri ) ≤∑k

i=1 Ēi , place upper bounds on the rates of the transmitter by
every slot k. This resembles the problem addressed in [1] with
data packet arrivals during the communication session. In fact,
when φ(r) = r and Ēi = bi , where bi is the amount of data
arriving in slot i , these are exactly the data arrival constraints in
[1]. A general convex φ generalizes this data arrival constraint.
We characterize the solution of (3) in the following three lem-
mas and the theorem. The proofs rely on the convexity of f and
φ generalizing the proof ideas in [1].

Lemma 1:
{
r∗i

}
is monotonically increasing.

Proof: Assume that there exists a time slot k such that r∗k >
r∗k+1, and consider a new policy obtained by replacing both r∗k
and r∗k+1 by r̂k = r̂k+1 � r∗k+r∗k+1

2 , and observe that from the
convexity of f and φ, we have

f
(
r̂k

)+ f
(
r̂k+1

) ≤ f
(
r∗k

)+ f
(
r∗k+1

)
(4)

φ
(
r̂k

)+ φ (
r̂k+1

) ≤ φ (
r∗k

)+ φ (
r∗k+1

)
(5)

In addition, since both f and φ are monotonically increasing,
we have f

(
r̂k

) ≤ f
(
r∗k

)
, and φ

(
r̂k

) ≤ φ (
r∗k

)
. Therefore, the

new policy is feasible, and can only save some energy either
at the transmitter or at the receiver. This saved energy can be
used to increase the rates in the upcoming time slots. Thus, the
original policy cannot be optimal. �

Lemma 2: In the optimal policy, whenever the rate changes in
a time slot, at least one of the following events occur: 1) the
transmitter consumes all of its harvested energy in transmis-
sion, or 2) the receiver consumes all of its harvested energy in
decoding, up to that time slot.

Proof: Assume not, i.e., r∗k < r∗k+1 but both the transmitter and
the receiver did not consume all their energies in the kth time
slot. Then, we can always increase r∗k and decrease r∗k+1 without
conflicting the energy causality or the decoding causality con-
straints. By the convexity of f and φ, this modification would
save some energy that can be used to increase the rates in the
upcoming time slots. Therefore, the original policy cannot be
optimal. �

Lemma 3: In the optimal policy, by the end of the trans-
mission period, at least one of the following events occur:
1) the transmitter’s total power consumption in transmission
is equal to its total harvested energy, or 2) the receiver’s total
power consumption in decoding is equal to its total harvested
energy.

Proof: Assume that both conditions are not met. Then, we can
increase the rate in the last time slot until either the transmit-
ter, or the receiver, consumes all of its energy. This is always
feasible and strictly increases the rate. �

Theorem 1: Let ψ � φ−1. A policy is optimal iff it satisfies the
following

rn = min

⎧⎨
⎩g

⎛
⎝

∑in
j=1 E j −∑in−1

j=1 f (r j )

in − in−1

⎞
⎠ ,

ψ

⎛
⎝

∑in
j=1 Ē j −∑in−1

j=1 φ(r j )

in − in−1

⎞
⎠

⎫⎬
⎭ (6)

where

in = arg min
in−1<i≤N

⎧⎨
⎩g

⎛
⎝

∑i
j=1 E j −∑in−1

j=1 f (r j )

i − in−1

⎞
⎠ ,

ψ

⎛
⎝

∑i
j=1 Ē j −∑in−1

j=1 φ(r j )

i − in−1

⎞
⎠

⎫⎬
⎭ (7)

with i0 = 0, and n = 1, . . . , N .

Proof: First, we prove that the optimal policy satisfies (6) and
(7). We show this by contradiction. Let us assume that the opti-
mal policy, that satisfies the necessary lemmas above, is not
given by (6) and (7) and achieves a higher throughput. In par-
ticular, let us assume that it coincides with the policy given by
(6) and (7) for all rates {ri }n−1

i=1 but has a different value for rn .
Let us denote the points of rate increase of this policy by {ik}.
Thus, there must exist a time index i ′ > in−1 such that

rn > min

⎧⎨
⎩g

⎛
⎝

∑i ′
j=1 E j −∑in−1

j=1 f (r j )

i ′ − in−1

⎞
⎠ ,

ψ

⎛
⎝

∑i ′
j=1 Ē j −∑in−1

j=1 φ(r j )

i ′ − in−1

⎞
⎠

⎫⎬
⎭ (8)

and let us consider two different cases.
Assume that i ′ < in . If the transmitter’s energy is the bottle-

neck at i ′, then rn cannot be supported by the transmitter. On the
other hand, if the receiver’s energy is the bottleneck at i ′, then
rn cannot be supported by the receiver. Hence, rn is not feasible
in both cases. Now, assume that i ′ > in . Then, there will exist a
duration⊆ [

in + 1, i ′
]

where the rate has to decrease in order to
satisfy feasibility. This violates the monotonicity property, and
hence cannot be optimal.

Second, let us show sufficiency. We show this again by con-
tradiction. Let us assume that the policy that satisfies (6) and
(7) is not optimal. In particular, let us assume that there exists
another policy

{
r ′i

}
that coincides with it for all rates {ri }n−1

i=1
but has a different value for rn . Since this new policy should
have higher throughput, we have r ′n > rn . Now, assume i ′n > in .
Then, clearly r ′n is not feasible in the duration

[
in−1 + 1, in

]
.

On the other hand, if i ′n < in , then by the monotonicity prop-
erty, all upcoming rates {r ′i } for i > i ′n can only be larger than
r ′n , which are all larger than rn . This makes the new policy
infeasible by the end of slot in since rn consumes all feasible
energy according to (6) and (7). Thus, the original policy is
optimal. �
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Fig. 2. Decoding costs viewed as a virtual relay.

Theorem 1 shows that decoding costs at the receiver are sim-
ilar in effect to having a single-user channel with data arrivals
during transmission and no decoding costs. This stems from
the fact that the transmitter has to adapt its powers (and rates)
in order to meet the decoding requirements at the receiver.
Therefore, the receiver’s harvested energies and the function
φ control the amount of data the transmitter can send by any
given point in time.

Alternatively, we can slightly change the single-user problem
(3) by adding an extra variable r̄i as follows

max
r,r̄

N∑
i=1

r̄i

s.t.
k∑

i=1

f (ri ) ≤
k∑

i=1

Ei , ∀k

k∑
i=1

φ(r̄i ) ≤
k∑

i=1

Ēi , ∀k

r̄i ≤ ri , ∀i (9)

This gives the same solution as we will always have r̄∗i = r∗i
satisfied for all i . Therefore, as shown in Fig. 2, we can view
the single-user setting with an energy harvesting receiver, as a
two-hop setting with a virtual relay between the transmitter and
the receiver, with a non-energy harvesting receiver. To this end,
we separate the decoding costs of the receiver, which are sub-
ject to energy harvesting constraints, as a relay which is subject
to energy harvesting constraints in its transmissions, and con-
sider the receiver as fully powered [10]–[15]. The receiver will
only receive data if the relay has sufficient energy to forward
it. In addition, this energy harvesting virtual relay has no data
buffer, thus, its incoming data rate equals its outgoing data rate.
The rate through this relay is controlled by Ēi and φ. Thus, the
decoding function φ puts a generalized energy arrival effect to
this virtual relay, in a similar way that it puts a generalized data
arrival effect to the transmitter through Theorem 1, as shown in
Fig. 1.

It is worth mentioning that if we consider the special case
where the receiver has no battery to store its energy, this will
lead to the following decoding causality constraint

φ(g(pi )) ≤ Ēi , i = 1, . . . , N (10)

which, in view of the generalized data arrival interpretation, can
be modeled as a time-varying upper bound on the transmitter’s
power in each slot

pmax
i � f

(
ψ

(
Ēi

))
(11)

where ψ(Ēi ) is the maximum transmission rate of a packet
that Ēi can handle at the decoder, and pmax

i denotes its cor-
responding maximum transmit power. This problem has been
considered in the general framework of [45], and in [30] for
the special case of a constant maximum power constraint. One
solution for this problem is to apply a backward water-filling
algorithm that starts from the last slot backwards, where at each
slot directional water-filling [3] is applied only on slots whose
maximum power constraint is not satisfied with equality. This
might cause some wastage of water if the maximum power
constraints are tighter than the transmitter’s energy causality
constraints, which depends primarily on how the function φ
relates the transmitter’s and the receiver’s energies.

III. TWO-HOP NETWORK

We now consider a two-hop network consisting of a sin-
gle source-destination pair communicating through a relay, as
depicted in Fig. 3. The relay is full duplex, and it uses a decode-
and-forward protocol. The relay has a data buffer to receive its
incoming packets from the source. At the beginning of slot i ,
energies in the amounts of Ei , Ẽi , and Ēi arrive at the source,
relay, and destination, respectively. Unused energies can be
saved in their respective batteries.

Let ri and r̃i be the rates of the source and the relay, respec-
tively, in slot i . Our goal is to maximize the total amount of data
received and decoded at the destination by the deadline N . We
impose decoding costs on both the relay and the destination.
The problem is formulated as:

max
r,r̃

N∑
i=1

r̃i

s.t.
k∑

i=1

f (ri ) ≤
k∑

i=1

Ei , ∀k

k∑
i=1

φ (ri )+ f (r̃i ) ≤
k∑

i=1

Ẽi , ∀k
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Fig. 3. Two-hop energy harvesting system with both relay and destination decoding costs.

k∑
i=1

r̃i ≤
k∑

i=1

ri , ∀k

k∑
i=1

φ (r̃i ) ≤
k∑

i=1

Ēi , ∀k (12)

where the first constraint in (12) is the source transmis-
sion energy causality constraint, the second one is the relay
decode-and-forward causality constraint, the third one is the
data causality constraint at the relay, and the last one is the
destination decoding causality constraint.

We first note that that if the relay did not have a data buffer,
the source and the relay rates will need to be equal, i.e., r̃i = ri

for all i . In this case, the problem reduces to be a problem only
in terms of the source rates, and could be solved by straight-
forward generalization of the single-user result in Theorem 1
considering three constraints instead of two. In a sense, this
would be equivalent to taking the effects of decode-and-forward
causality at the relay and decoding causality at the receiver back
to the source as two different generalized data arrival effects.
This can be further extended to multi-hop networks with relays
having no data buffers by taking their constraint effects all the
way back to the source.

In our setting, having a data buffer at the relay imposes non-
obvious relationships among the source and the relay rates.
To tackle this issue, we decompose the problem into inner
and outer problems. In the inner problem, we solve for the
source and relay rates after fixing a decoding power strategy
for the relay node. By that we mean choosing the amounts
of powers, {δi }Ni=1, the relay dedicates to decoding its incom-
ing source packets. These amounts need to be feasible in
the sense that

∑k
i=1 δi ≤∑k

i=1 Ẽi , ∀k. This decomposes the
decode-and-forward causality constraint into the following two
constraints:

k∑
i=1

φ (ri ) ≤
k∑

i=1

δi ,

k∑
i=1

f (r̃i ) ≤
k∑

i=1

Ẽi − δi , ∀k (13)

In the next lemmas and theorem, we characterize the solution
of the inner problem. The proofs of the lemmas are extensions
of the ones presented in [11] to the case of generalized data
arrivals.

Lemma 4: There exists an optimal increasing source rate
policy for the inner problem.

Proof: Assume that there exists a time slot k where rk > rk+1.
We have two cases to consider. First, assume r̃k > r̃k+1. Let us
define a new policy by replacing the kth and k + 1st source and
relay rates by r ′ � rk+rk+1

2 , and r̃ ′ � r̃k+r̃k+1
2 , respectively. By

the convexity of f and φ, and linearity of the data causality
constraint, the new policy is feasible, and can only save some
energy at the source or the relay. This energy can be used in
later slots to achieve higher rates.

Now, assume r̃k ≤ r̃k+1. We argue that the data arrival
causality constraint is satisfied with strict inequality at time slot
k. For if it were equality, we need to have r̃k ≥ rk and r̃k+1 ≤
rk+1, which leads to rk ≤ r̃k ≤ r̃k+1 ≤ rk+1, an obvious contra-
diction. Now, we can find a small enough ε > 0, such that defin-
ing a new policy by replacing the kth and k + 1st source rates by
rk − ε and rk+1 + ε, respectively, does not affect the relay rates.
By the convexity of f and φ, the new policy is feasible, and can
only save some energy at the source. This energy can be used
in later slots to send more data to the relay, and hence, possibly
increasing the relay rates, and the end-to-end throughput. �

Lemma 5: The optimal increasing source rate policy for the
inner problem {r∗i } is given by the single-user problem solu-
tion in (6) and (7), where the transmitter’s and the receiver’s
energies are given by {Ei } and {δi }, respectively.

Proof: Let us denote the single-user solution by {r ′i }. Assume
for contradiction that it is not optimal for the inner problem.
In particular, let {r∗i } and {r ′i } be equal for i = 1, . . . , k − 1,
and differ on the kth slot. We again have two cases to consider.
First, assume r∗k > r ′k . In this case, since by Lemma 4, {r∗i } is
increasing, by similar arguments as in the proof of Theorem 1,
the policy {r∗i } will eventually not satisfy the source’s energy
causality or the relay’s decoding causality constraints, at some
time slot j ≥ k. Hence, it cannot be optimal.

Now, assume r∗k < r ′k . We argue that this shrinks the feasible
set of the relay’s rates. We show this by induction. By assump-
tion of this case, it is true at time slot k, that we have

∑k
i=1 r∗i <∑k

i=1 r ′i . Now, assume it is true that for some time slot j > k we

have
∑ j

i=1 r∗i <
∑ j

i=1 r ′i , and consider the j + 1st time slot. If
r∗j+1 > r ′j+1, then we are back to the previous case where this
cannot be feasible eventually. Therefore, the feasible set of the
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relay’s rates shrinks at time slot j + 1, and hence, shrinks all
over k, . . . , N . Thus, this case cannot be optimal either. �

Lemma 5 states that the optimal source policy is separable
[10], [11] in the sense that the source maximizes its throughput
to the relay irrespective of how the relay spends its transmission
energy. This stems from the fact that the relay has an infinite
data buffer to store its incoming source packets. Therefore, once
we fix a decoding power strategy at the relay, we get separa-
bility. The following theorem, which is an extended version of
Theorem 1, gives the optimal relay rates for the inner problem.
The proof is similar to that of Theorem 1 and is omitted for
brevity.

Theorem 2: Given the optimal source rates {r∗i }, the optimal
relay rates for the inner problem is given by

r̃∗n = min

⎧⎨
⎩g

⎛
⎝

∑in
j=1 Ẽ j − δ j −∑in−1

j=1 f (r̃∗j )
in − in−1

⎞
⎠ ,

ψ

⎛
⎝

∑in
j=1 Ē j −∑in−1

j=1 φ(r̃
∗
j )

in − in−1

⎞
⎠ ,

∑in
j=1 r∗j −

∑in−1
j=1 r∗j

in − in−1

⎫⎬
⎭

(14)

where in is the arg min of the expression in (14) as in (6)–(7),
and i0 = 0.

Denoting the solution of the inner problem by R(δ), we now
find the optimal relay decoding strategy {δ∗i } by solving the
following outer problem:

max
δ

R(δ)

s.t.
k∑

i=1

δi ≤
k∑

i=1

Ẽi , ∀k (15)

We have the following lemma regarding the outer problem.

Lemma 6: R(δ) is a concave function.

Proof: Consider two decoding power strategies δ1, δ2, and
let {r1, r̃1}, {r2, r̃2} be their corresponding source and relay
optimal inner problem rates, respectively. Let δθ � θδ1 + (1−
θ)δ2, for some 0 ≤ θ ≤ 1, and consider the rate policy defined
by rθ � θr1 + (1− θ)r2, and r̃θ � θ r̃1 + (1− θ)r̃2, for the
source, and the relay, respectively. By the convexity of f and
φ, the policy {rθ , r̃θ } is feasible for the decoding strategy δθ .
Therefore, we have

R(δθ ) ≥
N∑

i=1

r̃θ i = θR(δ1)+ (1− θ)R(δ2) (16)

proving the concavity of R(δ). �

Therefore, the outer problem is a convex optimization prob-
lem [44]. We propose a water-filling algorithm to solve the
outer problem [17]. We first note that R(δ) does not possess
any monotonicity properties in the feasible region. For instance,
R(Ẽ) = R(0) = 0, while R(δ) is strictly positive for some δ

Fig. 4. Two-user MAC with energy harvesting transmitters and receiver.

in between. Thus, at the optimal relay decoding power strat-
egy, not all the relay’s decoding energy will be exhausted. To
this end, we add an extra N + 1st slot where we can possibly
discard some energy. We start by filling up each slot by its cor-
responding energy/water level and we leave the extra N + 1st
slot initially empty. Meters are put in between bins to mea-
sure the amount of water passing. We let water flow to the
right only if this increases the objective function. After each
iteration, water can be called back if this increases the objec-
tive function. All the amount of water that is in the extra slot
is eventually discarded, but may be called back also during
the iterations. Since with each water flow the objective func-
tion monotonically increases, problem feasibility is maintained
throughout the process, and due to the convexity of the problem,
the algorithm converges to the optimal solution.

IV. MULTIPLE ACCESS CHANNEL

We now consider a two-user Gaussian MAC as shown in
Fig. 4. The two transmitters harvest energy in amounts {E1i }Ni=1
and {E2i }Ni=1, respectively, and the receiver harvests energy in

amounts
{

Ēi
}N

i=1. The receiver noise is with zero-mean and
unit-variance. The capacity region for this channel is given by
[43]:

r1 ≤ g(p1)

r2 ≤ g(p2)

r1 + r2 ≤ g(p1 + p2) (17)

where p1 and p2 are the powers used by the first and the second
transmitter, respectively.

In addition to the usual energy harvesting causality con-
straints on the transmitters [5], we impose a receiver decoding
cost. We note that there can be different ways to impose this
constraint depending on how the receiver employs the decoding
procedure. In the next two sub-sections, we consider two kinds
of decoding procedures, namely, simultaneous decoding, and
successive decoding [40], [43]. Changing the decoding model
affects the optimal power allocation for both users so as to adapt
to how the receiver spends its power.
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A. Simultaneous Decoding

In this case, the two transmitters can only send at rates whose
sum can be decoded at the receiver. A power control policy
{p1i , p2i }Ni=1 is feasible if the following are satisfied:

k∑
i=1

p1i ≤
k∑

i=1

E1i , ∀k

k∑
i=1

p2i ≤
k∑

i=1

E2i , ∀k

k∑
i=1

φ (g (p1i + p2i )) ≤
k∑

i=1

Ēi , ∀k (18)

From here on, we assume a specific structure for the decoding
function φ for mathematical tractability and ease of presen-
tation. In particular, we assume that it is exponential with
parameters c = 1, d = 2 and e = −1, i.e., φ(r) = g−1(r) =
22r − 1. Let B j denote the total departed bits from the j th
user by time slot N . Our aim is to characterize the maximum
departure region, D(N ), which is the region of (B1, B2) the
transmitters can depart by time slot N , through a feasible policy.
The following lemmas characterize this region [5].

Lemma 7: The maximum departure region, D(N ), is the union
of all (B1, B2), over all feasible policies {p1i , p2i }Ni=1, where
for any fixed power policy, (B1, B2) satisfy

B1 ≤
N∑

i=1

g(p1i )

B2 ≤
N∑

i=1

g(p2i )

B1 + B2 ≤
N∑

i=1

g(p1i + p2i ) (19)

Lemma 8: D(N ) is a convex region.

Each point on the boundary of D(N ), see Fig. 5, can be char-
acterized by solving a weighted sum rate maximization problem
subject to feasibility conditions (18). Let μ1 and μ2 be the
non-negative weights for the first and the second user rates,
respectively. Assuming without loss of generality thatμ1 > μ2,
and defining μ � μ2

μ1−μ2
, we then need to solve the following

optimization problem:

max
p1,p2

N∑
i=1

g(p1i )+ μ
N∑

i=1

g(p1i + p2i )

s.t.
k∑

i=1

p1i ≤
k∑

i=1

E1i , ∀k

k∑
i=1

p2i ≤
k∑

i=1

E2i , ∀k

k∑
i=1

p1i + p2i ≤
k∑

i=1

Ēi , ∀k (20)

Fig. 5. Departure region of a two-user MAC.

We note that the above problem resembles the one formulated in
[17] for a diamond channel with energy cooperation. First, we
state a necessary condition of optimality for the above problem.

Lemma 9: In the optimal solution for (20), by the end of the
transmission period, at least one of the following occur: 1) both
transmitters consume all of their harvested energies in trans-
mission, or 2) the receiver consumes all of its harvested energy
in decoding.

Proof: Assume without loss of generality that transmitter 1
does not consume all of its energies in transmission, and that
the receiver also does not consume all of its energies in decod-
ing. Then, we can always increase the value of p1N until
either transmitter 1 or the receiver consume their energies. This
strictly increases the objective function. �

We decompose the optimization problem (20) into two
nested problems. First, we solve for p2 in terms of p1, and then
solve for p1. Let us define the following inner problem:

G(p1) � max
p2

N∑
i=1

g(p1i + p2i )

s.t.
k∑

i=1

p2i ≤
k∑

i=1

Qi , ∀k (21)

where the modified energy levels Qi are defined as follows:

Qi = Mi − Mi−1,

Mi = min

⎧⎨
⎩

i∑
j=1

E2 j ,

i∑
j=1

Ē j − p1 j

⎫⎬
⎭ , M0 = 0 (22)

Then, we have the following lemma.

Lemma 10: G(p1) is a decreasing concave function in p1.
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Proof: G is a decreasing function of p1 since the feasible set
shrinks with p1. To show concavity, let us choose two points
p(1)1 and p(2)1 , and take their convex combination pθ1 = θp(1)1 +
(1− θ)p(2)1 for some 0 ≤ θ ≤ 1. Let p(1)2 and p(2)2 denote the

solutions of the inner problem (21) at p(1)1 and p(2)1 , respectively.

Now, let pθ2 � θp(1)2 + (1− θ)p(2)2 , and observe that, from the
linearity of the constraint set, pθ2 is feasible with respect to pθ1.
Therefore, we have

G
(
pθ1

) ≥
N∑

i=1

g
(

pθ1i + pθ2i

)

≥
N∑

i=1

θg
(

p(1)1i + p(1)2i

)
+ (1− θ)g

(
p(2)1i + p(2)2i

)

= θG
(

p(1)1

)
+ (1− θ)G

(
p(2)1

)
(23)

where the second inequality follows from the concavity
of g. �

We observe that the inner problem (21) is a single-user
energy harvesting maximization problem with fading, whose
solution is via directional water-filling of {Qi }Ni=1 over the
inverse of the fading levels {1+ p1i }Ni=1 as presented in [3].
Next, we solve the outer problem given by:

max
p1

μG (p1)+
N∑

i=1

g(p1i )

s.t.
k∑

i=1

p1i ≤
k∑

i=1

Ti , ∀k (24)

where we define the water levels Ti = Li − Li−1, with Li =
min

{∑i
j=1 E1 j ,

∑i
j=1 Ē j

}
, and L0 = 0. The minimum is

added to ensure the feasibility of the inner problem. Note that,
by Lemma 10, the outer problem is a convex optimization prob-
lem [44]. We first note that at the optimal policy, first user’s
modified energies {Ti } need not be fully utilized by the end
of transmission. This is because the objective function is not
increasing in p1. To this end, we use the iterative water-filling
algorithm for the outer problem proposed in Section III to
solve this outer problem. Since the problem is convex, iterations
converge to the optimal solution.

Note that the above formulation obtains the dotted points in
the curved portion of the departure region in Fig. 5. Specific
points in the departure region, e.g., points 1 and 3 in Fig. 5, can
be found by specific schemes [46], by solving the problem for
the cases μ1 = μ2 and μ1μ2 = 0.

B. Successive Cancelation Decoding

We now let the receiver employ successive decoding, where
it aims at decoding the corner points, and then uses time shar-
ing if necessary to achieve the desired rate pair [40], [43]. For
instance, if the system is operating at its lower corner point,

then the receiver first decodes the message of the second user,
by treating the first user’s signal as noise, then decodes the mes-
sage of the first user, after subtracting the second user’s signal
from its received signal. For μ1 > μ2, we are always at a lower
corner point at every time slot, and therefore the weighted sum
rate maximization problem can be formulated as:

max
p1,p2

μ1

N∑
i=1

g(p1i )+ μ2

N∑
i=1

g

(
p2i

1+ p1i

)

s.t.
k∑

i=1

p1i ≤
k∑

i=1

E1i , ∀k

k∑
i=1

p2i ≤
k∑

i=1

E2i , ∀k

k∑
i=1

p1i + p2i

1+ p1i
≤

k∑
i=1

Ēi , ∀k (25)

where the last inequality comes from the fact that the receiver
is decoding the second user’s message first by treating the
first user’s signal as noise, and thereby spends φ(g( p2i

1+p1i
))

amount of energy to decode this message, and then spends
φ (g (p1i )) amount of energy to decode the first user’s message
after subtracting the second user’s signal.

Observe that the last constraint, i.e., the decoding causality
constraint, is non-convex. Therefore, one might need to invoke
the time-sharing principle in order to fully characterize the
boundary of the maximum departure region. In terms of the
rates the problem can be written as:

max
r1,r2

μ1

N∑
i=1

r1i + μ2

N∑
i=1

r2i

s.t.
k∑

i=1

22r1i − 1 ≤
k∑

i=1

E1i , ∀k

k∑
i=1

22r1i
(

22r2i − 1
)
≤

k∑
i=1

E2i , ∀k

k∑
i=1

22r1i + 22r2i − 2 ≤
k∑

i=1

Ēi , ∀k (26)

which is a non-convex problem due to the second user’s energy
causality constraint. In fact, the above problem is a signomial
program, a generalized form of a geometric program, where
posynomials can have negative coefficients [44]. Next, we use
the idea of successive convex approximation [41] to provide an
algorithm that converges to a local optimal solution.
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By applying the change of variables x ji � 22r ji − 1, j =
1, 2, and some algebraic manipulations:

min
x1,x2,t1,t2

N∑
i=1

t−μ1
1i t−μ2

2i

s.t.
k∑

i=1

x1i ≤
k∑

i=1

E1i , ∀k

k∑
i=1

(1+ x1i ) x2i ≤
k∑

i=1

E2i , ∀k

k∑
i=1

x1i + x2i ≤
k∑

i=1

Ēi , ∀k

t1i ≤ 1+ x1i , ∀i
t2i ≤ 1+ x2i , ∀i (27)

Now, the problem looks very similar to a geometric program
except for the last two sets of constraints. These constraints
are written in the form of a monomial less than a posynomial,
which will not allow us to write the problem in convex form
by the usual geometric programming transformations [44]. We
will follow an approach introduced in [42] in order to iter-
atively approximate the posynomials on the right hand side
by monomials, and thereby reaching a geometric program that
can be efficiently solved [44]. Approximations should be cho-
sen carefully such that iterations converge to a local optimum
solution of the original problem [41]. Towards that, we use the
arithmetic-geometric mean inequality to write:

1+ x ≥
(

1

α

)α (
x

1− α
)1−α

� u(x;α) (28)

which holds for 0 ≤ α ≤ 1. In particular, equality holds at a
point xk ≥ 0 if we choose α = 1

1+xk
. Therefore, the monomial

function u(x;αk) approximates the posynomial function 1+ x
at x = xk . Substituting this approximation, we obtain that at
the k + 1st iteration, we need to solve the following geometric
program:

min
x1,x2,t1,t2

N∑
i=1

t−μ1
1i t−μ2

2i

s.t.
k∑

i=1

x1i ≤
k∑

i=1

E1i , ∀k

k∑
i=1

(1+ x1i ) x2i ≤
k∑

i=1

E2i , ∀k

k∑
i=1

x1i + x2i ≤
k∑

i=1

Ēi , ∀k

t1i

u
(

x1i ;α(k)1i

) ≤ 1, ∀i

t2i

u
(

x2i ;α(k)2i

) ≤ 1, ∀i (29)

Fig. 6. Two-user BC with energy harvesting transmitter and receivers.

where α(k)j i � 1
1+x (k)j i

, j = 1, 2, and x (k)j i is the solution of the

kth iteration. We pick an initial feasible point
(

x(0)1 , x(0)2

)
and

run the iterations. The choice of the approximating monomial
function u satisfies the conditions of convergence stated in [41],
and therefore, the iterative solution of problem (29) converges
to a point

(
x∗1, x∗2

)
that is local optimal for problem (25). Finally,

we get the original power allocations by substituting p∗1i = x∗1i ,
and p∗2i =

(
x∗1i + 1

)
x∗2i .

V. BROADCAST CHANNEL

We now consider a two-user Gaussian BC with energy har-
vesting transmitter and receivers as shown in Fig. 6. Energies
arrive in amounts Ei , Ē1i , and Ē2i , at the transmitter, and the
receivers 1 and 2, respectively. By superposition coding [43],
the weaker user is required to decode its message while treating
the stronger user’s interference as noise. While the stronger user
is required to decode both messages successively by first decod-
ing the weaker user’s message, and then subtracting it to decode
its own. The receiver noises have variances 1 and σ 2 > 1.

Under a total transmit power P , the capacity region of the
Gaussian BC is [43]:

r1 ≤ 1

2
log2 (1+ αP)

r2 ≤ 1

2
log2

(
1+ (1− α)P

αP + σ 2

)
(30)

working on the boundary of the capacity region we have:

P =
(
σ 2 − 1

)
22r2 + 22(r1+r2) − σ 2 � F (r1, r2) (31)

where F(r1, r2) is the minimum power needed by the trans-
mitter to achieve rates r1 and r2. Note that F is an increasing
convex function of both rates.
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As in the MAC case, the goal here is to characterize the
maximum departure region:

max
r1,r2

μ1

N∑
i=1

r1i + μ2

N∑
i=1

r2i

s.t.
k∑

i=1

F (r1i , r2i ) ≤
k∑

i=1

Ei , ∀k

k∑
i=1

φ(r1i + r2i ) ≤
k∑

i=1

Ē1i , ∀k

k∑
i=1

φ(r2i ) ≤
k∑

i=1

Ē2i , ∀k (32)

where the first constraint in (32) is the source transmission
energy causality constraint, and second and third constraints are
the decoding causality constraints at the stronger and weaker
receivers, respectively. Here also, we take the decoding cost
function φ to be φ(r) = 22r − 1.

By virtue of superposition coding, we see that, in the opti-
mization problem in (32), the decoding causality constraint of
the stronger user is a function of both rates intended for the
two users, as it is required to decode both messages. While the
decoding causality constraint for the weaker user is a function
of its own rate only. By the convexity of F and φ, the maximum
departure region is convex, and thus the weighted sum rate max-
imization in (32) is sufficient to characterize its boundary [6].
In addition, the optimization problem in (32) is convex [44].

We note that a related problem has been considered in [8],
where the authors characterized transmission completion time
minimization policies for a BC setting with data arrivals dur-
ing transmission. There, the solution is found by sequentially
solving an equivalent energy consumption minimization prob-
lem until convergence. Their solution is primarily dependent on
Newton’s method [44]. Some structural insights are also pre-
sented about the optimal solution. In our setting, we consider
the case with receiver side decoding costs, and generalize the
data arrivals concept by considering the convex function φ. In
addition, our formulation imposes further interactions between
the strong and the weak user’s data, by allowing a constraint
(strong user’s) that is put on the sum of both rates, instead of on
individual rates.

We characterize the solution of the problem according to the
relation between μ1 and μ2 as follows. If μ1 ≥ μ2, then due
to the degradedness of the second user, it is optimal to put
all power into the first user’s message. This way, the problem
reduces to a single-user problem:

max
r1

N∑
i=1

r1i

s.t.
k∑

i=1

22r1i − 1 ≤
k∑

i=1

Wi , ∀k (33)

where the modified energy levels {Wi } are defined as follows:

Wi = Li − Li−1,

Li = min

⎧⎨
⎩

i∑
j=1

E j ,

i∑
j=1

Ē1 j

⎫⎬
⎭ , L0 = 0 (34)

On the other hand, if μ1 < μ2, then we need to investigate
the necessary KKT optimality conditions [44]. We write the
Lagrangian for the problem (32) as follows:

L =− μ1

N∑
i=1

r1i − μ2

N∑
i=1

r2i

+
N∑

i=1

λi

⎛
⎝ i∑

j=1

(
σ 2 − 1

)
22r2 j + 22(r1 j+r2 j ) − σ 2 − E j

⎞
⎠

+
N∑

i=1

ν1i

⎛
⎝ i∑

j=1

22(r1 j+r2 j ) − 1− Ē1 j

⎞
⎠

+
N∑

i=1

ν2i

⎛
⎝ i∑

j=1

22r2 j − 1− Ē2 j

⎞
⎠

−
N∑

i=1

η1i r1i −
N∑

i=1

η2i r2i (35)

Taking the derivative with respect to r1i and r2i and equating to
zero, we obtain:

22(r1i+r2i ) = μ1 + η1i∑N
j=i λ j + ν1 j

(36)

22r2i = μ2 − μ1 + η2i − η1i∑N
j=i (σ

2 − 1)λ j + ν2 j
(37)

along with the complementary slackness conditions:

λi

⎛
⎝ i∑

j=1

(
σ 2 − 1

)
22r2 j + 22(r1 j+r2 j ) − σ 2 − E j

⎞
⎠ = 0, ∀i

ν1i

⎛
⎝ i∑

j=1

22(r1 j+r2 j ) − 1− Ē1 j

⎞
⎠ = 0, ∀i

ν2i

⎛
⎝ i∑

j=1

22r2 j − 1− Ē2 j

⎞
⎠ = 0, ∀i

η1i r1i = 0, η2i r2i = 0, ∀i (38)

From here, we state the following lemmas

Lemma 11: The sum rate {r∗1i + r∗2i } is monotonically increas-
ing.

Proof: We prove this by contradiction. Assume that there exists
some time slot k such that r1k + r2k > r1(k+1) + r2(k+1). From
(36), since the denominator cannot increase, the numerator has
to decrease for the sum rate to decrease, i.e., η1k > η1(k+1) ≥
0. From complementary slackness, we must have r1k = 0.
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Therefore, in order for the sum rate to decrease we must have
r2k > r2(k+1), which in turn leads to η2k = 0.

From (37), we know that for the weak user’s rate to decrease,
the numerator has to decrease, i.e., we must have η2(k+1) −
η1(k+1) < η2k − η1k . Since η2k = 0, this is equivalent to hav-
ing η2(k+1) < η1(k+1) − η1k . However, we know from above
that η1k > η1(k+1), i.e., η2(k+1) < 0, an obvious contradiction
by non-negativity of the Lagrange multipliers. �

Lemma 12: The weak user’s rate {r∗2i } is monotonically
increasing.

Proof: We also prove this by contradiction. Assume that
there exists some time slot k such that r2k > r2(k+1). From
(37), since the denominator cannot increase, the numerator
has to decrease for the weak user’s rate to decrease, i.e.,
η2(k+1) − η1(k+1) < η2k − η1k . Let us consider two different
cases. First, assume η1k ≥ η1(k+1). Therefore, we must have
η2k > η2(k+1) + (η1k − η1(k+1)) ≥ 0, and thus, by complemen-
tary slackness, r2k = 0, and hence, r2(k+1) cannot be less since
it cannot drop below zero. Now, assume η1k < η1(k+1). In this
case, by complementary slackness, r1(k+1) = 0. By Lemma 11,
we have r1k + r2k ≤ r2(k+1), i.e., r2(k+1) ≥ r2k , which is a
contradiction. �

With the change of variables: pti � 22(r1i+r2i ) − 1, and
p2i � 22r2i − 1, (32) becomes:

max
pt ,p2

μ1

N∑
i=1

g (pti )+ (μ2 − μ1)

N∑
i=1

g (p2i )

s.t.
k∑

i=1

(σ 2 − 1)p2i + pti ≤
k∑

i=1

Ei , ∀k

k∑
i=1

pti ≤
k∑

i=1

Ē1i , ∀k

k∑
i=1

p2i ≤
k∑

i=1

Ē2i , ∀k

pti ≥ p2i , ∀i (39)

We now decompose the above problem into an inner and
an outer problem and iterate between them until convergence.
First, we fix the value of p2, and solve the following inner
problem:

H(p2) � max
pt

N∑
i=1

g(pti )

s.t.
k∑

i=1

pti ≤
k∑

i=1

Vi , ∀k

pti ≥ p2i , ∀i (40)

where the modified energy levels Vi are defined as follows

Vi = Bi − Bi−1,

Bi = min

⎧⎨
⎩

i∑
j=1

Ē1 j ,

i∑
j=1

E j − (σ 2 − 1)p2 j

⎫⎬
⎭ , B0 = 0

(41)

We have the following lemma for this inner problem whose
proof is similar to that of Lemma 10.

Lemma 13: H(p2) is a decreasing concave function in p2.

We note that the p2 vector serves as a minimum power con-
straint to the inner problem. Let us write the Lagrangian for the
inner problem:

L =−
N∑

i=1

g(pti )+
N∑

j=1

λ j

⎛
⎝ j∑

i=1

pti −
j∑

i=1

Vi

⎞
⎠

−
N∑

i=1

μi (pti − p2i ) (42)

Taking the derivative with respect to pti and equating to zero,
we obtain:

pti = 1∑N
j=i λ j − μi

− 1 (43)

First, let us examine the necessary conditions for the opti-
mal power to increase, i.e., pti < pt (i+1). This occurs iff λi +
μi+1 > μi ≥ 0. Thus, we must either have λi > 0 which means
that, by the complementary slackness, we have to consume
all the available energy by the end of the i th slot. Or, we
have μi+1 > 0 which means that pt (i+1) = p2(i+1). Next, let
us examine the necessary conditions for the optimal power to
decrease, i.e., pti > pt (i+1). This occurs iff μi > λi + μi+1 ≥
0, and therefore, we must have pti = p2i .

We note from Lemmas 11 and 12 that both {p∗2i } and {p∗ti } are
monotonically increasing. Therefore, we only focus on fixing
an increasing feasible p2. This, when combined with the above
conditions, leads to the following lemma.

Lemma 14: For a fixed increasing p2, the optimal solution pt

of the inner problem is also increasing.

Proof: By the KKT conditions stated above, if we have pti >

pt (i+1), then we must have pti = p2i . Thus, we will have
pt (i+1) < pti = p2i ≤ p2(i+1), i.e., the minimum power con-
straint is not satisfied at the i + 1st slot. �

Therefore, choosing an increasing p2 in the outer problem
ensures that the inner problem’s solution pt is also increasing,
and thereby, satisfies the conditions of Lemmas 11 and 12. We
solve the inner problem by Algorithm 1. The algorithm’s main
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idea is to equalize the powers as much as possible via direc-
tional water-filling [3] while satisfying the minimum power
requirements.

Algorithm 1.

1: Initialize the status of each bin Si = Vi

2: Mark bins by their minimum power requirements {p2i }Ni=1
3: Set k = N
4: while k ≥ 1 do
5: if Sk < p2k then
6: Pour water into the kth bin from previous bins, in a

backward manner, until equality holds
7: else
8: Do directional water-filling over the current and

upcoming bins {k, k + 1, . . . , N }
9: end if

10: Update the status of each bin
11: k ← k − 1
12: end while

Observe that the algorithm gives a feasible power profile;
it examines each slot, and does not move backwards unless
the minimum power requirement is satisfied. If there is an
excess energy above the minimum, say at slot k, it performs
directional water-filling which will occur if Sk > Sk+1 (let us
consider water-filling only over two bins for simplicity). Since
the minimum power requirement vector p2 is increasing, after
equalizing the energies the updated status will satisfy Sk =
Sk+1 > p2(k+1) ≥ p2k , i.e., the minimum power requirement is
always satisfied if directional water-filling occurs. Also observe
that the algorithm cannot give out a decreasing power profile
since p2 is increasing.

According to the KKT conditions, the power increases from
slot k to slot k + 1 only if pt (k+1) = p2(k+1) or the total energy
is consumed by slot k. We see that the algorithm satisfies this
condition. Power increases only if directional water-filling is
not applied at slot k, which means that either some of the
water was poured forward in the previous iteration to satisfy
pt (k+1) = p2(k+1), or no water was poured which means that
all energy is consumed by slot k.

A numerical example for a three-slot system is shown in
Fig. 7. The minimum power requirements are shown by red
dotted lines in each bin. According to the algorithm, we first
initialize by pouring all the amounts of water in their corre-
sponding bins. We begin by checking the last bin, and we see
that it needs some extra water to satisfy its minimum power
requirement. Thus, we pour water forward from the middle bin
until the minimum power requirement of the last bin is satis-
fied with equality. This causes a deficiency in the middle bin,
and therefore, we pour water forward from the first bin until
the minimum power requirement of the middle bin is satisfied
with equality. Since the problem is feasible, the amount of water
remaining in the first bin should satisfy its minimum power
requirement. In fact, in this example, there is an excess amount
that is therefore used to equalize the water levels of the first two
bins via directional water-filling. This ends the algorithm and
gives the optimum power profile.

We now find the optimum value of p2 by solving the
following outer problem:

max
p2

μH (p2)+
N∑

i=1

g(p2i )

s.t.
k∑

i=1

p2i ≤
k∑

i=1

Ki , ∀k (44)

where μ � μ1
μ2−μ1

, and the modified water levels Ki are given
by:

Ki = Ai − Ai−1,

Ai = min

⎧⎨
⎩

i∑
j=1

Ē2 j ,

i∑
j=1

Ē1 j ,
1

σ 2

i∑
j=1

E j

⎫⎬
⎭ , A0 = 0 (45)

where the extra terms in the Ai expression are to ensure feasibil-
ity of the inner problem. By Lemma 13, the outer problem is a
convex optimization problem [44]. We solve it by an algorithm
similar to that of the two-hop network outer problem, except
that we only focus on choosing increasing power vectors p2
in each iteration. By convexity of the problem, the iterations
converge to the optimal solution.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the con-
sidered systems models. We focus on the specific case
where g(x) = log(1+ x), and φ = g−1. Starting with the
single-user channel, we consider a five-slot system with
energy amounts of E = [2, 2, 1, 2.5, 0.5] at the transmitter,
and Ē = [1, 1, 0.5, 2.5, 3] at the receiver. The optimal rates
in this case according to Theorem 1 are given by r∗ =
[0.6061, 0.6061, 0.6061, 1.2528, 1.3863]. As we see, the rates
are non-decreasing, which is consistent with Lemma 1, and they
strictly increase only after consuming all the receiver’s energies
in decoding by the end of the third slot, and again by the end of
the fourth one, which is consistent with Lemma 2.

In Fig. 8, we plot the maximum departure regions for a MAC
with simultaneous decoding and successive cancellation decod-
ing. We consider a system of three time slots, during which the
nodes harvest the energies: E1 = [0.5, 1, 2], E2 = [1, 2, 0.5],
and Ē = [1.5, 2, 0.5]. We observe that the simultaneous decod-
ing region lies strictly inside the successive decoding region.
The latter, given by the geometric programming framework, is
only a local optimal solution; one can therefore achieve even
higher rates if a global optimal solution is attained.

Finally, in Fig. 9, we provide some simulation results to
illustrate the difference between the departure regions with and
without decoding costs for a BC. We consider a system of three
time slots, where the energy profile of the transmitter is given by
E = [5, 6, 7]. The maximum departure region with no decod-
ing costs is shown in blue. We vary the energy profiles at the
receivers to show the effect of the decoding costs on the max-
imum departure region. We start by setting Ē1 = [4, 5, 6], and
Ē2 = [1, 2, 3], to get region A in red. Then we lower the val-
ues to Ē1 = [3, 4, 5], and Ē2 = [1, 1.5, 2], to get region B in
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Fig. 7. Numerical example for the BC inner problem.

Fig. 8. Departure regions of a MAC with simultaneous and successive cancel-
lation decoding.

Fig. 9. Departure regions of a BC with and without decoding costs.

green. Finally, we lower the values again to Ē1 = [2, 3, 4], and
Ē2 = [0.5, 1, 1.5], to get region C in brown. We note that as we
lower the energy profiles at the receivers, the decoding causal-
ity constraints become more binding, and therefore, the region
progressively shrinks.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We considered decoding costs in energy harvesting commu-
nication networks. In our settings, we assumed that receivers, in
addition to transmitters, rely on energy harvested from nature.

Receivers need to spend a decoding power that is a function
of the incoming rate in order to receive their packets. This
gave rise to the decoding causality constraints: receivers can-
not spend energy in decoding prior to harvesting it. We first
considered a single-user setting and maximized the through-
put by a given deadline. Next, we considered two-hop networks
and characterized the end-to-end throughput maximizing poli-
cies. Then, we considered two-user MAC and BC settings, with
focus on exponential decoding functions, and characterized the
maximum departure regions. In most of the models considered,
we were able to move the receivers’ decoding costs effect back
to the transmitters as generalized data arrivals; transmitters
need to adapt their powers (and rates) not only to their own
energies, but to their intended receivers’ energies as well. Such
adaptation is governed by the characteristics of the decoding
function.

Throughout this paper, we only considered receiver decoding
costs in our models without considering transmitter processing
costs. On the other hand, other works have considered the pro-
cessing costs at the transmitter [20]–[23] without considering
decoding costs at the receiver. In their models, the transmitter
spends a constant amount of power per unit time whenever it
is communicating to account for circuitry processing; while in
our model, the receiver spends a decoding power which is a
function of the incoming data rate. As a future work, the two
approaches can be combined to account for both the processing
costs at the transmitter and the decoding costs at the receiver in
a single setting.
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