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Abstract— The proliferation of real-time applications has
spurred much interest in data freshness, captured by the age-
of-information (AoI) metric. When strategic data sources have
private market information, a fundamental economic challenge
is how to incentivize them to acquire fresh data and optimize
the age-related performance. In this work, we consider an
information update system in which a destination acquires,
and pays for, fresh data updates from multiple sources. The
destination incurs an age-related cost, modeled as a general
increasing function of the AoI. Each source is strategic and
incurs a sampling cost, which is its private information and
may not be truthfully reported to the destination. The des-
tination decides on the price of updates, when to get them,
and who should generate them, based on the sources’ reported
sampling costs. We show that a benchmark that naively trusts
the sources’ reports can lead to an arbitrarily bad outcome
compared to the case where sources truthfully report. To tackle
this issue, we design an optimal (economic) mechanism for
timely information acquisition following Myerson’s seminal work.
To this end, our proposed optimal mechanism minimizes the
sum of the destination’s age-related cost and its payment to
the sources, while ensuring that the sources truthfully report
their private information and will voluntarily participate in
the mechanism. However, finding the optimal mechanisms may
suffer from prohibitively expensive computational overheads as
it involves solving a nonlinear infinite-dimensional optimization
problem. We further propose a quantized version of the optimal
mechanism that achieves asymptotic optimality, maintains the
other economic properties, and enables one to tradeoff between
optimality and computational overheads. Our analytical and
numerical studies show that (i) both the optimal and quantized
mechanisms can lead to an unbounded benefit under some
distributions of the source costs compared against a benchmark;
(ii) the optimal and quantized mechanisms are most beneficial
when there are few sources with heterogeneous sampling costs.

Index Terms— Mechanism design, age-of-information, game
theory, data acquisition.

I. INTRODUCTION

THE rapidly growing number of mobile devices and the
dramatic increase in real-time applications have driven
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interest in fresh data as measured by the age-of-information
(AoI) [1], [2]. Real-time applications in which fresh data is
critical include real-time monitoring, data analytics, and vehic-
ular networks. For example, real-time knowledge of traffic
information and the speed of vehicles is crucial in autonomous
driving and unmanned aerial vehicles. Another example is
real-time mobile crowd-sensing (or mobile crowd-learning [3])
applications, in which a platform is fueled by mobile users’
participatory contribution of real-time data. This class of
examples includes real-time traffic congestion and accident
information (e.g., Google Waze [4]) and real-time loca-
tion information for scattered commodities and resources
(e.g., GasBuddy [5]).

Keeping data fresh relies on frequent data generation,
processing, and sampling, which can lead to significant (sam-
pling) costs for the data source. In practice, data sources
(i.e., fresh data contributors) are self-interested in the sense
that they may have their own interests different from those
of data destinations (i.e., fresh data requestors). Consequently,
the participation of sources relies on proper incentives from
the destination. The resulting economic interactions between
sources and destinations constitute fresh data markets, which
have been studied in [3], [6]–[8].

The existing studies on fresh data markets in [3], [6]–[8]
designed incentives assuming complete information. A crucial
economic challenge not addressed in these works is dealing
with market information asymmetry. Specifically, sources in
practice may have private (market) information (e.g., sampling
cost and data freshness) that is unknown by others. Therefore,
they may manipulate the outcome of the system (e.g., their
subsidies and the scheduling policies) by misreporting such
private information to their own advantages. To the best of
our knowledge, no existing work has addressed fresh data
markets with such asymmetric information. Motivated by
the above issue, this work aims to solve the following key
question:

Question 1: How should a destination acquire fresh data
from self-interested sources with market information asymme-
try?

A. Challenges and Solution Approach

Existing related studies on information asymmetry in data
markets (without considering data freshness) have identified
two different levels of possible manipulation [9]–[14], depend-
ing on whether data is verifiable, i.e., whether the destination
can verify the authenticity (or freshness) of data. These two
levels of manipulation are:
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1) Market information misreporting. For verifiable data,
a source may benefit from misreporting its cost and
quality information (as in, e.g., [9]–[13]).

2) Data fraud. For unverifiable data, a source may even
fake the data itself, e.g., by sending dummy data to avoid
incurring corresponding costs (as in, e.g., [14]).

As a first step towards tackling a fresh data market with
asymmetric information, this work focuses on the first type of
manipulation due to misreporting private cost information and
assumes verifiable fresh data. Even this level of misreporting
is challenging and may lead to an arbitrarily bad loss, as we
will analytically show in Section III-D.

In the economics literature, a standard approach for design-
ing markets with asymmetric information is via the optimal
mechanism design approach of Myerson [27]. Many standard
optimal mechanism design problems are linear and can be
reduced to computing a “posted price”, which is computation-
ally efficient (e.g., [27]). Different from the standard setting,
our fresh data market framework features a non-linear age-
related cost. This nature of AoI requires a new design of opti-
mal mechanisms and problem formulations. Once formulated,
finding the optimal mechanisms may suffer from prohibitively
expensive computational overheads as it involves solving a
nonlinear infinite-dimensional optimization problem due to the
age-related cost.

To this end, we leverage the optimal mechanism design
approach to optimize an AoI-related performance and address
the following question:

Question 2: How should a destination design a computa-
tionally efficient and optimal mechanism for acquiring fresh
data?

We summarize our contributions as follows:
• Fresh Data Market Modeling With Private Cost Informa-

tion. We develop a new analytical model for a fresh data
market with private cost information and allow multiple
sources to strategically misreport this information. To the
best of our knowledge, this is the first work in the AoI
literature to address market information asymmetry.

• Optimal Mechanism Design. We first show that the
optimality of a special and simplified class of mecha-
nisms, based on which we then transform the formulated
problem into the optimal mechanism design problem.
The infinite-dimensional nonlinear nature of the problem
makes it different from the standard setting. We then
solve the problem using tools from infinite dimension
functional optimization and analytically derive the opti-
mal solution.

• Quantized Mechanism Design. To further reduce com-
putational overheads, we design a quantized mechanism
while maintaining the sources’ truthfulness. This achieves
asymptotic optimality and enables one to make tradeoffs
between optimality and computational overhead by tuning
the quantization step size.

• Performance Comparison. Our analytical and numerical
results show that when the sampling cost is exponentially
distributed, the performance gains of our optimal mech-
anism can be unbounded compared against a benchmark
mechanism. In addition, the optimal mechanism is most

beneficial when there are fewer sources with more het-
erogeneous sampling costs.

We organize the rest of this paper as follows. In Section II,
we discuss some related work. In Section III, we describe
the system model and the mechanism design problem for-
mulation. In Sections IV and V, we develop the optimal
mechanisms for single-source systems and multi-source sys-
tems, respectively. In Section VI, we develop the quantized
mechanism. Section VII studies the optimal mechanism design
under general virtual cost functions, which will be defined in
Sections IV and V. We provide some analytical and numerical
results in Section VIII to evaluate the performances of the
optimal mechanism and the quantized mechanism, and we
conclude the paper in Section IX.

II. RELATED WORK

A. Age-of-Information

The AoI metric has been introduced and analyzed in various
contexts in the recent years (e.g., [1], [15]–[25] and a survey
in [2]). Of particular relevance to this work are those per-
taining to the economics of fresh data [3], [6]–[8]. The most
closely-related studies to ours are in [3], [7], which consider
systems with destinations using dynamic pricing schemes to
incentivize sensors to provide fresh updates. The sources
in [3], [7] are price-taking, i.e., the sources simply optimize
their current payoffs given the current price and do not antic-
ipate how this may impact future prices or decisions. In our
case, the sources are strategic, i.e., they aim to maximize their
longer term payoffs. Moreover, none of this prior work has
considered the role of private market information as we do
here.

B. Optimal Mechanism Design

There exists a rich economics literature on optimal
mechanism design (e.g., [27]–[32]). Our approach is based
on Myerson’s characterization of incentive compatibility and
optimal mechanism design [27]. In particular, our setting is
similar to a line of work on optimal procurement mecha-
nism (also known as reverse auction) design (e.g., [28]–[32]),
in which a buyer designs a mechanism for purchasing items
from multiple suppliers and revealing their private quality
information (as opposed to the more common case where a
mechanism is used to sell items to multiple buyers). However,
existing mechanisms cannot be directly applied here due to
differences in the problem setting induced by the age-related
cost functions (e.g., linear programming in [28]–[31] and
combinatorial optimization in [32]).

C. Approximately Optimal Mechanism Design

Another closely related direction is approximately optimal
mechanism design (e.g., [38]–[43] and surveys in [36], [37]).
Approximate mechanisms have been proposed to deal with a
wide range of practical issues such as bounded communica-
tion overheads (e.g., [42]–[44]), bounded computational over-
heads (e.g., [39]–[41]), and limited distributional knowledge
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(e.g., [38]). In particular, [43], [44] designed quantized mech-
anisms, quantizing the infinite-dimensional space of agents’
reporting strategies for reducing communication overheads.
On the other hand, references [39]–[41] mainly proposed
approximate mechanisms to reduce the computational over-
heads for combinatorial problems, which is not the case here.
Our quantized mechanism differs from these mechanisms in
that it aims at reducing computational overheads due to the
underlying nonlinear infinite-dimensional optimization.

D. Information Acquisition

There has been a recent line of work on viewing data as
an economic good. A growing amount of attention has been
placed on understanding the interactions between the strategic
nature of data holders and the statistical inference and learning
tasks that use data collected from these holders (e.g., [9]–[14]).
In this line of research, a data collector designs mechanisms
with payments to incentivize data holders to reveal data, under
private information. However, none of the studies in this line
of research has considered data freshness.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an information update system in which a set
I = {1 ≤ i ≤ I} of data sources (such as Internet-of-
Things devices) generate data packets and send them to one
destination.

The destination is interested in incentivizing the sources
to generate and transmit fresh data packets by subsidizing
the contributing sources for each update. The destination thus
aims to trade off its age-related cost and the monetary cost
of the subsidies. Each source i incurs a sampling cost ci for
each fresh data update it generates and transmits. Hence, each
source i aims to trade off its payment, sampling cost, and the
update frequency.

1) Data Updates and Scheduling: We consider a generate-
at-will model (as in, e.g., [16], [20]), in which the
sources are able to generate and send new updates when
requested by the destination. We assume instant update
arrivals at the destination, with negligible transmission delay
(as in, e.g., [20]).

The destination’s data acquisition policy consists of two
decision sets, namely the update policy X and the (source)
scheduling policy S. In particular, the update policy requested
by the destination determines a sequence of times to request
updates given by X � {xk}k∈N, where every xk ≥ 0 denotes
the interarrival time between the (k − 1)-th and k-th updates.
The scheduling policy S � {si,k}i∈I,k∈N is a set of binary
indicators specifying which source is to be selected to generate
the k-th update. That is, si,k = 1 indicates that source i is
selected for the k-th update and si,k = 0 indicates otherwise.
The scheduling policy S should satisfy, ∀k ∈ N,�

i∈I
si,k = 1, si,k ∈ {0, 1}, (1)

i.e., at each update, exactly one source is to be selected.

Let yi,κ denote the interarrival time between κ-th and
(κ − 1)-th updates generated by source i. Mathematically,

yi,κ =
j(i,κ)�

k=j(i,κ−1)+1

xk, ∀i ∈ I, κ ∈ N, (2)

where j(i, κ) indicates that the j(i, κ)-th update received by
the destination is the κ-th update generated by source i,
i.e.,

�j(i,κ)
k=1 si,k = κ and

�j(i,κ)−1
k=1 si,k = κ− 1 for all i ∈ I

and κ ∈ N.
Each source i’s data updates are subject to a maximal update

frequency constraint (as in, e.g., [16]), given by

lim sup
K→∞

�K
κ=1 yi,κ

K
≥ 1

fi,max
, ∀i ∈ I, (3)

where fi,max is the maximal allowed average update frequency
for source i, which could reflect constraints on the resources
available to this source (e.g., CPU power).

2) Age-of-Information: The Age-of-Information (AoI) at
time t is defined as [1]

Δt(X ) = t − Ut, (4)

where Ut is the time stamp of the most recently received
update before time t, i.e.,

Ut = max
k∈N∪{0}

k�
j=0

xj s.t.
k�

j=0

xj ≤ t, (5)

and we define x0 � 0.
3) Source’s Sampling Cost and Private Information: We

denote the source i’s unit sampling cost by ci for each update,
which is its private information. We consider a Bayesian
setting in which each source i’s sampling cost is drawn
from Ci = [ci, c̄i]. We define C =

�
i∈I Ci. Let Γi(ci) be

the cumulative distribution function (CDF) and γi(ci) be the
probability density function (PDF) for source i; we assume that
only source i’s prior distribution is known by the destination
and sources other than i.1

4) Destination’s AoI Cost: We introduce an AoI cost
function g(Δt(X )) to represent the destination’s level of
dissatisfaction for data staleness. We model it as a general non-
negative and increasing function in Δt(X ). We can specify
the AoI cost function based on applications. For instance,
in online learning (e.g., advertisement placement and online
web ranking [33], [34]), one can use g(Δt(X )) = Δα

t with
α ≥ 0.

We further define the destination’s cumulative AoI cost as

G(x) �
� x

0

g(Δt)dΔt, (6)

which denotes the aggregate cost for an interarrival time x.
Note that G(x) is convex in x since G��(x) = g�(x) > 0.

1In the case where such distributional knowledge is unavailable, one
can further consider prior-free approximately optimal mechanism design, as
in [38], which will be left for future work.
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Fig. 1. The two-stage interaction between the destination and the sources.

B. Mechanism Design and Reporting Game

Fig. 1 depicts the interaction between the destination and
the sources: the destination in Stage I designs an (economic)
mechanism for acquiring each source’s report of its sampling
cost and data updates; the sources in Stage II report their
age coefficient c̃ � {c̃i}i∈I , where c̃i denotes source i’s
report. A mechanism takes the sources’ reports (potential
misreports) of their sampling costs as the input of the data
acquisition policy and for determining the monetary reward
to each source. Mathematically, a general mechanism m =
(P ,X ,S) is a tuple of a payment rule P , an update policy X ,
and a scheduling policy S. The prices (i.e., rewards) can
be different across different updates and sources. That is,
P � {pi,k}i∈I,k∈N, where pi,k : C → R+. The sets X and
S are defined in Section III-A.1. Policies P , X , and S are
functions of the sources’ reported costs c̃ � {c̃i}i∈I .

1) Reporting Game in Multi-Source Systems: When there
are multiple sources (i.e., I ≥ 2), the mechanism m induces
a reporting game among the sources:

Game 1 (Reporting Game): The reporting game G is a tuple
given by G = (I, {Ci}i∈I , {Pi}i∈I), defined as:

• Players: the set of all sources I;
• Strategy space: each source i’s reporting strategy is c̃i ∈

Ci;
• Payoff: each source i has a payoff function: for each

source i ∈ I,2

Pi (c̃i, c̃−i, m)=lim inf
K→∞

�K
k=1 si,k(c̃)(pi,k(c̃)−ci)�K

k=1 xk(c̃)
. (7)

The source’s payoff represents its long-run time-average
profit (its received payment minus its cost) per-unit time.
Note that, in related studies [3], [7], the considered sources
are not strategic. Instead, they are assumed myopic, i.e., not
maximizing their respective long-term objectives as in (7).

Since each source i does not know the other sources’ exact
sampling costs c−i but only knows the corresponding prior
distributions, a Bayesian equilibrium is induced as [35]:

Definition 1 (Bayesian Equilibrium): A Bayesian equilib-
rium is a sources’ reporting profile c̃∗(m) = {c̃∗i (m)}i∈I such
that, for all i ∈ I, for all c̃i ∈ Ci,3

Ec−i
[Pi

�
c̃∗i (m), c̃∗−i(m), m

�
] ≥ Ec−i

[Pi

�
c̃i, c̃

∗
−i(m), m

�
],
(8)

where c̃∗−i(m) = {c̃∗j (m)}j �=i.
In other words, a Bayesian equilibrium depicts a strategy

profile where each player maximizes its expected payoff
assuming the strategy of the other players is fixed.

2The infimum limit in (7) implies that each source is concerned about the
worse-case scenario of its payoff.

3Note that c̃∗−i(m) implicitly depends on c̃−i.

The destination aims to design an optimal mechanism to
minimize its expected (long-term time average) overall cost,
i.e., the sum of the expected (long-term time average) AoI
cost plus the expected (long-term time average) payments to
the sources, defined as

J(m) = Ec

�
lim sup
K→∞

	�K
k=1 G (xk(c̃∗(m)))�K

k=1 xk(c̃∗(m))

+
�K

k=1

�
i∈I si,k (c̃∗(m)) pi,k (c̃∗(m))�K

k=1 xk(c̃∗(m))


�
, (9)

where c̃∗(m) is the Bayesian equilibrium defined in (8).
We remark that an alternative approach to the long term

average is to consider the discounting model, where the
destination’s and the sources’ objectives are discounted over
time, as in [8]. We note that such a different model may lead
to a similar mechanism structure as in this work. We present
detailed analysis in [49].

Each source i may have incentive to misreport its private
information c̃i. However, according to the revelation prin-
ciple [27], for any mechanism m, there exists an incentive
compatible (i.e. truthful) mechanism m̃ such that J(m) =
J(m̃). This allows us to replace all c̃∗(m) in (9) by c, restrict
our attention to incentive compatible mechanisms, and impose
the following incentive compatibility (IC) constraint:

IC : ci ∈ arg max
c̃i∈Ci

Ec−i
[Pi (c̃i, c−i, m)], ∀i ∈ I. (10)

Furthermore, a mechanism should satisfy the following
(interim) individual rationality (IR) constraint:

IR : max
c̃i∈Ci

Ec−i
[Pi

�
c̃i, c̃

∗
−i(m), m

�
] ≥ 0, ∀i ∈ I. (11)

That is, each source should not receive a negative expected
payoff; otherwise, it may choose not to participate in the
mechanism.

2) Single-Source System: We now discuss a special case
where there is only one source. Hence, we can drop the index
i and there exists no game-theoretic interaction among sources.
The incentive compatibility and the individual rationality con-
straints are then reduced to:

IC − S : c ∈ arg max
c̃∈C

P (c̃, m) , (12)

IR − S : max
c̃∈C

P (c̃, m) ≥ 0. (13)

C. Problem Formulation

The destination seeks to find a mechanism m to minimize
its overall cost:

min
m

J(m)

s.t. (1), (3), IC in (10) (or (12)) and IR in (11) (or (13)).
(14)
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This is a challenging optimization problem as the space of all
mechanisms is infinite dimensional and further the constraints
in (10) and (11) are non-trivial.

We will now show that a special, simplified, class of m
satisfying (10) and (11) is optimal.

Definition 2 (Equal-Spacing and Flat-Rate Mechanism): A
mechanism m = (P ,X ,S) is equal-spacing and flat-rate if

pi,k(·) = pi(·) and xk(·) = x(·) , ∀k ∈ N, i ∈ I, (15)

for some functions pi : C → R+ and x : C → R+.
Definition 3 ((Randomized) Stationary Scheduling): The

scheduling policy S is said to be stationary if, for all i ∈ I,
we have that given any c, si,k(c) is chosen randomly at each
time k and is independent and identically distributed (i.i.d)
across k and satisfies

Pr(si,k(c̃) = 1) = πi(c̃), ∀c̃ ∈ C, k ∈ N, i ∈ I, (16)

for some functions πi : C → [0, 1] satisfying
�

i∈I πi(c̃) = 1.
The stationary scheduling policies defined above are mem-

oryless, in the sense that si,k are independent across time.
We now introduce the following lemma which shows that the
existence of optimal mechanisms with these properties:

Lemma 1 There exists an optimal mechanism m∗ =
(P∗,X ∗,S∗) that is (i) equal-spacing and flat-rate, satisfying
Definition 2, and (ii) its scheduling policy S∗ is stationary,
satisfying Definition 3.

We present the proof of Lemma 1 in [49]. The proof
of Lemma 1 involves showing that, for any optimal mech-
anism m∗, we can always construct an equal-spacing and
flat-rate mechanism with a stationary scheduling policy that
yields at most the same objective value. This is mainly done
by leveraging the convexity of G(·). Lemma 1 allows us to
restrict our attention to simple mechanisms so that we can
now:

1) drop the index k in pi,k and xk;
2) generate si,k according to some i.i.d. distributions

(across k) characterized by πi as in (16).
Therefore, we use m = (p, x, π) where p is the payment
profile (i.e., p � {pi}i∈I), and π is the probability profile
(i.e., π � {πi}i∈I). It follows that, under an equal-spacing
and flat-rate mechanism with a stationary scheduling policy,
each source i’s payoff in (7) becomes:

Pi (c̃i, c̃−i, m) =
πi(c̃)(pi(c̃) − ci)

x(c̃)
, ∀i ∈ I. (17)

The destination’s overall cost in (9) becomes:

J(m) = Ec

�
G (x(c̃∗(m)))+

�
i∈I πi (c̃∗(m)) pi (c̃∗(m))

x(c̃∗(m))



.

(18)

That is, we can drop the infimum/supremum limits in (7)
and (9).

D. Naive Mechanism
In this subsection, we introduce a naive mechanism that

satisfies Definition 2 for single-source systems. We use this to
show that such a mechanism can lead to an arbitrarily large
cost for the destination when g(x) = xα, α > 0.

Example 1 (Naive Mechanism): Under the naive mecha-
nism mN = (pN , xN ), the destination subsidizes the source’s
reported cost; the update policy rule xN (c̃) aims at minimizing
its overall cost in (9), naively assuming the source’s report is
truthful:

pN (c̃)= c̃, and xN (c̃)=arg min
x≥0

xα+1/(α + 1) + pN(c̃)
x

.

(19)
Solving (19) further gives

xN (c̃) =
��

1 +
1
α

�
· c̃

 1

1+α

. (20)

Given this naive mechanism, the source solves the following
reporting problem:

c̃∗ = argmax
c̃∈C

c̃ − c��
1 + 1

α

� · c̃�1/(1+α)
, (21)

whose solution can be shown to be c̃∗ = c̄, i.e., the optimal
reporting strategy is to report the maximal possible value.4

This makes the destination’s overall cost to be given by

J(mN ) =
�
c̄

�
1 +

1
α

�
 α
1+α

. (22)

Note that the ratio of the destination’s objectives in (22) under
the source’s optimal report and the true cost is

�
c̄
c

� α
1+α , which

can be arbitrarily large as c̄ approaches infinity. Misreports
leading to an arbitrarily large cost to the destination motivates
the optimal mechanism design next.

IV. SINGLE-SOURCE OPTIMAL MECHANISM DESIGN

In this section, we start with a system with only one source.
Therefore, we can drop the index i in our notations. We use the
results of Lemma 1 to reformulate (14) and characterize the IC
and the IR constraints in (12) and (13). The optimal mecha-
nism design problem is then reduced to an infinite-dimensional
optimization problem, which we analytically solve and use to
derive useful insights.

A. Problem Reformulation

Lemma 1 allows us to focus on equal-spacing and flat-rate
mechanisms. The scheduling indicators satisfy π(c̃) = 1, since
only one source is present. The equal-spacing and flat-rate
mechanism is then reduced to m = (p, x).

To further facilitate our analysis, we use f(c̃) to denote the
update rate rule and h(c̃) to denote the payment rate rule such
that

h(c̃) � p(c̃)
x(c̃)

and f(c̃) � 1
x(c̃)

, ∀c̃ ∈ C. (23)

Since (23) defines a one-to-one mapping between (p, x) and
(f, h), we can focus on m = (f, h) in the following and then
derive the optimal (p∗, x∗) based on the optimal (f∗, h∗).

4Note that it is not immediate that a source would always report its
maximum value under such a mechanism. Though a larger reported value
leads to a larger payment per update, it also leads to a larger inter-arrival
time between updates.
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Fig. 2. Illustration of IC and IR under a mechanism satisfying (24) and (25):
The source’s payoff comparison between (a) a truthful report (c̃ = c) and
(b) an over-report (c̃ > c).

B. Characterization of IC and IR

1) Incentive Compatibility: We can characterize the IC
constraint in (10) based on Myerson’s work [27].

Theorem 1 A mechanism m = (f, h) is incentive compati-
ble if and only if the following two conditions are satisfied:

1) f(c) is non-increasing in c ∈ C;
2) h(c) has the following form:

h(c) = c · f(c) −
� c

c

f(z)dz + A, (24)

for some constant A ∈ R (here, A does not depend on
c but may depend on f(·).)

We present the proof of Theorem 1 in [49].
2) Individual Rationality: Given an arbitrary incentive com-

patible mechanism satisfying (24), to further satisfy the IR
constraint in (11), we have that the minimal A in (24) for the
incentive compatible mechanism in Theorem in 1 is

A =
� c̄

c

f(z)dz. (25)

We will assume that this choice of A is used in the following.
We present an example in Fig. 2 to illustrate (24) and (25).

Under a non-increasing f(·) and h(·) satisfying (24) and (25),
a truthfully reporting source receives a payoff of

� c̄

c f(t)dt,
as shown in Fig. 2 (a); when the source reports c̃, its payoff
is (c̃ − c)f(c̃) +

� c̄

c̃ f(t)dt. As shown in Fig. 2 (b), such an
over-report incurs a payoff loss. Similarly, an under-report
would also incur a payoff loss. These demonstrate incentive
compatibility. In addition, a truthfully reporting source’s pay-
off is always non-negative for any c and approaches 0 when
c approaches c̄, as limc→c̄

� c̄

c f(z)dz = 0. This demonstrates
individual rationality.

C. Mechanism Optimization Problem

Based on (24) and (25), we can focus on optimizing the
update rate function f(c) only in the following. By the
constraint f(c) ∈ [0, fmax], it follows that

� c̄

c
|f(c)|2dΓ(c) <

+∞. Therefore, the update rate function f(·) lies in the Hilbert
space L2(Γ) associated to the measure of c, i.e. the CDF Γ(c).

By Theorem 1 and (25), we transform the destination’s
problem into

min
f(·)

J(f)�Ec

�
G

�
1

f(c)

�
f(c) + c · f(c) +

� c̄

c

f(z)dz



(26a)

s.t. f(·) ∈ F�{f(·) : f(c) ∈ [0, fmax], f �(c) ≤ 0, ∀c ∈ C} .

(26b)

In particular, the objective (26a) comes from (25) and (24),
the constraint f �(c) ≤ 0 comes from Theorem 1, and f(c) ∈
[0, fmax] comes from (3).

This is a functional optimization problem. To derive insight-
ful results, we first relax the constraint in (26b) and then show
when such a relaxation in fact leads to a feasible solution f∗(·)
(i.e., when it automatically satisfies (26b)).

We introduce the definition of the source’s virtual cost
which is analogous to the standard definition of virtual value
in [27]:

Definition 4 (Virtual Cost): The source’s virtual cost is

ρ(c) � c +
Γ(c)
γ(c)

. (27)

The virtual cost allows us to transform the destination’s
problem as in the following lemma:

Lemma 2 The objective in (26a) can be rewritten as

J(f) = Ec

�
G

�
1

f(c)

�
f(c) + f(c)ρ(c)



. (28)

We prove Lemma 2 in [49], which involves changing the
order of integration. If we relax the constraint f �(c) ≤ 0,
Lemma 3 makes the problem in (26) decomposable across
every c ∈ C. Each subproblem is given by

min
f(c)∈[0,fmax]

G

�
1

f(c)

�
f(c) + f(c)ρ(c), (29)

which can be solved separably. We are now ready to introduce
the solution to problem (26):

Theorem 2 If ρ(c) is non-decreasing, the optimal mecha-
nism m∗ = (f∗, h∗) satisfies (24), (25), and

f∗(c) = min
�
fmax, f̂(c)

�
, ∀c ∈ C, (30)

where f̂(·) satisfies

g

	
1

f̂(c)



1

f̂(c)
− G

	
1

f̂(c)



� �� �

Marginal AoI Cost Reduction

= ρ(c)����
Virtual Cost

, ∀c ∈ C. (31)

We present the proof of Theorem 2 in [49]. To comprehend
the above results, the optimal solution f∗(c) solves each
subproblem by the following two steps: (i) search for a f̂(c)
that equalizes the marginal AoI cost reduction and the virtual
cost ρ(c) for every c ∈ C; (ii) project every f̂(c) onto the
feasible set [0, fmax].

To see when (30) yields a feasible solution satisfying (26b),
note that there always exists a unique positive value of f̂(c)
in (31), and so the optimal f∗(c) for each c in (30) is well
defined. In addition, if ρ(c) is non-decreasing in c, f∗(c) is
non-increasing in c.5

A non-decreasing virtual cost ρ(c) is in fact satisfied
for a wide range of distributions of the source’s sampling
cost. Fig. 3 illustrates an example of the optimal mechanism
m∗ = (f∗, h∗) when the source’s sampling cost c follows a

5The condition of the virtual cost φ(c) being non-decreasing is known as
the regularity condition in [27].
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Fig. 3. Illustration of the optimal mechanism (f∗, h∗) for a single-source
system. The AoI cost is g(Δt) = Δt and the source’s sampling cost follows
a uniform distribution.

uniform distribution. We will focus on specific distributions in
Section VIII and generalize Theorem 2 to the more general
(potentially not monotonic) virtual cost case in Section VII.

D. Differences From Classical Settings and Computational
Complexity

We highlight a key difference of the optimal mechanism m∗

satisfying Theorem 2 from some existing optimal mechanisms
(e.g., in [27]) in classical economic settings, in which the
sellers’ problems can be formulated into infinite-dimensional
linear programs. Reference [27] showed that the optimal
mechanism is a posted price mechanism in such classical
settings, i.e., the optimal mechanism determines a posted price
(equal to the virtual cost ρ(c) in our case). If the source’s cost
is less than the posted price, then it is assigned the maximum
update rate with its payment equal to the price; otherwise the
source is assigned no update.

Our problem in (26) differs from the classical settings in
the nonlinearity introduced by G(·), which brings the issue
of computational complexity. As shown in Fig. 3, the com-
putation of the optimal payment rate h∗(c) requires solving
for f∗(c) in (30) over the entire interval [c, c̄], which may be
computationally impractical. We note that the computational
and the economic challenges are coupled as it requires the joint
design with efficient computation and the satisfaction of IR
and IC. In particular, standard numerical approaches6 may lead
to f that is not non-increasing, which violates the sufficient
and necessary condition in Theorem 1.7 This motivates us
to consider a computationally efficient approximation of the
optimal mechanism m∗ = (f∗, h∗) without affecting the
satisfaction of IR and IC in Section VI.

V. MULTI-SOURCE OPTIMAL MECHANISM

In this section, we extend our results in Section IV to
multi-source systems. The additional challenge here is that
the optimal mechanism needs to take the sources’ interactions
with each other into account. Similar to the single-source case,
we first characterize the IC and the IR constraints, and then
solve the infinite-dimensional optimization problem.

6One example of such numerical approaches is to compute f∗(c) for a
discrete set of c and then use the interpolation to approximate f∗(·).

7This is not the case in the aforementioned existing optimal mechanism for
classical settings (e.g. in [27]), since the integral is reduced to the virtual cost,
which is computationally efficient.

A. Problem Reformulation

Lemma 1 allows us to focus on equal-spacing and
flat-rate mechanisms with stationary scheduling policies (i.e.,
m = (p, x, π)). To further facilitate our analysis, we use
f(c̃) = {fi(c̃)}i∈I to denote the update rate rule and h(c̃) =
{hi(c̃)}i∈I to denote the payment rate rule such that, for all
i ∈ I and all c̃ ∈ C:

hi(c̃) � πi(c̃) · pi(c̃)
x(c̃)

, fi(c̃) � πi(c̃)
x(c̃)

, (32a)

πi(c̃) =
fi(c̃)�

j∈I fj(c̃)
. (32b)

The above equations (32) define a one-to-one mapping
between (p, x, π) and (f , h). Hence, we can restrict our
attention to m = (f , h) in the following and then derive the
optimal (p∗, x∗, π∗). We can then generate the corresponding
stationary scheduling policy S∗ satisfying (32b) based on the
optimal (f∗, h∗).

B. Characterization of Incentive Compatibility and
Individual Rationality

1) Incentive Compatibility: Theorem 1 can be generalized
as follows to the multi-source setting to characterize the IC
constraint in (10):

Theorem 3 A mechanism m = (f , h) is incentive compat-
ible if and only if the following two conditions are satisfied:

1) fi(ci, c−i) is non-increasing in ci ∈ Ci;
2) hi(ci, c−i) has the following form:

hi(c) = ci · fi(c) −
� ci

ci

fi(z, c−i)dz + Ai, ∀i ∈ I,

(33)

for some constant Ai ∈ R for all i ∈ I.
We present the proof of Theorem 3 in [49].
2) Individual Rationality: Given an arbitrary incentive com-

patible mechanism satisfying (33), to further satisfy the IR
constraint in (11), we have that the minimal Ai in (33) for the
incentive compatible mechanism in Theorem 3 is

Ai =
� c̄i

ci

fi(z, c−i)dz, ∀i ∈ I. (34)

We again assume that this minimal value of Ai is used in the
following.

C. Mechanism Optimization Problem

Based on (33) and (34), we can focus on optimizing the
update rate function f(c) only in what follows, which live
in the Hilbert space L2(Γ) associated to the measure of c.
We introduce the definition of the source i’s virtual cost.

Definition 5 (Virtual Cost): The source i’s virtual cost is

ρi(ci) � ci +
Γi(ci)
γi(ci)

, ∀i ∈ I. (35)

The sources’ virtual costs enable the problem to be trans-
formed as in the following lemma:
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Lemma 3 The destination’s problem in (14) is equivalent to

min
f(·)

J(f) � Ec

�
G

�
1�

i∈I fi(c)

��
i∈I

fi(c)

+
�
i∈I

ρi(ci)fi(c)

�
(36a)

s.t. f(·) ∈ F � {f(·) : fi(c) ∈ [0, fi,max],
f �

i(c) ≤ 0, ∀c ∈ C, i ∈ I} , (36b)

where fi(ci) ∈ [0, fi,max] comes from (3) and (32).
We prove Lemma 3 in [49], which involves changing

the order of integration. Different from (26), the functional
optimization problem in (36a) has a vector-valued function as
its optimization decision. To derive insightful results, we first
omit the f �

i(c) ≤ 0 constraints for all i ∈ I, similar to our
approach in Section IV. Such constraints are automatically
satisfied assuming the virtual costs are non-decreasing ρi(ci)
as we will show later. We will extend our results to the case
of general virtual costs in Section VII.

To solve the problem in (36a), we next introduce the
aggregate update rate satisfying

fagg(c) =
�
i∈I

fi(c), ∀c ∈ C, (37)

and the following definition:
Definition 6 (Aggregate Virtual Cost): Let Ψ(c, fagg(c)) be

the aggregate virtual cost function, defined as

Ψ(c, fagg(c)) = min
f

�
i∈I

ρi(ci)fi(c) (38a)

s.t. (37), fi(c) ∈ [0, fi,max], ∀i ∈ I.

(38b)

The definition of the aggregate virtual cost in Definition 6
involves solving a linear programming problem parameterized
by c. The intuition of solving (38) is as follows. Given each
c and fagg(c), we assign the sources with higher virtual costs
only after the sources with lower virtual costs ρi(ci) are fully
utilized (i.e., the constraints in (38b) are binding). It is readily
verified that, given c, Ψ(c, fagg(c)) is a piece-wise linear
function in fagg(c), and its differential ∂fagg(c)Ψ(c, fagg(c))
is a step function in fagg(c). We now introduce the following
result to further transform the destination’s problem:

Lemma 4 If ρi(ci) is non-decreasing for all i ∈ I, the des-
tination’s problem in (36a) leads to the same minimal objective
value as the following problem:

min
fagg(·)

J(fagg) � Ec

�
G

�
1

fagg(c)

�
fagg(c)+Ψ(c, fagg(c))



(39a)

s.t. fagg(c) ∈
�
0,
�
i∈I

fi,max

�
, ∀c ∈ C. (39b)

We present the proof of Lemma 4 in [49]. Lemma 4 trans-
forms the vector functional optimization problem in (36a) into
a scalar functional optimization problem in (39). Therefore,
after obtaining the optimal solution f∗

agg(·), we can then solve

Fig. 4. Illustration of the optimal solutions to the problems in (39) and (36a).

the problem in (38) to obtain the original solution to the
problem in (36a).

We observe that the problem in (39) now becomes similar
to the problem in Lemma 3 in the single-source case, with
the following difference: Φ(c, fagg(c)) is not differentiable
in fagg(c)). Hence, it follows that the optimality condition
of (39) can be rewritten as, for all c ∈ C,

g

�
1

fagg(c)

�
1

fagg(c)
− G

�
1

fagg(c)

�
∈ ∂Ψ(c, fagg(c)),

(40)

i.e., the marginal AoI cost reduction is equal to a subgradient
of the aggregate virtual cost.

To understand (40), we first introduce the order indexing (i)
such that

ρ(1)(c(1)) ≤ ρ(2)(c(2))≤ . . .≤ρ(i)(c(i)) ≤ . . . ≤ ρ(I)(c(I)),
(41)

i.e., source (i) has the i-th smallest virtual cost ρ(i)(c(i)).
We present an illustrative example of (40) in Fig. 4 for a
given c. As mentioned, the differential of the aggregate virtual
cost in fagg(c) corresponds to a step function, as shown
in Fig. 4. The intersection point between the subgradient and
the curve of the marginal AoI cost reduction corresponds to
the solution to (40).

Based on (41) and (40), we are ready to present the solution
to (36a):

Theorem 4 If the sources’ virtual costs ρi(ci) are non-
decreasing, the optimal mechanism m∗ = (f∗, h∗)
satisfies (33), (34), and

f∗
(i)(c) =

⎡
⎣f∗

agg(c) −
i−1�
j=1

f∗
(j)(c)

⎤
⎦f(i),max

0

, ∀c ∈ C, ∀i ∈ I.

(42)
We present the proof of Theorem 4 in [49]. Intuitively,

after obtaining the optimal aggregate update rate f∗
agg(·),

the problem is reduced to solving (39). That is, we utilize
the least expensive (in terms of virtual cost) sources first and
the sources with high virtual costs are assign update rates
of 0. Each source (i)’s allocated update rate f∗

(i)(·) is then
the residual aggregate update rate (the aggregate update rate
subtracted from assigned update rates to the first i − 1 least
expensive sources) projected onto its feasible set [0, f(i),max].

We will generalize Theorem 4 to the more general (poten-
tially not monotonic) virtual cost case in Section VII, and

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 30,2021 at 15:25:00 UTC from IEEE Xplore.  Restrictions apply. 



1234 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

Fig. 5. Illustration of a quantized mechanism (fq , hq) for a single-source
system.

design a computationally efficient approximation of the opti-
mal mechanism m∗ = (f∗, h∗) in Section VI.

VI. QUANTIZED OPTIMAL MECHANISM

We note that the optimal mechanisms (for both
single-source systems and multi-source systems) may
be computationally impractical, since the optimal payment
rate h∗(c) for the optimal mechanisms in (24) and (33)
require explicitly solving f∗(c) in (30) and (42) for all c.

Therefore, we are motivated to design a computationally
efficient quantized mechanism that is approximately optimal
while maintaining the optimal mechanism’s economic proper-
ties.

A. Quantized Mechanism
1) Quantized Mechanism Description: Let Q(c) �

{Qi(ci)}i∈I be the sources’ quantized reporting profile such
that

Qi(ci) � ΔQ ·
�
� ci

ΔQ
	 +

1
2

�
, ∀i ∈ I, (43)

where �·	 depicts the floor operator and ΔQ is the quanti-
zation step size. Based on (43), we introduce the quantized
mechanism in the following:

Definition 7 (Quantized Mechanism): The quantized mech-
anism mq = (fq, hq) is given by

f q
i (c) = f∗

i (Q(c)) , ∀i ∈ I, (44a)

hq
i (c) = ci · f q

i (c) +
� c̄i

ci

f q
i (z, c−i)dz, ∀i ∈ I. (44b)

2) Computational Complexity: We illustrate an example
quantized mechanism in Fig. 5. As in Fig. 5, the integral
in (44b) is a Riemann sum, i.e., a computationally efficient
finite sum approximation of

� c̄i

ci
f∗

i (z, c−i)dz. Specifically,
given a quantization step size ΔQ, computing the Riemann
sum in (44b) requires one to compute f∗

i (ci, Q−i(c−i)) for
at most 
 c̄i−ci

ΔQ
� points for each source i, where Q−i(c−i) =

{Qj(cj)}j �=i. Therefore, the overall computational overhead is
given by O(I/ΔQ).

B. Properties of the Quantized Mechanism

In this subsection, we study the properties of the quan-
tized mechanism in (44). We note that f q

i (ci, c−i) remains
non-increasing in ci for all i ∈ I. Hence, based on the

Fig. 6. Impact of the number of quantization intervals (i.e., �(c̄ − c)/ΔQ�)
for a single-source system on the quantization loss (i.e., the difference of
the source’s overall costs between the quantized mechanism and the optimal
mechanism) under different distributions of the source’s sampling cost.

characterizations of the IC and the IR in Theorem 3 and (34),
we have:

Corollary 1 The quantized mechanism mq satisfies IC and
IR conditions in (10) and (11).

We next study the performance of the quantized mechanism
in (44) in terms of the destination’s overall cost. To understand
how well the quantized mechanism in (44) approximates the
optimal mechanism, we derive the following lemma:

Lemma 5 The aggregate virtual cost function in Definition 6
is differentiable in c and satisfies

∂Ψ(c, fagg(c))
∂ci

=ρ�
i(ci)f∗

i (c)≤Li,φfi,max, ∀ci ∈ Ci, ∀i ∈ I,

(45)

where Li,φ is the Lipschitz constant of ρi(ci).
Lemma 5 is a direct application of the envelop theorem

in [48]. When the PDF of the source i’s sampling cost γi(ci)
is differentiable, it follows that

Li,φ � max
ci∈Ci

�
2 − Γi(ci)γ�

i(ci)
γ2

i (ci)



, ∀ci ∈ Ci, ∀i ∈ I. (46)

Lemma 5 characterizes an upper bound of the incremental
changes of the aggregate virtual cost Φ(c, fagg(c)) in ci, based
on which we can next show that the quantized mechanism is
approximately optimal:

Proposition 1 The quantized mechanism leads to a bounded
quantization loss compared to the optimal mechanism:

J(fq) − J(f∗) ≤
�
i∈I

Li,φfi,maxΔQ. (47)

We present the proof of Proposition 1 in [49]. This shows
how the quantization loss depends on the quantization step
size ΔQ. Therefore, the quantized mechanism enables us to
make tradeoffs between the quantization loss captured by
Proposition 1 and the computation overhead of O(I/ΔQ) by
tuning ΔQ.

C. Numerical Studies

We provide numerical results in Fig. 6 to understand
the impact of the number of quantization intervals (i.e.,

(c̄ − c)/ΔQ�) on the quantization loss in a single-source
system. We consider two classes of distributions of the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 30,2021 at 15:25:00 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: OPTIMAL AND QUANTIZED MECHANISM DESIGN FOR FRESH DATA ACQUISITION 1235

source’s sampling cost, namely the uniform distribution and
the truncated exponential distribution.8

1) Uniform Distribution: We first consider the uniform dis-
tribution over the interval [5, 30], the corresponding Lipschitz
constant is Lφ = 2. Fig. 6(a) shows that, when there are at
least three quantization intervals, the quantization only incurs
negligible loss (less than 0.1% of the minimal overall cost),
which verifies Proposition 1.

2) Truncated Exponential Distribution: We consider the
truncated exponential distribution over the interval [0, 30] with
a PDF:

γ(c) =
exp(−c)

1 − exp(−c̄)
. (48)

The corresponding Lipschitz constant is Lφ = 1 + exp(c̄) =
1+exp(30). Fig. 6(b) shows that, the quantization only incurs
a negligible loss when the number of quantization intervals
exceeds a threshold value of around 4. However, the quantiza-
tion loss grows rapidly as the number of quantization intervals
decreases beyond this point, due to the large Lφ.

The above examples show that the quantized mechanism can
achieve approximate optimality with only a moderate number
of quantization levels.

VII. GENERAL VIRTUAL COST FUNCTION

The results in Theorems 2 and 4 require non-decreasing
virtual cost functions ρi(ci). In this section, we extend our
results to the more general case in which ρi(ci) may not
be always non-decreasing. We first introduce the Ironing
technique [27] and start with the following definitions:

Definition 8 (Convex Hull): The convex hull of a function
h(x) : X → R is defined as

h̃(x) � min
x1,x2

{λh(x1) + (1 − λ)h(x2)|λ ∈ [0, 1],

x1, x2 ∈ R and λx1 + (1 − λ)x2 = x} . (49)

Definition 9 (Ironed Virtual Cost): Define the cumulative
virtual cost as Φi(ci) =

� ci

ci
ρi(t)γi(t)dt. Let Φ̃i(ci) be the

convex hull of Φi(ci). Let [ai,1, bi,1], . . . , [ai,k, bi,k] be the
intervals such that Φ̃i(ci) < Φi(ci). Each source i’s ironed
virtual cost is

ρ̃i(ci) �

⎧⎪⎨
⎪⎩
� bi,k

ai,k
ρi(t)γi(t)dt

Γ(bi,k) − Γ(ai,k)
, if ci ∈ [ai,k, bi,k],

ρi(ci), otherwise.

(50)

To understand Definitions 8 and 9, we present an illustrative
example in Fig. 7 of the cumulative virtual cost Φi(ci),
its convex hull Φ̃i(ci), and the ironed virtual cost ρ̃i(ci).
In Fig. 7(a), the convex hull Φ̃i(ci) straightened out the region
[ai,1, bi,1]. Fig. 7(b) shows that the ironed virtual cost ρ̃i(ci)
is constant over the straightened region [ai,1, bi,1], hence the
ironed virtual cost ρ̃i(ci) is always non-decreasing in ci.

We define an ironed version of the aggregate virtual cost:
Definition 10 (Ironed Aggregate Virtual Cost): Let

Ψ̃(c, fagg(c)) be the aggregate virtual cost function, defined

8These two distributions of costs are also considered in [47].

Fig. 7. Illustration of the convex hull of the cumulative virtual cost Φ̃i(ci)
(a) and the ironed virtual cost φ̃i(ci) (b).

as

Ψ̃(c, fagg(c)) � min
f

�
i∈I

ρ̃i(ci)fi(c) (51a)

s.t.
�
i∈I

fi(c) = fagg(c), (51b)

fi(c) ∈ [0, fi,max], ∀i ∈ I. (51c)
We next show that replacing Ψi(c) by Ψ̃i(c) in (40) leads

to the following:
Theorem 5 For any general virtual cost function ρi(ci),

the optimal solution f∗(·) to the problem in (26) satisfies

f∗
(i)(c) =

⎡
⎣f iron

agg (c) −
i−1�
j=1

f∗
(j)(c)

⎤
⎦f(i),max

0

, ∀i ∈ I, (52)

where f iron
agg (c) satisfies, for all c ∈ C,

g

�
1

f iron
agg (c)

�
1

f iron
agg (c)

− G

�
1

f iron
agg (c)

�
∈ ∂Ψ̃(c, f iron

agg (c)).

(53)
Intuitively, since the ironed virtual costs are non-increasing,

the resultant f∗
i (ci, c−i) in (52) is non-decreasing in ci for all

i ∈ I, which ensures (10) and (11) even when relaxing the
f �

i(c) > 0 constraints in (36a). We present the complete proof
of Theorem 5 in [49].

VIII. PERFORMANCE COMPARISON

In this section, we present analytical and numerical studies
to understand when the optimal mechanism in Theorem 4 and
the quantized mechanism in (44) are most beneficial, and the
impacts of system parameters on the proposed mechanisms.

A. Benchmarks

For performance comparison, we introduce a benchmark
mechanism and a lower bound achieved by a pricing scheme
assuming complete information. We first define the benchmark
mechanism inspired by the second-price auction [36] and will
show that such a mechanism satisfies the constraints in (10)
and (11):

Definition 11 (Benchmark Mechanism): The destination
only selects source (1) (i.e. the one with the least reported
sampling cost) and subsidizes it with the second small-
est (reported) sampling cost; the update policy rule fB(c̃)
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Fig. 8. Performance comparison under the uniform distribution with different upper bounds of the sampling cost c̄ in (a), (b) and with different age sensitivity
coefficients α in (c). We set the quantization step size to be ΔQ = 1. We set α = 1 in (a) and (b) and c̄ = 30 in (c).

is to minimize the destination’s overall cost in (9), i.e.,

fi,B(c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg min
fi∈[0,fi,max]

�
fiG

�
1
fi

�
− fic(2)



,

if i = arg min cj ,

0, otherwise.

(54a)

hi,B(c) = fi(c)c(2), ∀i ∈ I, (54b)

where c(2) is the second smallest sampling cost and is set to
be c̄ when there is only one source.

Note that the benchmark mechanism satisfies the IC con-
straint (10) and the IR constraint (11). This is because,
the source with the smallest sampling cost cannot achieve a
higher payoff than truthful reporting, as (54) only depends on
the second smallest report.

The following is a lower bound achieved by a pricing
scheme assuming complete information:

Definition 12 (Complete-Information Pricing Scheme)
Under the complete information setting, the destination
subsidizes each source their exact sampling costs; the update
policy rule f aims to minimize its long-term average AoI
cost and the long-term average payments. Mathematically,
we have

fF (c) = arg min
f(·)∈F

�
G

�
1�

i∈I fi(c)

��
i∈I

fi(c)

+
�
i∈I

cifi(c)

�
, (55a)

hi,F (c) = cifi,F (c), ∀i ∈ I. (55b)
Such a pricing scheme leads to a lower bound of the

destination’s overall cost. Due to the assumption of complete
information, this pricing scheme does not satisfy the incentive
compatibility constraint (10), while it achieves the individual
rationality constraint in (11).

B. Single-Source Systems

For the single-source systems, as in Section IV, we consider
both a uniform distribution and a truncated exponential distri-
bution of the sources’ sampling costs. We aim to understand
when the proposed mechanisms are most beneficial, compared
against the benchmark mechanism.

1) Uniform Distribution: We first compare the performance
under a uniform distribution of the sampling cost on the
interval [c, c̄]; the destination has a power AoI cost g(x) = xα,
α > 0. We assume fmax is sufficiently large. The benchmark
mechanism in Definition 11 leads to an overall cost of the
destination of

JB =
�
c̄

�
1 +

1
α

�
 α
1+α

. (56)

The lower bound of the overall cost under complete informa-
tion in Definition 12 is given by:

JC =
c̄

1+2α
1+α − c

1+2α
1+α

c̄ − c

1 + α

1 + 2α

�
1 +

1
α

� α
1+α

. (57)

Hence, we have

JB

JC
=
�

1 +
α

1 + α

��
(c̄ − c)c̄

α
1+α

c̄
1+2α
1+α − c

1+2α
1+α

�
≤ 1 +

α

1 + α
, (58)

indicating that, under the uniform distribution, the benchmark
mechanism incurs a bounded loss due to private information.

On the other hand, the optimal mechanism in Theorem 2
leads to an overall cost of

J∗ =
�
2
�

1 +
1
α

�
 α
1+α
�

1 + α

1 + 2α

� �(c − c
2 )

1+2α
1+α

� !!!c̄
c

c̄ − c
. (59)

We can thus obtain the following upper bound:

J∗

JC
=

�
(c − c

2 )
1+2α
1+α

� !!!c̄
c

c̄
1+2α
1+α − c

1+2α
1+α

2
α

1+α ≤ 2
α

1+α . (60)

Equations (58) and (60) imply that, under the uniform dis-
tribution, the performance gain of the optimal mechanism
compared to the benchmark mechanism is limited.

In Fig. 8, we numerically compare the performances of
the proposed optimal mechanism, the benchmark mechanism,
and the complete information lower bound. We observe a
relatively small gap between the proposed optimal mechanism
and the benchmark mechanism under different c̄ in Fig. 8(a)
and different α in Fig. 8(c). In Fig. 8(b), both the proposed
optimal mechanism and the benchmark mechanism approach
their upper bounds in (58) and (60). In addition, the quantized
optimal mechanism incurs negligible quantization loss under
the uniform distribution.
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Fig. 9. Performance comparison under the truncated exponential distribution with different upper bounds of the sampling cost c̄ in (a), (b) and with different
age sensitivity coefficients α in (a), (c). We set the quantization step size to be ΔQ = 1 and c = 0. In (a) and (b), we set α = 1. In (c), we set c̄ = 30.

2) Truncated Exponential Distribution: In this subsection,
we consider an exponential distribution of the sampling cost
truncated on the interval [0, c̄], i.e., assuming c = 0. The
corresponding PDF is given in (48). Note that the performance
of the benchmark mechanism only depends on c̄ instead of the
specific distribution of c. Hence, the overall cost is the same
as in (56).

The lower bound of the overall cost under complete infor-
mation is:

JC =
(1+ 1

α )
α

1+α

1 − e−c̄

�
Γ
�

2α

1 + α
+

1
α

, 0
�
− Γ

�
2α + 1
1 + α

, c̄

�

,

(61)

where Γ(s, x) =
� ∞

x

ts−1 exp(−t) dt is the incomplete

gamma Function. Note that (61) converges to a finite value
when c̄ → ∞.

The optimal mechanism leads to an overall cost of:

J∗=
(1+ 1

α )
α

1+α

1 − e−c̄

� c̄

0

(t − 1+exp(t))
a

1+a exp(−t)dt. (62)

Fig. 9(a) shows that overall costs of the destination under
the optimal mechanism and the complete information lower
bound converge as c̄ increases. The benchmark mechanism
in this case leads to an unbounded overall cost as c̄ increases.
In Fig. 9(b), we observe relatively small gaps between the opti-
mal mechanism and the complete information lower bound,
and between the optimal mechanism and the quantized mech-
anism. In particular, we have J∗/JC ≈ 2 when c̄ ≥ 10.
Therefore, we have shown that under the truncated exponential
distribution, both proposed mechanisms can lead to unbounded
benefits, compared against the benchmark mechanism.
Fig. 9(c) shows that the optimal and the quantized mechanisms
become more beneficial when the destination is more sensitive
to the AoI, compared with the benchmark mechanism.

C. Multi-Source Systems
We next perform numerical studies to evaluate the impacts

of system parameters on the performance for the multi-source
systems.

The destination has a linear AoI cost: g(x) = x; fi,max is
sufficiently large for each i ∈ I.9 We further assume expo-

9Small fi,max may increase the performance gaps between the benchmark
mechanism and the proposed mechanisms, as the benchmark mechanism only
assigns one source.

nential distributions for all sources truncated on the interval
Ci = Cj = [0, c̄], i.e., the PDF of the sampling cost for each
source i is

γi(ci) =
μi exp(−μici)
1 − exp(−μic̄i)

, ∀i ∈ I. (63)

1) Impacts of c̄: Fig. 10(a) shows that overall costs
of the destination under the optimal mechanism and the
complete information lower bound increase as c̄ increases.
However, the gap between the optimal mechanism and the
benchmark is smaller, compared to the gap in Fig. 9(a).
Intuitively, the increasing number of sources makes the
expected second smallest sampling cost smaller, which makes
incentivizing truthful reporting less costly for the bench-
mark mechanism and hence makes the performance gap
smaller.

2) Impacts of the Number of Sources I: In the second
experiment for multi-source systems, we set μ1 = 0.5 and
μi = 2 for all i 
= 1. Fig. 10(b) illustrates the impact of the
number of sources I on the performances of the benchmarks
and the optimal mechanism. Fig. 10(b) shows that, as I
increases, the performances of the complete information lower
bound, the optimal mechanism, and the quantized mechanism
only slightly decrease, while that of the benchmark mechanism
dramatically decreases. As we mentioned, this is because the
increasing number of sources reduces the expected second
smallest sampling, which makes it less costly for the bench-
mark to induce truthful reports. Hence, when there are many
sources I , the benchmark mechanism may serve as a close-
to-optimal solution.

3) Impacts of μ: In our last experiment, we set I = 4,
μ1 = 0.5, and μi = μ for all i 
= 1 and study the impacts of
the parameter μ. A larger μ indicates that the sources other
than i have larger expected sampling costs compared to source
i, i.e., sources are considered more heterogeneous. Fig. 10(c)
shows that, as μ increases, the performance gaps between the
benchmark mechanism and the proposed mechanisms become
larger. On the other hand, when μ = 0.5, the optimal mech-
anism only slightly outperforms the benchmark mechanism.
Therefore, heterogeneity in sources’ sampling costs increases
the performance gaps between the proposed mechanisms and
the benchmark mechanism.
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Fig. 10. Performance comparison with different upper bounds of the sampling cost c̄ in (a), different number of sources I in (b), and different distribution
parameter μ in (c). We set ΔQ = 0.5 and consider a linear AoI cost: f(Δt) = Δt. In (a) and (b), μ1 = 0.5 and μi = 2 for all i �= 1. In (a) and (c), we set
I = 4. In (b) and (c), we set c̄ = 20.

IX. CONCLUSION

We have studied the fresh information acquisition problem
in the presence of private information. We have designed
the optimal mechanism to minimize the destination’s AoI
cost and its payment to the sources, while satisfying the
truthfulness and individual rationality constraints. We have
further designed a quantized mechanism to tradeoff between
optimality and computational complexity. Our analysis has
revealed that the proposed optimal mechanism may lead to
an unbounded benefit, compared against a benchmark mech-
anism, though this gain depends on the distribution of the
sampling cost. Our numerical results have shown that both
proposed mechanisms are most beneficial when there are few
sources with heterogeneous sampling costs.

There are a few future directions. The first is to design
prior-free mechanisms for systems in which the sources and
destinations do not have distributional information. A second
direction is to consider real-time systems in which data sources
are also requestors as in some practical systems, e.g., Google
Waze [4] and GasBuddy [5]. The third future direction is
to consider a nonuniform quantized mechanism, which can
potentially optimize the quantization performance.
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