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Abstract— We introduce the concept of fresh data trading,
in which a destination user requests, and pays for, fresh data
updates from a source provider, and data freshness is captured
by the age of information (AoI) metric. Keeping data fresh relies
on costly frequent data updates by the source, which motivates
the source to price fresh data. In this work, the destination
incurs an age-related cost, modeled as a general increasing
function of the AoI. The source designs a pricing mechanism
to maximize its profit, while the destination chooses a data
update schedule to trade off its payments to the source and its
age-related cost. Depending on different real-time applications
and scenarios, we study both a finite-horizon model and an
infinite-horizon model with time discounting. The key challenge
of designing the optimal pricing scheme lies in the destination’s
time-interdependent valuations, due to the nature of AoI, and the
infinite-dimensional dynamic optimization. To this end, we exploit
three different dimensions in designing pricing by studying three
pricing schemes: a time-dependent pricing scheme, in which
the price for each update depends on when it is requested;
a quantity-based pricing scheme, in which the price of each
update depends on how many updates have been previously
requested; and a simple subscription-based pricing scheme,
in which the price per update is constant but the source charges
an additional subscription fee. Our analysis reveals that (1) the
optimal subscription-based pricing maximizes the source’s profit
among all possible pricing schemes under both finite-horizon
and infinite-horizon models; (2) the optimal quantity-based
pricing scheme is only optimal with a finite horizon; and
(3) the time-dependent pricing scheme, under the infinite-horizon
model with significant time discounting, is asymptotically opti-
mal. Numerical results show that the profit-maximizing pricing
schemes can also lead to significant reductions in AoI and social
costs, and that a moderate degree of time discounting is enough
to achieve a close-to-optimal time-dependent pricing scheme.
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I. INTRODUCTION

A. Motivations

INFORMATION usually has the greatest value when it is
fresh [2, p. 56]. Data freshness is becoming increasingly

significant due to the fast growth of the number of mobile
devices and the dramatic increase of real-time systems. For
instance, real-time knowledge of traffic information and the
speed of motor vehicles is crucial in autonomous driving
and unmanned aerial vehicles. Hence, it has driven the new
metric to measure data freshness, namely age-of-information
(AoI) introduced in [3] and recently surveyed in [4], defined
as the time elapsed since the freshest data has reached its
destination. Real-time systems range from Internet-of-Things
(IoT) industry, multimedia, cloud-computing services,
real-time data analytics, to even financial markets. More
specifically, examples of real-time applications demanding
timely data updates include monitoring, data analytics
and control systems, phasor data updates in power grid
stabilization systems; examples of real-time datasets include
real-time map and traffic data, e.g., the Google Maps
Platform [5]. The systems involving these applications and
datasets put high emphasis on the data freshness.

Despite the increasing significance of fresh data, keeping
data fresh relies on frequent data generation, processing,
and transmission, which can lead to significant operational
costs for the data sources (providers). Such operational costs
make pricing design of an essential role in the fresh data
trading interaction between data sources and data destinations
(users), as pricing provides an incentive for the sources to
update the data and prohibits the destinations from requesting
data updates unnecessarily often. Furthermore, in addition to
enabling necessary fresh data trading, pricing design is also
one of the core techniques of revenue management, facilitating
data sources’ profit maximization.

The pricing for fresh data, however, is under-explored, as all
existing pricing schemes for communication systems serve
to control the network congestion level and assume that a
consumer’s satisfaction with the service depends mainly on
the quantity/quality of the service received without considering
its timeliness. Fig. 1 illustrates the interaction in fresh data
markets between data providers and users requesting fresh
data. This article studies the specifics of fresh data trading
with a single source-destination pair, aiming at answering the
following question:

Question 1: How should the source choose a pricing
scheme to maximize its profit in fresh data trading?
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Fig. 1. Examples of potential fresh data markets.

B. Approaches and Challenges

Motivated by different types of fresh data businesses,
we consider both a predictable-deadline model and an
unpredictable-deadline model. In the former case, the source
and the destination may only interact sequentially for a (poten-
tially short-term) finite horizon (e.g., deadline-aware cloud
computing tasks [6]). In the latter case, such an interaction
is relatively long-term such that the destination and the source
may not know the exact deadline of such a fresh data business
(e.g., uncertain completion-time cloud computing tasks [7]).

For both the predictable-deadline model and the
unpredictable-deadline model, we study three types of
pricing schemes by exploiting three different dimensions,
namely time, quantity, and subscription:

• Time-dependent pricing scheme: The source of fresh data
prices each data update based on the time at which the
update is requested. Due to the nature of the AoI, the des-
tination’s desire for updates increases as time (since the
most recent update) goes by, which makes it natural
to explore this time sensitivity. This pricing scheme is
also motivated by practical pricing schemes for mobile
networks (in which users are not age-sensitive) [12]–[15].

• Quantity-based pricing scheme: The price for each update
depends on the number of updates requested so far (but
does not depend on the timing of the updates) [8]. For
instance, the source may reward the destination by a
discount for each additional request to attract more fresh
data updates. Such a pricing scheme is motivated by
practical pricing schemes for data services (e.g., for data
analytics services [9] and cloud computing [5], [10]).

• Subscription-based pricing scheme: The source charges
a one-time subscription price and a flat-rate usage price
for each update (instead of differentiating the price over
time or quantity dimensions). Such a pricing scheme
is motivated by practical pricing schemes for mobile
network data plans and services [11], [13] and enjoys
a low implementation complexity as it is characterized
by two parameters only.

Our goal is to explore these three different pricing schemes
and address the following question:

Question 2: How profitable it is to exploit the time, quan-
tity, and subscription dimensions in the pricing design of fresh
data?

The nature of data freshness poses the threefold challenge
of designing the above pricing schemes. First, the destina-
tion’s valuation is time-interdependent, which makes it sig-
nificantly different from conventional (physical or digital)
goods (e.g., [12]–[15]). That is, the desire for an update
at each time instance depends on the time elapsed since
the latest update. Hence, the source’s pricing scheme choice
needs to take such interdependence into consideration. Second,
the flexibility in different pricing choices renders the opti-
mization over (infinitely) many dimensions. Third, the time
discounting infinite-horizon model constitutes a challenging
continuous-time dynamic programming problem.

The key results and contributions of this article are summa-
rized as follows:

• Fresh Data Trading Modeling with General AoI Cost.
To the best of our knowledge, this article presents the
first study of the source pricing scheme design in fresh
data trading, in which we consider a general increasing
age-related cost function for the destination.

• Profit Maximizing Pricing. Under the finite-horizon
model, our analysis reveals that exploiting the quan-
tity dimension or the subscription dimension alone can
maximize the source’s profit. On the other hand, under
the infinite-horizon model, only the subscription-based
pricing can achieve profit maximization.

• Effectiveness of Exploiting the Time Dimension. We show
that profitability of exploiting the time dimension depends
on both the deadline type and the time discounting.
In particular, the optimal time-dependent pricing can be
time-invariant under the finite-horizon model, and hence
renders exploitation of the time dimension ineffective.
On the other hand, under the infinite-horizon model
with significant time discounting, time-dependent pricing
asymptotically maximizes the source’s profit among all
possible pricing schemes.

• Numerical Results. Our numerical studies show that the
quantity-based pricing scheme and the subscription-based
pricing may also lead to significant reductions in AoI
and social costs, incurring up to 41% of less AoI and up
to 54% less social cost, compared against the optimal
time-dependent pricing scheme. In addition, we show
that the time-dependent pricing can be asymptotically
profit-maximizing even under moderate time discounting.

Table I summarizes the key results regarding the three
pricing schemes analyzed in this article.

We organize the rest of this article as follows. In Section II,
we discuss some related work. In Section III, we describe
the system model and the game-theoretic problem formula-
tion. In Sections IV and V, we develop the time-dependent,
the quantity-based and subscription-based pricing schemes
under the finite-horizon model and the infinite-horizon model,
respectively. We provide some numerical results in Section VI
to evaluate the performance of the three pricing schemes, and
conclude the paper in Section VII.

II. RELATED WORK

In recent years, there have been many excellent works
focusing on the optimization of scheduling policies that
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TABLE I

SUMMARY OF KEY RESULTS

minimize the AoI in various system settings (e.g., [3],
[18]–[30] and a survey in [4]). In [3], Kaul et al. recog-
nized the importance of real-time status updates in networks.
In [18], [19], He et al. investigated the NP-hardness of
minimizing the AoI in scheduling general wireless networks.
In [20], Kadota et al. studied the scheduling problem in a
wireless network with a single base station and multiple
destinations. In [21], Kam et al. investigated the AoI for a
status updating system through a network cloud. In [22],
Sun et al. studied the optimal management of the fresh infor-
mation updates. In [23], Bedewy et al. studied a joint sam-
pling and transmission scheduling problem in a multi-source
system. References [24] and [25] studied the optimal wireless
network scheduling with an interference constraint and a
throughput constraint, respectively. In [26], Yang et al. stud-
ied a spatiotemporal model in wireless networks to char-
acterize (AoI) from a joint queueing-geometry perspective.
The AoI consideration has also gained some attention in
energy harvesting communication systems, e.g., [27]–[30], and
Internet of Things systems, e.g., [31], [32]. Several existing
studies focused on game-theoretic interactions in interference
channels, e.g., [33], [34]. All the aforementioned works have
not considered the economic interactions among sources and
destinations.

More related AoI studies are those pertaining to the eco-
nomics of fresh data and information [35]–[38]. In [35],
Wang et al. studied a repeated game between two AoI-aware
platforms, yet without studying pricing schemes. Refer-
ences [36], [37] considered timely systems in which the
destinations design pricing schemes to incentivize sensors to
provide fresh updates. Zhang et al. in [38] studied optimal
mechanism design to incentivize fresh updates and maximize
the destination’s payoff, where each source’s sampling cost
is its private information. Different from [36]–[38], our con-
sidered pricing schemes are designed by the source, which is
motivated by practical communication/data systems in which
sources are price designers. In addition, [36], [37] assumed
that the destinations are myopic instead of forward-looking as
we consider in this work.

III. SYSTEM MODEL

In this section, we introduce the system model of a
single-source single-destination information update system
and formulate the corresponding pricing scheme design
problem.

A. System Overview

1) Single-Source Single-Destination System: We consider
an information update system, in which one source node

generates data packets and sends them to one destination
through a channel. For instance, Amazon Web Services
(the source) provides real-time data analytics services to
deliver client-specific data for a client (the destination),
e.g., Airbnb [39].

We note that the single-source single-destination model has
been widely considered in the AoI literature (e.g., [21], [22],
[27], [29], [30]). The insights (such as the potential optimal
pricing structures) derived from this model allow extensions
to multi-destination scenarios.1

2) Data Updates and Age-of-Information: We consider a
fixed time period of T = [0, T ], during which the source
sends its updates to the destination. We consider a generate-
at-will model (as in, e.g., [27]–[30]), in which the source is
able to generate and send a new update when requested by
the destination. Updates reach the destination instantly, with
negligible transmission time (as in, e.g., [28], [29]).2

We denote by Sk ∈ T the transmission time of the
k-th update. The set of all update time instances is S �
{Sk}1≤k≤K , where K is the number of total updates,
i.e., |S| = K with | · | denoting the cardinality of a set. The
set S (and hence the value of K) is the destination’s decision.
We use Φ to denote the feasible set of S satisfying Sk ≥ Sk−1

for all 1 ≤ k ≤ K . Let xk denote the k-th update interarrival
time, which is the time elapsed between the generation of
(k − 1)-th update and k-th update, i.e., xk is3

xk � Sk − Sk−1, ∀k ∈ K(K + 1), (1)

where K(K) � {1, . . . , K}. Let x � {xk}k∈K(K+1) be the
vector of update interarrival times.4

The following definition characterizes the freshness of data:
Definition 1 (Age-of-Information (AoI)): The age-of-

information Δt(S) at time t is [3]

Δt(S) = t − Ut, (2)

where Ut is the time stamp of the most recently received update
before time t, i.e., Ut = maxSk≤t{Sk}.

3) Destination’s General AoI Cost: The destination experi-
ences an AoI cost f(Δt) related to its desire for the new data
update (or dissatisfaction of stale data). We assume that f(Δt)

1The system constraints (e.g., congestion and interference constraints) in a
multi-destination model can make the joint scheduling and pricing scheme
design much more challenging, as it involves competition among destinations
and requires more sophisticated game-theoretic analysis.

2This assumption is practical when inter-update times are on a scale that
is order of magnitudes larger than the transmission times of the updates
themselves.

3We read S0 as 0 and SK+1 as T .
4Throughout this article, we use (x, K) and S to denote the update policy

interchangeably.
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Fig. 2. Illustrations of AoI Δt and two types of AoI costs f(Δt). There
are two updates at S1 and S2.

is a general increasing function in Δt. For instance, a convex
AoI cost implies the destination gets more desperate when
its data grows stale, an example of which is f(Δt) = Δκ

t for
κ ≥ 1, which exists in the online learning in real-time applica-
tions such as online advertisement placement and online Web
ranking [43], [44]. Fig. 2 illustrates the AoI, a convex AoI cost
function and a concave AoI cost function. We next introduce
the following AoI-related notations:

Definition 2 (Aggregate and Cumulative AoI Cost): The
destination’s aggregate AoI cost Γ(S) and the cumulative
AoI Cost F (x) for each interarrival time x (between two
updates) are

Γ(S) �
� T

0

f(Δt(S))dt and F (x) �
� x

0

f(t)dt. (3)

Based on Definition 2, we have Γ(S) =
�K+1

k=1 F (xk).
4) Source’s Operational Cost and Pricing: Let x̄ = T/(K+

1) be the average interarrival time. We use c (x̄) to denote
the source’s operational cost per update, which is modeled
as a non-increasing and convex function.5 This can represent
sampling costs in case the source is an IoT service provider,
the computing resource consumption in case the source is
a cloud computing service provider,6 and transmission costs
in case the source is a network operator.7 Such an opera-
tional cost generalizes the fixed sampling cost model in [36].
We have the following definition for operational cost:

Definition 3 (Operational Cost): The source’s operational
cost C(K) is given by

C(K) � K · c (T/(K + 1)) . (4)

Therefore, update policies leading to the same K incur
the same operational cost for the source. Since c(·)
is non-increasing and convex, C(K) is increasing and
convex in K .

5Non-increasingness indicates that the cost per update can only decrease
when the source updates less frequently, and convexity implies that the incre-
mental reduction in the cost per update decreases in the average interarrival
time.

6In particular, the non-increasing and convex average operational cost
satisfies the sublinear speedup: the consumed computing resources multiplied
by the completion time) for each task is increasingly higher under a shorter
completion time [45].

7By the Shannon–Hartley theorem, the consumed energy per achievable bit
is decreasing and convex in transmission time.

Fig. 3. Two-stage Stackelberg game.

The source designs the pricing scheme, denoted by Π,
for sending the data updates. A pricing scheme may exploit
three dimensions: time, quantity, and subscription. Specifically,
we consider a time-dependent pricing scheme Πt, in which the
price for each update depends on t, i.e., when it is requested;
a quantity-based pricing scheme Πq , in which the price for
each update varies; and a subscription-based pricing scheme
Πs, in which the source charges an additional subscription
fee.8 We next define the destination’s total payment P (S, Π),
which depends on the destination’s update policy S and the
source’s pricing scheme Π to be specified in Section IV.

B. Stackelberg Games

We model the interaction between the source and the des-
tination as a two-stage Stackelberg game, as shown in Fig. 3.
Depending on different applications and the associated busi-
ness, we categorize the interactions between the source and the
destination into a finite-horizon model and an infinite-horizon
model. In the former case, the interaction take place for a
(potentially short-term) finite horizon (e.g., deadline-aware
cloud computing tasks [6]). In the latter case, the interaction
is longer-term such that the destination and the source may
not know the exact deadline (e.g., uncertain completion-time
cloud computing tasks [7]).

Given the aggregate AoI cost in (3), a feasible pricing
scheme Π needs to satisfy an individual rationality constraint:
the destination should be no worse off than receiving no
update; otherwise, the pricing scheme drives away the des-
tination. Let S∗(Π) be the destination’s optimal update policy
in response to the pricing scheme Π chosen by the source,
which will be defined soon. Based on this, any pricing scheme
Π needs to satisfy the individual rationality constraint:

Γ(S∗(Π)) + P (S∗(Π), Π) ≤ F (T ). (5)

That is, the destination should achieve an overall cost no
larger than a no-update policy F (T ). The following definition
captures the interaction between the source and the destination:

Game 1 (Source-Destination Interaction Game): The
interaction between the source and the destination involves
two stages:

• In Stage I, the source decides on the pricing scheme Π
at the beginning of the period, in order to maximize its

8As mentioned, these pricing schemes are motivated by (i) the time-sensitive
demand for an update due to the nature of AoI, and (ii) the wide consideration
of time-dependent, quantity-based, and subscription-based pricing schemes in
practice [11], [13].
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profit, given by:

Source−F :
max

Π
P (S∗(Π), Π) − C(|S∗(Π)|) (6a)

s.t. Π ∈ {Π : (5), π, pk(t) ≥ 0,∀t ∈ T , k ∈ N}. (6b)

• In Stage II, given the source’s decided pricing scheme Π,
the destination decides on its update policy to minimize
its overall cost (aggregate AoI cost plus payment):

Destination− F :
S∗(Π) � argmin

S∈Φ
Γ(S) + P (S, Π). (7)

We will analyze the pricing scheme design problems in
Section IV. In Section V, we will specify and analyze a
new game based on an infinite-horizon model with time
discounting.

IV. FINITE-HORIZON MODEL

In this section, we will first derive the upper bound of the
source’s achievable profit when there is a finite deadline T .
We will then separately consider three special cases of the pric-
ing Π by exploiting different dimensions: time-dependent
pricing Πt, quantity-based pricing Πq , and subscription-based
pricing Πs. We will show the existence of the optimal Πt and
Πq schemes that can maximize the source’s profit among all
possible pricing schemes.

A. Social Cost Minimization and Surplus Extraction

To evaluate the performances of the pricing schemes to be
studied, we first consider an achievable upper bound of the
source’s profit for any pricing scheme in this subsection. Note
that the outcome attaining such an upper bound of the profit
collides with the achievement of another system-level goal,
namely the social optimum:

Definition 4 (Social Optimum): A social optimum update
policy So solves the following social cost minimization
problem:

SCM− F : So � argmin
S∈Φ

C(|S|) + Γ(S). (8)

That is, the socially optimal update policy minimizes the
source’s operational cost C(|S|) and the destination’s AoI cost
Γ(S) combined. We further introduce the following definition:

Definition 5 (Surplus Extraction): A pricing scheme Π is
surplus-extracting if it satisfies

P (S∗(Π), Π) = F (T ) − Γ(S∗(Π)) and S∗(Π) = So, (9)

where S∗(Π) and So are defined in (7) and (8), respectively.
That is, the surplus extracting pricing leads to a payment equal
to the destination’s overall AoI cost reduction, i.e., the overall
AoI cost with no updates F (T ) minus the overall AoI cost
under a socially optimal update policy Γ(So). We are ready
to show the optimality of a surplus-extracting pricing:

Lemma 1: Under the finite-horizon model, every
surplus-extracting pricing scheme (satisfying Definition 2)
maximizes the source’s profit among all possible pricing
schemes, i.e., it corresponds to the optimal solution of the
problem in (6).

Fig. 4. An illustrative example of the differential aggregate AoI cost function
and Lemma 2.

We prove Lemma 1 in Appendix A. In later analysis, we will
show that the optimal quantity-based pricing and the optimal
subscription-based pricing schemes are surplus-extracting for
the finite-horizon case. However, the time-dependent pricing
in general is not.

B. Time-Dependent Pricing Scheme

We first consider a (pure) time-dependent pricing scheme
Πt = {p(t)}t∈T , in which the price p(t) for each update
depends on the time at which each update k is requested
(i.e., Sk) and does not depend on the number of updates so
far. Hence, the payment is P (S, Πt) =

�K
k=1 p(Sk).

We derive the (Stackelberg subgame perfect) equilibrium
price-update profile (Π∗

t ,S∗(Π∗
t )) by backward induction.

First, given any pricing scheme Πt in Stage I, we characterize
the destination’s update policy S∗(Πt) that minimizes its
overall cost in Stage II. Then in Stage I, by characterizing
the equilibrium pricing structure, we convert the continuous
function optimization into a vector one, based on which we
characterize the source’s optimal pricing scheme Π∗

t .
1) Destination’s Update Policy in Stage II: We analyze the

destination’s update policy under arbitrary Πt within the fixed
time period [0, T ]. Recall that K is the total number of updates
and xk defined in (1) is the k-th interarrival time. Given the
pricing scheme Πt, we can simplify the destination’s overall
cost minimization problem in (7) as

min
K∈N∪{0},x∈R

K+1
++

K+1�
k=1

F (xk) +
K�

k=1

p

⎛
⎝�

j≤k

xj

⎞
⎠ ,

s.t.
K+1�
k=1

xk = T, (10)

where R
K
++ is the space of K-dimensional positive vectors.

To understand how the destination evaluates fresh data, we
introduce the following definition:

Definition 6 (Differential Aggregate AoI Cost): The differ-
ential aggregate AoI cost function is

DF (x, y) �
� x

0

[f(t + y) − f(t)]dt. (11)

As illustrated in Fig. 4, for each update k, DF (xk+1, xk) is
the aggregate AoI cost increase if the destination changes its
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update policy from S to S\{Sk} (i.e., removing the update at
Sk). We now derive the optimal time-dependent pricing based
on (11) in the following lemma:

Lemma 2: Any equilibrium price-update tuple (Π∗
t , K

∗,T,
x∗,T) should satisfy, for all k ∈ K(K∗,T + 1),9

p∗

⎛
⎝ k�

j=1

x∗,T
j

⎞
⎠ = DF (x∗,T

k+1, x
∗,T
k ). (12)

We present the proof of Lemma 2 in [48]. Intuitively, the dif-
ferential aggregate AoI cost equals the destination’s maximal
willingness to pay for each update. Note that given that the
optimal time-dependent pricing scheme satisfies (12), there
might exist multiple optimal update policies as the solutions
of problem (7). This may lead to a multi-valued source’s profit
and thus an ill-defined problem (6). To ensure the uniqueness
of the received profit for the source without affecting the
optimality to the source’s pricing problem, one can impose
infinitely large prices to ensure that the destination does not
update at any time instance other than

�k
j=1 x∗,T

j for each
k ∈ K(K∗,T + 1). Together with the pricing in Lemma 2,
it leads to a unique update policy.

2) Source’s Time-Dependent Pricing Design in Stage I:
Based on Lemma 2, we can reformulate the time-dependent
pricing scheme as follows. In particular, the decision variables
in problem (13) correspond to the interarrival time interval
vector x instead of the continuous-time pricing function
p(t). By converting a functional optimization problem into
a finite-dimensional vector optimization problem, we simplify
the problem as follows.

Proposition 1: The time-dependent pricing problem in (6)
is equivalent to the following problem:

max
K∈N∪{0},x∈R

K+1
++

K�
k=1

DF (xk+1, xk) − C(K), (13a)

s.t.
K+1�
k=1

xk = T. (13b)

We prove Proposition 1 in [48]. Note that the constraint
in (5) is automatically satisfied here, as the destination can
always choose a no-update policy (i.e., K = 0) leading to a
cost of F (T ) under any Πt. To rule out trivial cases with no
update at the equilibrium, we adopt the following assumption
throughout this article:

Assumption 1: The source’s operational cost function
C(K) satisfies C(1) ≤ DF (T/2, T/2).
Assumption 1 ensures that the operational cost for one update
C(1) is not larger than the source’s willingness to pay such an
update. We consider the convex AoI function to derive some
insightful results:

Proposition 2: When Assumption 1 holds and the AoI func-
tion f(x) is convex, then there will be only one update (i.e.,
K∗,T = 1) under any equilibrium time-dependent pricing
scheme.
The intuition behind Proposition 2 is that a convex AoI cost
leads to an accelerated increase in the destination’s willingness

9We use (K∗,T, x∗,T) to denote the equilibrium update policy under the
optimal time-dependent pricing, i.e., (K∗,T, x∗,T) = (K∗(Π∗

t ), x∗(Π∗
t )).

to pay as AoI increases. Hence, it is most profitable to
charge a relatively high price to induce only one update. We
can prove Proposition 2 by induction, showing that for an
arbitrary time-dependent pricing scheme yielding more than
K > 1 updates (K-update pricing), there always exists a
pricing scheme with a single-update equilibrium that is more
profitable. Based on the above technique, we can show that
the above argument works for any increasing convex AoI cost
function. We present the complete proof in [48].

From Proposition 2, it is readily verified that the optimal
time-dependent pricing scheme is:

Corollary 1: Under a convex f(x), there exists an optimal
time-dependent pricing scheme Π∗

t such that10

p∗(t) = DF

	
T

2
,
T

2



, ∀t ∈ T , (14)

where the equilibrium update takes place at S∗,T
1 = T/2.

We present the proof in [48]. Corollary 1 suggests that there
exists an optimal time-dependent pricing scheme that is in fact
time-invariant. That is, although our original intention is to
exploit the time sensitivity/flexibility of the destination through
the time-dependent pricing, it turns out not to be very effective.
This motivates us to consider a quantity-based pricing scheme
next.11

C. Quantity-Based Pricing Scheme

In this subsection, we focus on a quantity-based pricing
scheme Πq = {pk}k∈N, i.e., the price depends on how
many updates have been requested. Specifically, the price pk

represents the price for the k-th update. The payment to the
source is then given by P (S, Πq) =

�K
k=1 pk.

The source determines the quantity-based pricing
scheme Πq in Stage I. Based on Πq , the destination in Stage II
chooses its update policy (K, x). We derive the (Stackelberg)
price-update equilibrium using the bilevel optimization
framework [46]. Specifically, the bilevel optimization embeds
the optimality condition of the destination’s problem (7) in
Stage II into the source’s problem (6) in Stage I. We first
characterize the conditions of the destination’s update policy
(K∗(Πq), x∗(Πq)) that minimizes its overall cost in Stage II,
based on which we characterize the source’s optimal pricing
Π∗

q in Stage I.12

1) Destination’s Update Policy in Stage II: Given the
quantity-based pricing scheme Πq , the destination solves the

10There actually exist multiple optimal pricing schemes; the only difference
among all optimal pricing schemes are the prices for time instances other than
T/2, which can be arbitrarily larger than DF (T/2, T/2).

11The above analysis in Propositions 1 and 2 relies on the convex AoI cost
function assumption. The analysis here for a general AoI cost function is
difficult due to the resulted non-convexity of the problem in (13). However,
we will show that the optimal quantity-based and subscription-based pricing
schemes are optimal among all pricing schemes under the general AoI cost
functions.

12We use (K∗,Q, x∗,Q) to denote the equilibrium update policy under the
optimal quantity-based pricing, i.e., (K∗,Q, x∗,Q) = (K∗(Π∗

q), x∗(Π∗
q )).
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following overall cost minimization problem:

min
K∈N∪{0},x∈R

K+1
++

K+1�
k=1

F (xk) +
K�

k=1

pk, (15a)

s.t.
K+1�
k=1

xk = T. (15b)

Note that the individual rationality constraint in (5) here is
automatically satisfied, as the destination can always choose a
no-update policy (i.e., K = 0) leading to a cost of F (T ).
If we fix the value of K in (15b), then problem (15b) is
convex with respect to x. The convexity allows to exploit the
Karush–Kuhn–Tucker (KKT) conditions in x to analyze the
destination’s optimal update policy in the following lemma:

Lemma 3: Under any given quantity-based pricing
scheme Πq in Stage I, the destination’s optimal update policy
(K∗(Πq), x∗(Πq)) satisfies

x∗
k(Πq) =

T

K∗(Πq) + 1
, ∀k ∈ K(K∗(Πq) + 1). (16)

2) Source’s Quantity-Based Pricing in Stage I: Instead of
solving (K∗(Πq), x∗(Πq)) explicitly in Stage II, we apply the
bilevel optimization to solving the optimal quantity-based pric-
ing Π∗

q in Stage I, which leads to the price-update equilibrium
of our entire two-stage game [46]. Substituting (16) into the
source’s pricing in (6) yields the following bilevel problem:

Bilevel : max
Πq,K,x

K�
k=1

pk − C(K), (17a)

s.t. K ∈ arg min
K�∈N∪{0}

Υ(K �, Πq), (17b)

xk =
T

K + 1
, ∀k ∈ K(K + 1), (17c)

where Υ(K �, Πq) � (K � + 1)F
�

T
K�+1

�
+

�K�

k=1 pk is the
overall cost given the equalized interarrival time intervals.

We are now ready to present the optimal solution to the
bilevel optimization in (17):

Proposition 3: The equilibrium update count K∗,Q and the
optimal quantity-based pricing scheme Π∗

q satisfy

K∗,Q�
k=1

p∗k = F (T ) − (K∗,Q + 1)F
	

T

K∗,Q + 1



, (18)

K��
k=1

p∗k ≥ F (T ) − (K � + 1)F
	

T

K � + 1



, ∀K �∈ N\{K∗,Q}.

(19)
We present the proof of Proposition 3 in [48]. Intuitively,
the right-hand side of (18) is the aggregate AoI cost differ-
ence between the no-update scheme and the optimal update
policy. Inequality (19) together with (18) will ensure that
constraint (17c) holds. That is, if (19) is not satisfied or�K∗,Q

k=1 p∗k > F (T ) − (K∗,Q + 1)F

T/(K∗,Q + 1)

�
, then

K∗,Q would violate constraint (17c). On the other hand, if�K∗,Q

k=1 p∗k < F (T )− (K∗,Q + 1)F

T/(K∗,Q + 1)

�
, then the

source can always properly increase p∗1 until (18) is satisfied.
Such an increase does not violate constraint (17c) but improves

the source’s profit, contradicting with the optimality of Π∗,Q
q .

We will present an illustrative example of Π∗
q in Section IV-E.

Substituting the pricing structure in (18) into (17), we can
obtain K∗,Q through solving the following problem:

max
K∈N∪{0}

− (K + 1)F
	

T

K + 1



− C(K). (20)

We next show that the optimal quantity-based pricing
scheme is in fact profit-maximizing among all possible pricing
schemes. To see this, note that (20) is socially optimal as it
is equivalent to the SCM-F Problem in (8). From Lemma 1,
the following is readily verified:

Theorem 1 (Surplus Extraction): The optimal quantity-
based pricing Π∗

q is surplus extracting, i.e., it achieves the
maximum source profit among all possible pricing schemes.
Theorem 1 implies that the quantity-based pricing scheme
is already one of the optimal pricing schemes. Hence, even
without exploiting the time flexibility explicitly, it is still
possible to obtain the optimal pricing structure, which again
implies that utilizing time flexibility may be unnecessary under
the finite-horizon model.

D. Subscription-Based Pricing

In this subsection, we consider a subscription-based pricing
Πs = {π, pu} ∈ R

2
+, where π is a one-time subscription

price and pu corresponds to a (fixed-rate) usage price for
each update. That is, for an update policy with K updates,
the payment is P (S, Πs) = π + K · pu. Compared to the
quantity-based pricing and the time-dependent pricing, such a
pricing scheme enjoys a low implementation complexity as it
is characterized by two variables only.

Recall that the surplus-extracting pricing (in Definition 5)
leads to a socially optimal update policy. Hence, the key idea
of constructing the subscription-based pricing is to set pu to
induce socially optimal update policy and then charges the
maximal π that satisfies the individual rationality constraint
in (5). We now have the following result:

Proposition 4: Let (Ko, xo) be the socially optimal update
policy solving the SCM-F Problem in (8)). The follow-
ing subscription-based pricing Π∗

s = {π∗, p∗u} is surplus-
extracting:

π∗ = F (T ) − (Ko + 1)F
	

T

Ko + 1



− c(xo)Ko, (21a)

p∗u = c(xo). (21b)
Before discussing the reason why the pricing scheme in (21)
can achieve the maximal profit, we first note that the
optimal subscription pricing is a special case of the opti-
mal quantity-based pricing. We construct an equivalent
quantity-based pricing (yielding the same source’s profit)
satisfying Proposition 3, Π̂q = {p̂k}k∈N via

p̂k =

�
p∗u + π∗, if k = 1,

π∗, otherwise.
(22)

Substituting (22) into Proposition 3, we see that Π̂q is the
optimal quantity-based pricing, which is surplus-extracting by
Theorem 1.
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Fig. 5. Performance comparison in terms of the AoI cost and the revenue
under a convex AoI cost.

Although the optimal subscription-based pricing scheme
corresponds to a special case of the optimal quantity-based
pricing scheme under the finite-horizon model, it is not the
case in the infinite-horizon model, as we will analyze in
Section V-E.

E. Summary

To summarize our key results in this section, we graph-
ically compare the AoI costs and the revenues under three
studied pricing schemes in Fig. 5 under a convex AoI cost.
As in Fig. 5(a), the optimal time-dependent pricing scheme
generates a revenue for the source equal to the differential
aggregate AoI cost (Lemma 2), and induces a unique update at
T/2 (Proposition 2). We present the results regarding the opti-
mal quantity-based pricing and the subscription-based pricing
in Fig. 5(b), since the latter corresponds to a special case of
the former, as shown in (22). The generated revenue equals
the difference of the aggregate AoI costs under a no-update
policy and the social optimum update policy. Finally, both
the optimal quantity-based pricing and the subscription-based
pricing are surplus-extracting (Theorem 1 and Proposition 4)
and thus maximize the source’s profit among all possible
pricing schemes (Lemma 1).

V. INFINITE-HORIZON MODEL

We now analyze the infinite-horizon model, in which
valuations and costs are discounted over time. Specifically,
the source’s and the destination’s decisions account for time
discounting: the source and the destination discount payments
and costs as they approach a temporal horizon into the
future [42]. This renders the analysis more challenging, since
the destination and the sources’ problems become non-convex
continuous-time dynamic programs.

We aim to design and compare three pricing schemes,
and we will show that they lead to different outcomes that
the finite-horizon model. To distinguish between notations in
both models, we use superscript � to indicate the equilibrium
notations under the infinite-horizon model.

A. Problem Formulation

The analysis in the infinite-horizon model is significantly
different from that in the finite-horizon model, mainly due to
the time discounting. We denote by δ the discount coefficient,

which corresponds to the level that the payment and the cost
are discounted after each unit of time. We then introduce the
following notations:

Definition 7 (Discounted Notations): The discounted pay-
ment Pδ(S, Π), the source’s discounted operational cost
Cδ(S), and the destination’s discounted aggregate and cumu-
lative AoI costs Γδ(S) and Fδ(x) are

Pδ(S, Π) � π +
∞�

k=1

δSkpk(Sk), Cδ(S) �
K�

k=1

δSkc(x̄),

(23)

Γδ(S) �
� ∞

0

δtf(Δt(S))dt, and Fδ(x) �
� x

0

δtf(t)dt,

(24)

where the average interarrival time x̄ is now given by x̄ =
limK→∞(

�K
k=1 Sk − Sk−1)/K.

The individual rationality constraint in pricing scheme
design is then given by:

Γδ(S�(Π)) + Pδ(S�(Π), Π) ≤ Γδ(∞), (25)

where S�(Π) is the destination’s optimal update policy to be
defined in the following.

Game 2 (Source-Destination Interaction Game With Time
Discounting): The source and the destination interact in the
following two stages:

• In Stage I, the source determines the pricing scheme
function Π at the beginning of the period, in order to
maximize its discounted profit as follows:

Source − I :
max

Π
Pδ(S�(Π), Π) − Cδ(S�(Π)), (26a)

s.t. Π ∈ {Π : (25), π, pk(t) ≥ 0, ∀t ∈ T , k ∈ N}.
(26b)

• In Stage II, the destination decides its update policy
to minimize its discounted aggregate AoI cost plus dis-
counted payment:

Destination− I :
S�(Π) = argmin

S∈Φ
Γδ(S) + Pδ(S, Π). (27)

B. Social Cost Minimization and Surplus Extraction

In this subsection, we present the social optimum update
policy and the surplus-extracting profit as a upper bound
for the source’s achievable profit. We start with defining the
Discounted Social Cost Minimization (SCM-I) problem as
follows:

SCM− I :

min
S∈Φ

Fδ(S1)+ lim
K→∞

K�
k=1

δSk [Fδ(Sk+1−Sk)+c (x̄)] . (28a)

The SCM-U Problem is a continuous-time dynamic program-
ming problem, which can be tackled by breaking into a
sequence of decision steps over time. To do so, we let Vc

denote the minimal social cost (the minimal objective value
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of the SCM-U Problem) and introduce the following result
towards solving the SCM-U Problem:

Lemma 4: The minimal social cost Vc satisfies

Vc = min
Sk

[Fδ(Sk − Sk−1) + δSk−Sk−1c(Sk − Sk−1)

+δSk−Sk−1Vc], s.t. Sk ≥ Sk−1, ∀k ∈ N. (29)
We prove Lemma 4 in [48]. Lemma 4 implies that the

optimization problem to be solved at t = Sk is similar to that
at t = 0, which implies that the optimal solution So is in fact
stationary and hence is equal-spacing. Taking the derivative
of (29) yields the following result:

Proposition 5: The social cost minimizing policy So satis-
fies So

k = kxo, ∀k ∈ N, where xo is the socially optimal
interarrival time satisfying� xo

0

(1 − δt)f �(t)dt

= ln(δ−1)

�
c(xo)−

� xo

0


ln(δ)δtc�(t)+(1−δt)c��(t)

�
dt

�
.

(30)

We present the proof of Proposition 5 in Appendix B. The
left-hand side of (30) is increasing in xo and the right-hand
side is decreasing in xo, which implies that xo is uniquely
defined and can be efficiently obtained by the bisection
method. Finally, we derive the upper bound for source’s profit
analog to the finite-horizon model:

Definition 8 (Surplus Extraction): A pricing scheme Π is
surplus-extracting if it satisfies

Pδ(S�(Π), Π) = Fδ(∞) − Γδ(S�(Π)) and S�(Π) = So,

(31)

and So is socially optimal, i.e., solves (28).
To ensure that Fδ(∞) is finite, we adopt the following
assumption throughout this article:

Assumption 2: There exists parameters A, ζ, γ satisfying
A < ∞, ζδ ≤ γ < 1, and f(t) ≤ Aζt, ∀t ≥ 0.
Assumption 2 prevents δtf(t) from diverging to ∞. It is
satisfied by many classes of AoI functions including concave
AoI functions and polynomial AoI functions (as in [22]).
Assumption 2 further ensures that Fδ(∞) is finite, since
Fδ(∞) =

� ∞
0 δtf(t)dt ≤ A

� ∞
0 (δζ)tdt = A/ ln((δζ)−1).

Based on the proof technique of Lemma 1, we have:
Lemma 5: When Assumption 2 is satisfied,

a surplus-extracting pricing scheme is the optimal pricing
among all possible pricing schemes under the infinite-horizon
model.
The proof of Lemma 5 is similar to that of Lemma 1 and
hence is omitted here.

C. Time-Dependent Pricing Scheme

In this subsection, we study the time-dependent pricing
scheme Πt = {p(t)}t≥0 under the infinite-horizon model.
Based on our analysis of the time-dependent pricing under
the finite-horizon model, we derive an equilibrium condi-
tion. Although the time-dependent pricing scheme is also

not surplus-extracting and the corresponding optimization is
difficult to solve, we present a suboptimal solution and show
its asymptotic surplus-extraction.

1) Equilibrium Condition: Recall that the time-dependent
pricing design under the finite-horizon model is based on the
differential AoI cost. We next introduce the similar result for
the infinite-horizon, analog to Lemma 2.

Lemma 6: Any equilibrium price-update pair (Π�
t ,S�,T �

S�(Π�
t )) should satisfy, for all k ∈ N,

p�
�
S�,T

k

�
= Fδ(S

�,T
k+1 − S�,T

k−1) − Fδ(S
�,T
k − S�,T

k−1)

−δS�,T
k −S�,T

k−1Fδ(S
�,T
k+1 − S�,T

k ). (32)

The intuition is similar to the optimal time-dependent pricing
scheme discussed previously, i.e., the right hand side of (32)
equals the destination’s maximal willingness to pay. For all
time instances other than S�,T

k for all k, the source can impose
infinitely large prices to ensure that the destination does not
update at any of these time instances. Lemma 6 enables us to
reformulate time-dependent pricing scheme into the following
dynamic programming problem:

max
S∈Φ

∞�
k=1

δSk−1 [Fδ(Sk+1 − Sk−1)−Fδ(Sk − Sk−1)]

−δSk−1Fδ(Sk+1 − Sk) − δSkc(x̄). (33)

Solving problem (33) requires us to analytically derive a value
function, which is challenging. This motivates us to consider
a suboptimal time-dependent pricing scheme next.

2) Suboptimal Time-Dependent Pricing and Algorithm:
Motivated by the fact that the surplus-extracting pricing
scheme in Definition 8 is equal-spacing, we will next
search for a (suboptimal) equal-spacing time-dependent pric-
ing scheme by solving the following problem:

max
x≥0

Fδ(2x) − (1 + δx)Fδ(x) − δxc(x)
1 − δx

. (34)

In (34), the scalar variable x denotes the interarrival time
between each adjacent updates and we derive the discounted
profit based on Lemma 6. The problem in (34) is much
more tractable than (33) since it only requires solving an
one-dimensional optimization problem.

To solve the above problem in (34), we will adopt the
fractional programming technique in [47] by introducing the
following problem:

max
x≥0

L(x, Q) � Fδ(2x) − (1 + δx)Fδ(x) − δxc(x)

−Q · (1 − δx). (35)

Let Q� be the maximal objective value of (34). From [47],
Q� and the optimal solution x�

t to the problem in (34) should
satisfy

max
x

L(x, Q�) = 0, and x�
t = argmax

x≥0
L(x, Q�). (36)

It is readily verified that maxx L(x, Q) is decreasing in Q,
which implies that we can adopt the bisection search for Q�

once we can solve the problem in (35) for every Q > 0.
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Therefore, to obtain x�
t , we first fix Q and solve the problem

in (35), and then search for Q satisfying (36).
Although the problem in (35) is non-convex, a brute-force

one-dimensional search with the time complexity of O(M)
in fact leads to the close-to-optimal solution to problem (35),
to be shown next. Algorithm 1 summarizes the above proce-
dure. Lines 3 and 6-9 perform the bisection search for Q� and
Line 5 performs the brute-force search for the optimal solution
to (35).

We are ready to present the following result showing that
the objective value loss of (35) diminishes in M (the number
of samples in Algorithm 1):

Algorithm 1 Dinkelbach Method to Solve (34)

1 Initialize the number of samples M , the iteration index
n, QL, QH, and a tolerance parameter � > 0;

2 while |QH − QL| ≥ � do
3 Set n = n + 1 and Q[n] = QH+QL

2 ;
4 Generate a sequence of XT � {kx̃(Q[n])

M }k∈{1,2,...,M};
5 Find x[n] such that x[n] ∈ argmaxx∈XT L(x, Q[n]);
6 if L(x[n], Q[n]) > 0 then
7 Set QL = Q[n];
8 else
9 Set QH = Q[n];

10 end
11 end

Proposition 6: Algorithm 1 in Line 5 yields an solution x[n]
to the problem in (35) such that

max
x≥0

L(x, Q[n]) − L(x[n], Q[n]) = O
	

1
M



.

We present the proof of Proposition 6 in [48], which involves
showing the existence of the optimal solution to (35) in
[0, x̃(Q)] and the Lipschitz continuity of L(x, Q) in x.

Finally, from Lemma 6, the equal-spacing time-dependent
pricing scheme Π̃t = {p̃(t)}t≥0 based on the optimal solution
to the problem in (35) is

p̃ (t) =

�
Fδ(2x�

t ) − (1 + δx�
t )Fδ(x�

t ), if t = kx�, k ∈ N,

+∞, otherwise.
(37)

3) Asymptotic Surplus-Extraction: We next study how prof-
itable such a suboptimal time-dependent pricing can be,
through the following proposition:

Proposition 7: The suboptimal time-dependent pricing
in (37) is asymptotically surplus-extracting as δ → 0.
We present the proof sketch of Proposition 7 in [48]. Propo-
sition 7 shows that the suboptimal time-dependent pricing
scheme is in fact close-to-optimal among all pricing schemes
when δ is small enough. Hence, it implies that exploiting
the time dimension is profitable when the source and the
destination are “impatient”, even though the time-dependent
pricing scheme is not effective in the finite-horizon model as
discounting is not considered there.

D. Quantity-Based Pricing Scheme

In this subsection, we consider the quantity-based pric-
ing scheme Πq , i.e., instead of differentiating the prices
across time, the price for each update changes as the des-
tination requests more. We will study whether the optimal
quantity-based pricing is still surplus-extracting as it is in
the finite-horizon model. We commence with the destination’s
update policy analysis.

1) Destination’s Update Policy in Stage II: We first define
Π̃q,j � {p̃k,j}k∈N such that p̃k,j = pk+j for all k and
all j. We further define fδ(x) as the discounted AoI, given
by fδ(x) � δxf(x). The following lemma characterizes the
destination’s update policy S�(Πq) under an arbitrary Πq:

Lemma 7: There exists a value function Vq(Πq), repre-
senting the minimal destination’s overall cost, that has the
following recurrent form: ∀k ∈ N,

Vq(Π̃q,k−1)
� min

Sk

[Fδ(Sk − Sk−1) + δSk−Sk−1(pk + Vq(Π̃q,k))],

s.t. Sk ≥ Sk−1. (38)

Under any Πq , the destination’s optimal update policy S�(Πq)
satisfies that

fδ(S�
k(Πq) − S�

k−1(Πq))

= ln(δ−1)δS�
k(Πq)−S�

k−1(Πq)(pk + Vq(Π̃q,k)), ∀k ∈ N.

(39)
We present the proof of Lemma 7 in [48]. Intuitively, for

each update k, the destination selects the interarrival time to
balance the discounted cumulative AoI cost Fδ(Sk−Sk−1) and
the delay of the future overall cost (pk +Vq(Π̃q,k)). Note that
it is difficult to obtain the exact form of the destination’s value
function in (38). However, we will show that the optimality
condition in Lemma 7 is sufficient for designing the optimal
quantity-based pricing, as we will show next.

2) Source’s Pricing Design in Stage I: Substituting the
destination’s update policy in Lemma 7 into the source’s
pricing problem in (26), we can transform (26) into the
following form:

max
S∈Φ

1
ln(δ−1)

fδ(S1) − lim
K→∞

K�
k=1

δSk [Fδ(Sk+1 − Sk)+c(x̄)] ,

(40)

which leads to the destination’s equilibrium update policy
S�,Q � S�(Π�

q). Solving the problem in (40) leads to the
optimal quantity-based pricing Π�

q = {p�
k}k∈N based on

Lemma 7.
In the following, we analytically solve the problem in (40).

We observe that the discounted social cost (defined in (28))
appears in the source’s objective in (40). Based on such an
observation, we can derive the following result towards solving
the problem in (40):
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Proposition 8: The update policy S�,Q that is optimal to
the problem in (40) should satisfy

S�,Q
k

=

�
argmaxSk≥0

�
fδ(Sk)
ln(δ−1)−δSk(c(xo) + Vc)

�
, if k = 1,

So
k−1 + S�,Q

1 , otherwise,
(41)

where So is the optimal solution to (28), Vc and xo are
introduced in Lemma 4 and Proposition 5, respectively. The
optimal quantity-based pricing scheme is

p�
k =

⎧⎨
⎩

1
ln(δ−1)

(f(S�,Q
1 ) − fδ(xo)) − Fδ(xo), if k = 1,

c(xo), otherwise.
(42)

We present the proof of Proposition 8 in [48]. To under-
stand Proposition 8, the update policy after the first update
(i.e., {Sk}k≥2) is to minimize the discounted social cost.
Hence, the interarrival time S�,Q

k+1 − S�,Q
k for all k ≥ 1 is

equal to xo. Intuitively, the price after the first update is set
to c(xo), ensuring that the destination’s optimal update policy
after the first update is the same as the socially optimal update
policy in Proposition 5.

E. Subscription-Based Pricing Scheme

We finally present the subscription-based pricing Πs =
{pu, π} ∈ R

2
+. In particular, pu is the flat-rate usage

price per update and is charged whenever the destination
requests a data update; π is the subscription price and
is charged at time t = 0. Hence, the discounted pay-
ment paid by the destination to the source is Pδ(S, Πs) =
π + limK→∞

�K
k=1 δSkpu. We note that, different from the

finite-horizon model, the subscription-based pricing is not a
special case of the quantity-based pricing scheme under the
infinite-horizon here, since in the latter case, the source does
not charge a fixed payment at t = 0. In contrast, under
the finite-horizon model, the source and the destination are
insensitive to when the payment is made.

We will derive the optimal subscription-based pricing and
show it is surplus-extracting, i.e., achieving the maximal
source’s profit among all possible pricing schemes:

Proposition 9: The optimal subscription-based pricing
Π�

s = {p�
u, π�} is

p�
u = c(xo) and π� = Fδ(∞) − Vc, (43)

where Vc and xo are introduced in Lemma 4 and Proposition 5,
respectively. In addition, Π�

s is surplus-extracting.
In (43), Fδ(∞) is the discounted aggregate cost of no data

update, and c(xo) under the pricing scheme in (43) serves to
align the destination’s interest to minimizing the social cost
in (28). Under the pricing in (43), the destination’s problem

becomes

Fδ(∞) − Vc + min
S∈Φ

lim
K→∞�

Fδ(S1) +
K�

k=1

δSk(Fδ(Sk+1 − Sk) + c(x̄))

�
= Fδ(∞).

(44)

The destination’s discounted payoff in (44) is Fδ(∞), equal
to the its discounted payoff if it does not request any update
(i.e., not subscribing to the pricing scheme). This indicates that
the destination will not be worse off by requesting updates
(i.e., satisfying individual rationality in (25)). The problem
in (44) leads to the same optimal solution to the social cost
minimization in (28), and hence it corresponds to a surplus
extracting pricing scheme according to Definition 8. Hence,
from Lemma 5, and the optimal subscription-based pricing
in (43) is the optimal among all possible pricing schemes.

Combining the results in Proposition 4 and Proposition 9,
we have the following corollary:

Corollary 2: The subscription-based pricing is the optimal
pricing under both finite-horizon and infinite-horizon models.

F. Summary

Finally, we summarize our key results in this section
through graphical comparison of three studied pricing schemes
in Fig. 6. Fig. 6(a) presents the equal-spacing time-dependent
pricing scheme, where the discounted revenue is derived based
on Lemma 6. Fig. 6(b) presents the discounted revenue of
the optimal quantity-based pricing scheme based on Lemma 7
and the fact that 1

ln(δ−1)fδ(S1) =
� ∞

S1
[fδ(t)+ ln(δ)δtf �(t)]dt.

In addition, the optimal quantity-based pricing in (39) charges
a relatively high price for the first update, and relatively low
prices for the remaining updates, yielding a pricing scheme
that leads to a large first interarrival time from (39). Finally,
Fig. 6(c) presents the optimal subscription-based pricing,
which is surplus-extracting (Proposition 9) and hence the
optimal pricing scheme among all possible pricing schemes
(Lemma 5). Finally, the optimal subscription-based pricing
induces an equal-spacing update policy as shown in Fig. 6(c),
consistent with Proposition 5.

VI. NUMERICAL RESULTS

In this section, we perform simulation results to compare the
proposed pricing schemes. We then evaluate the significance
of the performance gains of the profit-maximizing pricing,
the impacts of time discounting, and the destination’s age
sensitivity on their performances.

A. Simulation Setup

We consider a convex power AoI cost function: f(Δt) =
Δκ

t , where the coefficient κ ≥ 1 is termed the destination’s
age sensitivity. Such an AoI cost function is useful for online
learning due to the recent emergence of real-time applications
such as advertisement placement and online web ranking
[22], [43], [44]. Hence, the cumulative AoI cost function
F (t) is F (t) = tκ+1/(κ + 1). The source has a constant

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on May 30,2021 at 15:21:55 UTC from IEEE Xplore.  Restrictions apply. 



1222 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 5, MAY 2021

Fig. 6. Performance comparison in terms of the discounted AoI cost and the discounted revenue.

Fig. 7. Performance comparison in terms of (a) the aggregate AoI and the
aggregate AoI cost, and (b) the profit, the payment, and the social cost. The
error bars represent the standard deviations.

operational cost per update, i.e., c(x̄) = c, where c is the
source’s operational cost coefficient. Let κ follow a normal
distribution N (1.5, 0.2) truncated into the interval [1, 2], and
let c follow a normal distribution N (50, 20) truncated into
the interval [0, 100]. Our simulation results take the average
of 100,000 experiments.

B. Results for the Finite-Horizon Model

1) Performance Comparison: We compare the perfor-
mances of three pricing schemes, the optimal time-dependent
pricing (TDP), the optimal quantity-based pricing (QBP),
and the optimal subscription-based pricing (SBP), together
with a no-update (NU) benchmark. We will show that the
profit-maximizing pricing schemes (the TDP and the QBP) can
lead to significant profit gains compared against the benchmark
(the NU). In Fig. 7(a), we first compare the four schemes
in terms of the aggregate AoI and the aggregate AoI cost.
The NU scheme incurs a much larger aggregate AoI than all
three proposed pricing schemes. Moreover, from Proposition 5,
the QBP and the SBP achieve the same performance, incurring
an aggregate AoI that is only 59% of that of the optimal
TDP. In terms of the aggregate AoI cost, we observe a similar
trend.

In Fig. 7(b), we compare the four schemes in terms of
the social cost and the source’s profit. We observe that the
QBP and the SBP are 27% more profitable than the TDP.
In addition, the optimal TDP only incurs 34% of the social
cost of the NU scheme. The optimal QBP and SBP further
reduce the social cost and incur only 46% of that of the

Fig. 8. Impact of destination’s age sensitivity κ on (a) the aggregate AoI
and the aggregate AoI cost, and (b) the profit and the social cost.

optimal TDP. Therefore, the profit-maximizing pricing schemes
(the TDP and the QBP) can significantly outperform the
benchmark in terms of the aggregate AoI cost and the social
cost.

2) Impact of Age Sensitivity: Fig. 8(a) compares the per-
formances of the four schemes at different age sensitivities
κ, which characterizes how the destination is sensitive to the
AoI. First, the QBP, the TDP, and the SBP lead to the same
aggregate AoI under small κ < 1.16. This is because the
TDP scheme always leads to one update while a small age
sensitivity also renders a small amount of total updates for the
QBP and the SBP. Second, when κ is increased to 1.16, there
is a small decrease in aggregate AoI for the QBP and SBP
schemes. This is due to the fact that κ increases the number
of updates K∗, as the destination becomes more sensitive
to the AoI. Third, as κ increases, we see that the AoI cost
increases for both the NU scheme and the TDP. However,
the aggregate AoI cost for the TDP increases much slower
than the NU scheme while the AoI cost for the QBP and
SBP schemes increases even slower. We observe a similar
trend for the payment ga*, The profit gap, and the social cost
gap between the TDP and the QBP (SBP); they increase as κ
increases in Fig. 8(b). That is, the destination’s sensitivity to
the age increases the performance gaps between the optimal
pricing schemes (the QBP and the SBP) and the benchmark
(the NU).

C. Results for the Infinite-Horizon Model

We now present numerical results for the infinite-horizon
model. Fig. 9 compares the performances of the three pricing
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Fig. 9. Impacts of the discounted coefficient δ on (a) the discounted profit
and (b) the discounted social cost.

schemes under the discount coefficient δ to demonstrate how
the time discounting affects the performances of different
pricing schemes. In Fig. 9(a), we observe that the optimal SBP
is more profitable than the optimal QBP and the suboptimal
TDP, as the optimal SBP is the optimal pricing scheme among
all possible pricing schemes (Proposition 9). An interesting
observation is that the TDP outperforms the QBP when
δ < 0.97, and the QBP outperforms the TDP when δ is
large. Hence, different from the finite-horizon model, the QBP
does not always perform better than the TDP due to the time
discounting. Moreover, as δ decreases, the performance of the
TDP performs closely to the SBP, which is consistent with the
result in Proposition 7 that the TDP is asymptotically surplus-
extracting. More importantly, as δ approaches 0.6, the TDP
already performs very close to the SBP. This implies that a
moderate degree of time discounting is enough to make the
TDP close-to-profit-maximizing.

In Fig. 9(b), we observe that the SBP achieves a smaller
social cost compared against the QBP and the TDP, as the
surplus-extracting pricing scheme also achieves the minimal
social cost by Definition 8. An interesting observation is
that all three pricing schemes perform more closely to each
other as δ decreases and achieve the discounted social cost
with negligible differences under a moderate level of time
discounting δ (i.e., δ = 0.6).

VII. CONCLUSION

We presented the first pricing scheme design for fresh data
trading and proposed three pricing schemes to explore the
profitability of exploiting different dimensions in designing
pricing. Our results revealed that (i) the profitability to exploit
the time flexibility depends on the degree of time discounting;
(ii) the optimal quantity-based pricing scheme achieves the
maximal source’s profit among all pricing schemes with a
finite-horizon model but not with an infinite-horizon model;
(iii) the optimal low-complexity subscription-based pricing
scheme achieves the maximal source’s profit under both
models.

Our results shed light on pricing scheme design for a
more general scenario: multi-destination systems, which raise
the challenges of coupling system constraints (e.g., interfer-
ence constraints). Another interesting direction is to study
incomplete information settings, which requires leveraging
mechanism design to elicit destinations’ truthful information
regarding AoI.

APPENDIX

A. Proof of Lemma 1

By the individual rationality constraint in (5), all pricing
schemes need to satisfy

P (So(Π), Π) ≤ F (T ) − Γ(So(Π)). (45)

Hence, the source’s profit thus is

P (So(Π)) − C(Ko(Π)) ≤ F (T ) − Γ(So(Π)) − C(Ko(Π))
≤ F (T ) − min

S∈Φ
[Γ(S) + C(K)].

(46)

Hence, if a pricing scheme achieves the upper bound in (46),
it achieves the maximal profit among all pricing schemes.

B. Proof Sketch of Proposition 5

Lemma 4 implies that

Vc =
Fδ(xo) + δxo

c(xo)
1 − δxo , (47)

0 = f(xo) + ln(δ)c(xo) + c�(xo) + ln(δ)Vc. (48)

Based on, (47), (48), and the fact that
�

g(t)h�(t)dt =
g(x)h(x) −

�
g�(t)h(t)dt for all differentiable functions

g(x), h(x), we can prove (30).
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