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Abstract—The impact of local averaging on the performance
of federated learning (FL) systems is studied in the presence
of communication delay between the clients and the parameter
server. To minimize the effect of delay, clients are assigned into
different groups, each having its own local parameter server
(LPS) that aggregates its clients’ models. The groups’ models
are then aggregated at a global parameter server (GPS) that
only communicates with the LPSs. Such setting is known as
hierarchical FL (HFL). Unlike most works in the literature, the
number of local and global communication rounds in our work
is randomly determined by the (different) delays experienced by
each group of clients. Specifically, the number of local averaging
rounds is tied to a wall-clock time period coined the sync time
S, after which the LPSs synchronize their models by sharing
them with the GPS. Such sync time S is then reapplied until a
global wall-clock time is exhausted. First, an upper bound on the
deviation between the updated model at each LPS with respect
to that available at the GPS is derived. This is then used as a
tool to derive the convergence analysis of our proposed delay-
sensitive HFL algorithm, first at each LPS individually, and then
at the GPS. Our theoretical convergence bound showcases the
effects of the whole system’s parameters, including the number
of groups, the number of clients per group, and the value of S.
Our results show that the value of S should be carefully chosen,
especially since it implicitly governs how the delay statistics affect
the performance of HFL in situations where training time is
restricted.

Index Terms—Hierarchical federated learning, limited-time
training, delay-sensitive learning, random global iterations, ran-
dom local iterations, convergence analysis.

I. INTRODUCTION

FEDERATED Learning (FL) is a distributed machine
learning training system in which edge devices (clients)

collaboratively train a model of interest based on their locally
stored datasets. A central node (parameter server) orchestrates
the learning process by collecting the clients’ parameters
for aggregation [2]. Due to its data privacy preserving and
bandwidth saving nature, FL has attracted a lot of attention
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and has been used in diverse applications including healthcare
and mobile services.

Challenges and Related Work. In order to successfully
deploy FL in communication networks, lots of challenges should
be addressed. These include: the computing capabilities of the
clients; the communication overhead between the clients and
the parameter server; and the system heterogeneity, whether in
the clients’ communication channels or their data statistics.

One way to overcome the resource-constrained capabilities
of clients and the limited channel bandwidth is to employ
quantization, sparsification, and compression when the size
of the learning model is too large [3], [4]. Another challenge
often addressed in the literature is related to the limited
available spectrum that hinders the simultaneous participation
of all clients. For that, client scheduling and its consequences
on the system’s performance becomes crucial [5], [6], [7].

Among all challenges, communication remains to be the
bottleneck issue, and various solutions have been proposed in
the literature to mitigate it. One of these solutions is to conduct
several local updates at the clients’ side before communicating
with the parameter server [8], [9], [10], [11]. Another solution
is to introduce intermediate parameter servers, denoted as local
parameter servers (LPSs), between the clients and the (now)
global parameter server (GPS). Such setting of FL is known
in the literature as the hierarchical FL (HFL) setting [12].
The main advantage of having LPSs close to clients is to
reduce the latency and energy required to communicate with
the GPS [13]. In [14], a joint resource allocation and client
association problem is formulated in an HFL setting, and then
solved by an iterative algorithm. Moreover, the authors in [15]
utilize the bottleneck time at the GPS by allowing the devices
to perform extra local updates while they are waiting for the
new global model from the GPS. To overcome the dispersion
between the weights evaluated based on the latest global model
and those at the stale model, the authors propose a linear
global-local model combiner scheme to address this challenge.

In these mentioned works, the authors analyze their systems
while assuming a fixed number of local iterations and global
communication rounds. However, in more realistic scenarios,
the number of local iterations may vary from one global
communication round to another, depending on the dynamic
nature of the (wireless) communication channel and the differ-
ent computational capabilities of the edge devices. Moreover,
the number of global communication rounds can also vary if
the training time is restricted. One scenario in which this is
the case is when model training has to be conducted during
non-congested periods of the network.
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Contributions. Motivated by the aforementioned endeavors
and to cope with the very low latency service requirements in
6G networks (and beyond), in this paper we focus on HFL for
delay-sensitive communication networks. We study FL settings
that have an additional requirement of conducting training
within a predefined deadline. Such scenario is relevant for,
e.g., energy-limited clients whose availability for long times
is not always guaranteed. To enforce the system to abide by
this constraint, the number of local training updates will be
determined by a wall-clock time. Specifically, we define a
sync time S within which the LPSs are allowed to aggregate
the parameters they receive from their groups’ clients. Each
local iteration consumes a random group-specific delay, and
hence the total number of local updates within S will also be
random, and could possibly be different across groups. This
dissimilarity in the delay statistics is introduced to capture,
e.g., the effects of wireless channels and different computa-
tional resources among different group clients. Following the
deadline S, the LPSs forward their models to the GPS.

We set another time constraint at the GPS denoted the
system time T. This is the total time allowed for the overall
HFL system to perform the training. Different values of S and
T will lead to a different number of local and global updates.
By controlling S, we also control how many times the clients
communicate with the GPS: more local iterations lead to fewer
global ones and vice versa. This is different from the existing
works that assume that the global communication rounds are
predefined independently from the number of local updates.
Thus, one of the main questions we address in this work is:

When would it be preferable for an HFL system to perform
more local iterations than global ones, with local iterations
being relatively faster yet leading to possibly lower model
accuracy, and vice versa?

We present a thorough theoretical convergence analysis for
the proposed HFL setting for non-convex loss functions. Our
results show how the different system parameters affect the
accuracy, namely the wall clock times S and T, the number
of groups, and the number of clients per group. Various
experiments are performed on different models and datasets
to show how to optimize the sync time S based on the other
system parameters. Our system model is depicted in Fig. 1.

Our work relaxes the assumption in [12] regarding the non-
existence of communication constraints. In particular, different
from [12], we incorporate the delay induced by communication
and computation processing between LPSs and their associated
clients in addition to that in between LPSs and the GPS.
Moreover, we point out the trade-off between the number of
local iterations and global communication rounds, and propose
an approach to balance between them by optimizing the sync
time S. We also add another lens when comparing HFL with
centralized FL (which is different from the results in [13]).
Specifically, depending on the system parameters and delay
statistics, we show that there are scenarios in which direct
communication with the GPS (centralized FL) can outperform
communicating with the LPSs (HFL).

We now summarize our main contributions and novelty:
• To the best of our knowledge, this is the first work that

considers stochastic local and global iterations in HFL

Fig. 1. System model of delay sensitive HFL.

(as opposed to being predefined prior to training); the
number of iterations is determined by the induced delay
between the LPSs and their associated clients, in addition
to that in between the LPSs and the GPS.

• We show that there is an intrinsic trade-off between local
and global iterations in delay-sensitive HFL settings; the
more time you spend in local iterations, the less you
spend in global ones, and vice versa. Hence, we provide
insights on how to characterize the effect of such a trade-
off on the training accuracy in HFL. This is captured by
carefully selecting the proposed sync time S across LPSs.

• Our theoretical results characterize the consequences of
considering a wall-clock training time, together with ran-
dom local iterations and global communication rounds,
on the training accuracy of non-convex loss functions in
HFL settings.

• Instead of relying on similarity and dissimilarity assump-
tions about the updated models at the LPSs and the
GPS (as done in most of the literature), we derive our
own bound to capture the divergence between them as a
function of the system parameters. Such a bound plays an
instrumental role in proving our convergence results and
reveals insights about how the system parameters can be
designed to alleviate heterogeneity between groups.

• In addition to theoretical analyses, we carry out extensive
experiments on various datasets and different scenarios
to show the effects of choosing the sync time S, along
with the remaining system parameters, on delay-sensitive
HFL settings.

Notation and Organization: R denotes the real number field;
‖ · ‖ denotes the Euclidean norm; 〈x , y〉 denotes the inner
product between two vectors x and y; E denotes statistical
expectation, while E|x‖ · ‖ represents the conditional expecta-
tion given x.

The remainder of the paper is organized as follows.
Section II presents the system model and our proposed
HFL algorithm. Theoretical convergence analyses are derived
in Section III, and verified via extensive simulations in
Section IV. Section V concludes the paper.
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II. SYSTEM MODEL

We consider an HFL system with a global PS (GPS) and a
set of local PSs (LPSs), Ng , that serve a number of clients, see
Fig. 1. Clients are distributed across different LPSs to form
clusters (groups), in which a client can only belong to one
group, and may only communicate with one specific LPS.
Denoting by Ni the set of clients in group i, the total number
of clients in the system is

∑
i∈Ng

|Ni |, with | · | denoting
cardinality. Each client has its own dataset, and the data is
independently and identically distributed (i.i.d.) among clients.
The empirical loss function at the LPS of group i ∈ Ng is
defined as follows:

fi (x ) �
1

|Ni |
∑

k∈Ni

Fi ,k (x ), i ∈ Ng , (1)

where Fi ,k (x ) is the loss function at client k in group i. The
goal of the HFL system is to minimize a global loss function:

f 7(x ) � 1
∑

i∈Ng
|Ni |

∑

i∈Ng

|Ni |fi (x )

=
1

∑
i∈Ng

|Ni |
∑

i∈Ng

∑

k∈Ni

Fi ,k (x ). (2)

The global loss function is minimized over a number of
global communication rounds between the GPS and the LPSs.
At the beginning of the uth global round, the GPS broadcasts
the global model, xu ∈ R

d , with d representing the model
dimension, to the LPSs. The LPSs then forward xu to their
associated clients, which is used to run a number of SGD steps
based on their own local datasets. After each SGD step, the
clients share their models with their LPS, which aggregates
them and broadcasts them back locally to its clients. We call
this local round trip a local iteration. We further illustrate how
the global rounds and local iterations interact as follows. Let
xu,li denote the model available at LPS i after local iteration l

during global round u, and let xu,li ,k denote the corresponding
local model of client k of group i. We now have the following
equations that build up the models:

x
u,0
i = xu , ∀i ∈ Ng , (3)

xu,0i ,k = xu,0i , (4)

xu,li ,k = xu,l−1
i − α g̃i ,k

(
xu,l−1
i

)
, ∀k ∈ Ni , (5)

where α is the learning rate, and g̃i ,k is an unbiased stochastic

gradient evaluated at xu,l−1
i . After the lth SGD step, LPS i

collects {xu,li ,k } from its associated clients and aggregates them
to get the lth local model,

xu,li =
1

|Ni |
∑

k∈Ni

xu,li ,k , (6)

which is shared with its clients to initialize SGD step l + 1.
Each local iteration takes a random time to be completed.
This includes the time for broadcasting the local model by
the LPS to its clients, the SGD computation time, and the
aggregation time. Let τui ,l denote the wall-clock time elapsed
during local iteration l for group i in global round u. The time

Fig. 2. Example sample path of global rounds and local iterations of 2 groups
with wall-clock times considerations.

τui ,l encompasses the training, communication, and aggregation
time between the LPS and its associated clients. We assume
that τui ,l ’s are i.i.d. across local iterations l and global rounds
u, but may not be identical across groups i. This is motivated
by the different channel delay statistics that each group may
experience when communicating with its LPS. In addition
to that, each group may have clients with heterogeneous
computational capabilities. These two factors together hinder
one group to (statistically) do an identical number of local
updates like other groups. We define a sync time, S, that
represents the allowed local training time for all groups. After
the sync time, the LPSs need to report their local models to
the GPS, and thereby ending the current global round. During
global round u, and within the sync time S, group i will then
conduct a random number of local iterations given by

tui � min

{

n :

n∑

l=1

τui ,l ≥ S

}

, i ∈ Ng . (7)

Observe that the statistics of tui ’s are not identical across
groups, see Fig. 2 for an example sample path during global
round u. Based on (7), it is clear that the value of S determines
the number of local iterations that each group conducts. After
the tui local iterations are done, and using (3)–(6), LPS i will
have acquired the following model:

x
u,tui
i = x

u,0
i − α

|Ni |
tui −1∑

l=0

∑

k∈Ni

g̃i ,k

(
x
u,l
i

)
. (8)

We consider a synchronous setting in which the GPS
waits for all the LPSs to finish their local iterations before
a global aggregation. Since LPSs incur different wall-clock
times to collect their models, some of them may need to stay
idle, waiting for others to finish. The GPS therefore starts
aggregating the models after

max
i∈Ng

⎧
⎨

⎩

tui∑

l=1

τui ,l

⎫
⎬

⎭
(9)

time units from the start of the local iterations in global
round u. We denote this period by the syncing period (see
Fig. 2), which captures the straggler’s effect in synchronous
FL. When updating the GPS, LPS i sends the difference
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between its final and initial models divided by the number of
its local iterations performed [16], [17], i.e., it sends

1

tui

(
x
u,tui
i − xu,0i

)
=
−α
|Ni |tui

tui −1∑

l=0

∑

k∈Ni

g̃i ,k

(
xu,li

)
, i ∈ Ng .

(10)

We note that the purpose of diving by tui is to avoid biasing
the global model and to avoid the objective inconsistency [17].
Moreover, normalization by the number of local iterations
forces the aggregated model update to be the result of an equal
contribution from all groups. To see this, observe that (cf.
Assumption 2)

E|tui
1

tui

(
x
u,tui
i − x

u,0
i

)

=
−α
|Ni |tui

tui −1∑

l=0

∑

k∈Ni

∇Fi ,k

(
xu,li

)

=
−α
tui

tui −1∑

l=0

∇fi
(
x
u,l
i

)
, (11)

where E|tui denotes the conditional expectation given the

vector tui � {tu ′
i }uu ′=1.

The GPS then updates its global model as

xu+1 = xu +
∑

i∈Ng

|Ni |∑
i∈Ng

|Ni |
1

tui

(
x
u,tui
i − xu,0i

)

= xu − α
∑

i∈Ng
|Ni |

∑

i∈Ng

1

tui

tui −1∑

l=0

∑

k∈Ni

g̃i ,k

(
x
u,l
i

)
,

(12)

and broadcasts xu+1 to the LPSs to begin global round
u + 1. We assume that the global aggregation and broadcasting
processes consume i.i.d. τug ’s wall-clock times. An example
of the HFL setting considered is depicted in Fig. 2.

The overall HFL training process stops after a total system
time T. The value of T represents the time budget allowed for
training in applications sensitive to delays. Within T, the total
number of global rounds will be given by

U � min

⎧
⎨

⎩
m :

m∑

u=1

⎛

⎝max
i∈Ng

⎧
⎨

⎩

tui∑

l=1

τui ,l

⎫
⎬

⎭
+ τug

⎞

⎠ ≥ T

⎫
⎬

⎭
. (13)

Notably in (13), the number of global iterations U , will be
dominated by the number of local iterations {tui }, the delay
at the GPS τug , and the training time constraint T. We coin the
proposed algorithm delay sensitive HFL which is summarized
in Algorithm 1. We also include a list of the key notations in
Table I for better presentation.

In the sequel, we analyze the performance of Algorithm 1
in terms of the wall-clock times, number of clients and other
parameters of the system. We then discuss how to choose the
sync time S to ensure better learning outcomes.

TABLE I
KEY NOTATIONS AND SYSTEM PARAMETERS

Algorithm 1 Delay Sensitive HFL
1: Input: learning rate α, system time T, sync time S
2: Output: global aggregated model xU
3: Initialization: T̄ , u ← 0
4: while T̄ ≤ T do
5: Global Broadcast: xu,0i ← xu , ∀i ∈ Ng

6: for i ∈ Ng do
7: tui ← 0, t̄ ← 0
8: while t̄ ≤ S do
9: for k ∈ Ni do

10: SGD Update: xu,li ,k = xu,l−1
i −

αg̃i ,k (x
u,l−1
i )

11: end for
12: Local Aggregation: xu,li = 1

|Ni |
∑

k∈Ni
xu,li ,k

13: Group Broadcast: xu,li ,k = xu,li
14: Local updates increment: tui ← tui + 1,
15: t̄ ← t̄ + τui
16: end while
17: Upload: 1

tui
(x

u,tui
i − xu,0i )

18: end for
19: Global Update:

20: xu+1 = xu +
∑

i∈Ng

|Ni |∑
j∈Ng

|Nj |
1
tui
(x

u,tui
i − xu,0i )

21: System Time Update: T̄ ← maxi{
∑(tui )

j=1 τ
u
i ,j }+ τg ,

22: u ← u + 1
23: end while

III. MAIN RESULTS

In this section, we present the convergence analysis for
the proposed HFL setting. We have the following typical
assumptions about the loss function and SGD [13]:

Assumption 1 (Smoothness): Loss functions are L-smooth:
∃L > 0 such that, ∀x , y ∈ R

d :

Fi,k (y) ≤ Fi,k (x ) + 〈∇Fi,k (x ), y − x 〉+ L

2
‖y − x‖2, ∀i , k .

(14)
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Assumption 2 (Unbiased Gradient): The gradient estimate
at each client satisfies

Eg̃i ,k (x ) = ∇Fi ,k (x ), ∀i , k . (15)

Assumption 3 (Bounded Gradient): There exists a constant
G > 0 such that the stochastic gradient’s second moment is
bounded as

E
∥
∥g̃i ,k (x )

∥
∥2 ≤ G2, ∀i , k . (16)

Assumption 4 (Bounded Variance): There exists a constant
σ > 0, such that the variance of the stochastic gradient is
bounded as

E
∥
∥g̃i ,k (x )−∇Fi ,k (x )

∥
∥2 ≤ σ2, ∀i , k . (17)

It is worth noting that we conduct our analysis without
assuming convexity of the loss function at any entity in the
system. According to our proposed algorithm, after each global
round, the group clients will resume their local training from
the aggregated global model instead of the their latest local
one. Hence, we need to quantify the deviation between the
two parameter models through the following lemma (the proof
is in Appendix B):

Lemma 1: For 0 ≤ α ≤ 1
L , the delay sensitive HFL

algorithm satisfies the following, ∀u, i :

E|tui
∥
∥
∥xu+1 − x

u,tui
i

∥
∥
∥
2 ≤

2α2

⎛

⎜
⎝(tui )

2 +
|Ng |

∑
j∈Ng

|Nj |2
(∑

i∈Ng
|Ni |

)2

⎞

⎟
⎠G2. (18)

Remark 1: The first term in the bound in Lemma 1 repre-
sents the contribution of group i while the second one reflects
the impact of all groups in the deviation between the parameter
models. It is obvious that more local iterations lead to more
deviation between the local and the global models. Note that
local iterations are the sole determinant of the deviation in case
of having one group only (e.g., when there is no hierarchy);
having two or more groups carries an additive effect on the
deviation as seen in the second term.

Remark 2: In case of having only one group in the system,
one gets a strictly smaller upper bound than that in [18], which
is given by 4α2(tui )

2G2 (almost two times the bound in (18)
for |Ng | = 1 for large values of tui ).

Remark 3: The lemma suggests a way to overcome the
effects of the heterogeneity of the number of local iterations
conducted by each group on the divergence. By setting a differ-
ent learning rate for each group that is inversely proportional
to the number of local iterations (e.g., α2 ≤ 1

2((tui )
2+|Ng |)G2

for group i), one can achieve the same divergence bound (≤ 1)
across all groups.

Lemma 1 serves as a building block for our main conver-
gence theorems of the proposed delay sensitive HFL. These
are mentioned next (with proofs in Appendices C and D).

Theorem 1 (Convergence Analysis per Group): For 0 ≤
α ≤ 1

L , the delay sensitive HFL algorithm achieves the
following group i bound for a given U :

1
∑U

u=1 t
u
i

U∑

u=1

tui∑

l=1

E|tui
∥
∥
∥∇fi

(
xu,l−1
i

)∥
∥
∥
2

≤ 2

α
∑U

u=1 t
u
i

(

E|tui fi
(
x1i

)
− E|tui fi

(

x
U ,tUi
i

))

+
αLσ2

|Ni |

+

(
1

α
∑U

u=1 t
u
i

+
2(L+ 1)κα
∑U

u=1 t
u
i

)

(U − 1)G2

+
2(L+ 1)α
∑U

u=1 t
u
i

U−1∑

u=1

(tui )
2G2, (19)

where the term κ is given by κ � |Ng |
(
∑

i∈Ng
|Ni |)2

∑
j∈Ng

|Nj |2.
Remark 4: Notably, setting U = 1 means that the groups

will work individually. The result of Theorem 1 shows
that convergence is still guaranteed in this isolated case by
choosing 0 ≤ α ≤ min{ 1L , 1√

t1i
}.

Theorem 2 (Global Convergence Analysis): For 0 ≤ α ≤
1
L , the delay sensitive HFL algorithm achieves the following
global bound for a given U :

1

U
U∑

u=1

E|tui ‖∇f (x
u )‖2

≤ 2

α

1

U
(
E|tui f

(
x1
)
− E|tui f

(
xU+1

))

+
12α2L2G2|Ng |2
(
∑

i∈Ng

|Ni |
)4

⎛

⎝
∑

i∈Ng

|Ni |2
⎞

⎠

2

+

αL|Ng |
∑

i∈Ng

|Ni |2σ2
(
∑

i∈Ng

|Ni |
)2

+
1

U
U∑

u=1

12α2L2|Ng |
(∑

i∈Ng
|Ni |

)2

∑

i∈Ng

|Ni |2
(
tu−1
i

)2

+
1

U
U∑

u=1

4α2L2G2|Ng |
(∑

i∈Ng
|Ni |

)2

∑

i∈Ng

|Ni |2 1

tui

tui −1∑

l=0

l2.

(20)

Remark 5: The significance of controlling S is reflected in
the values of {tui } and U : increasing S allows more local
iterations, {tui }, between the LPSs and their associated clients,
at the expense of performing less global communication
rounds, U , as a consequence of the system time T being
limited, and vice versa. The value of S affects the convergence
bound in (20), since all the terms except the second one are
functions of tui and U .

Remark 6: Since the terms including {tui } and U are in
the form:

∑U
u=1 t

u
i , this gives us an insight that one can tune
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Fig. 3. HFL: 10 clients per group, parameters {0.09, 0.1, 0.009, 0.01, 1, 3, 0.05, 0.1}, and S = 5.

S to obtain similar performances under different individual
values of {tui } and U . This is discussed in more detail in our
experimental results.

Remark 7: Although we obtain a convergence bound that
is a function of S, reflected in {tui } and U , its optimal value
is not directly obtainable analytically from the bound. In our
experiments, we show how different system scenarios lead to
different choices of S to optimize the performance.

Now that we have seen how the sync time S controls the
upper bounds in the theorems above by statistically controlling
the number of local iterations, and in order to characterize the
convergence rate, let us assume that there exists a minimum
local iteration time for group i:

τui ,l ≥ ci , a.s., ∀l , u. (21)

Then, one gets a maximum number of local iterations:

tui ≤ tmax
i � 
∗� S

ci
, a.s., ∀u. (22)

Based on this, one can get the following convergence rate (the
proof is in Appendix E):

Corollary 1 (Speed of Convergence): For a given {tmax
i },

setting α = min{ 1√U , 1L}, the delay sensitive HFL algorithm

achieves 1
U
∑U

u=1 E‖∇f (xu )‖2 ≤ O( 1√U ).
Therefore, for a finite sync time S, as the training time T

increases, the number of the global communication rounds U
also increases, and hence Corollary 1 shows that the gradient
converges to 0 sublinearly.

IV. EXPERIMENTS

In this section, we present our simulation results for the
proposed delay sensitive HFL algorithm to verify the findings
from the theoretical analysis.

Datasets and Models. We adopt a variety of data sets
to demonstrate our findings and emphasize the effective-
ness of our proposed algorithm. We consider an image
classification supervised learning task on the CIFAR-10
dataset [19], MNIST dataset and the Federated Extended
MNIST dataset [20]. We also consider a word prediction
task using the Shakespeare dataset [20]. We employ different

Fig. 4. Significance of group cooperation under non-i.i.d data.

machine learning and deep learning models: (1) a convolution
neural network (CNN) is adopted with two 5x5 convolution
layers, two 2x2 max pooling layers, two fully connected layers
with 120 and 84 units, respectively, ReLu activation, a final
softmax output layer and cross entropy loss; (2) a multi-
layer perceptron (MLP) with one hidden layer consisting of
50 neurons, with a logistic regression model; and (3) for
the Shakespeare dataset, we train an recurrent neural network
(RNN) for next-character-prediction [21].

Data Partitioning. In order to validate our proposed
HFL algorithm, we test its performance under different data
partitioning methods. These are a baseline data partitioning
method, where data is distributed in an i.i.d. manner across
clients, and another method, where data is distributed in a
non-i.i.d. manner with various levels of data heterogeneity.
The data partitioning is conducted based on the Dirichlet
distribution and it follows the same data partitioning as in [20].

Linear Delay Model. We consider shifted exponential
delays [22], [23]: τui ,l ∼ exp(ci , λi ) and τug ∼ exp(cg , λg ).

That is, E[τui ,l ] = ci +
1
λi

and E[τug ] = cg + 1
λg

. To capture
the relation between the number of clients and the number of
groups with the delay, we model the shift parameter for group
i as a linearly increasing function in the number of clients in
that group: ci = d × |Ni | + b, ∀i ∈ Ng , for some constants
d and b. Similarly, we model the exponential rate as 1/λi =
e×|Ni |+f , ∀i ∈ Ng . Thus, the intra-group delay increases as
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Fig. 5. Significance of group cooperation.

the number of its clients increases. We adopt a similar model
for the delay between LPSs and the GPS: cg = dg×|Ng |+bg
and 1/λg = eg × |Ng | + fg . Thus, the more LPSs a system
has, the more intense the communication bottleneck becomes
while communicating with the GPS. We will state the delay
model values in this order: {d , b, e, f , dg , bg , eg , fg}.

A. HFL Incentive and Motivation

We first start with an HFL setting with |Ng | = 2 groups,
with 10 clients per group training the CNN model described
above on CIFAR-10. In Fig. 3, we show the evolution of both
groups’ accuracies and the global accuracy across time. The
zoomed-in version in Fig. 3 shows the high (SGD) variance
in the performance of the two groups especially during the
earlier phase of training. Then, after more averaging with the
GPS, the variance is reduced.

In Fig. 4, using the same CNN architecture on CIFAR-
10, the significance of collaborative learning is emphasized.
We change the number of clients per group, and run three
experiments: one for each group in an isolated fashion, i.e.,
S = T, and one under the HFL setting (S = 5). First, while we
do not conduct our theoretical analysis under heterogeneous
data distribution, we consider a non-i.i.d. data distribution
among the two groups in this setting (Dirichlet(0.1)), and we
see that our proposed algorithm still converges. Second, it is
clear that the performance of the group with fewer clients
under heterogeneous data distribution and isolated learning
will be deteriorated. However, aided by HFL, its performance
improves, while the performance of the other group does not
suffer greatly, promoting fairness among the groups.

To provide further insights on the significance of cooperation,
we consider an extreme data heterogeneity setting in which each
client only has two labels, with no common labels being shared
among the two groups. In Fig. 5, we plot our results and show
that HFL converges even when the groups are isolated (non-
cooperative setting, i.e., S = T ) yet since each group only has a
strict subset of the total number of labels, they both converge to a
lower accuracy compared to the one they get from cooperation.
Further, in Fig. 5, cooperation is shown to be significant in a non-
extreme scenario in which the data distribution is Dirichlet(0.1).

Fig. 6. Achieving the same performance as the baseline (S = 0) with fewer
global rounds.

Different from Fig. 4, the cooperative result in Fig. 5 beats both
groups’ isolated training results.

Hence, from the previous figures we can summarize that
our proposed HFL setting is able to enhance FL performance
by reducing variance, improving fairness, and learning more
collaboratively by offering indirect access to datasets that are
otherwise unavailable to clients.

B. Significance of Choosing the Sync Time S

In this section, we show how choosing S can overcome
the heterogeneity in the experienced delays among different
groups, and can sustain a better performance for the whole
system. Furthermore, we show that carefully choosing S can
outperform the baseline of setting S = 0 (which corresponds
to a centralized system (non-hierarchical)), with fewer visits
to the GPS.

In Fig. 6, we set the linear delay model parameters to
{10−3, 0.5, 10−3, 0.05, 5, 10, 10−3, 0.05}, and train an MLP
over the MNIST dataset. In this setting, we have two groups
with 500 clients each. We can see that setting S = 5 time units
achieves the same performance as that of the baseline (S = 0)
yet with a fewer number of global communication rounds. The
main reason behind this is that the cost of communicating with
the GPS is relatively high in terms of the delay experienced
in this setting.
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Fig. 7. Impact of the global shift parameter cg on choosing the sync time S.

Fig. 8. Tuning S to beat the baseline in a four group setting.

Next, we show that we can outperform that baseline
(S = 0) by optimizing S. We train the CNN model
on the CIFAR-10 dataset for 30 clients divided among
2 groups, together with the challenge of having a non-i.i.d.
data distribution. In Fig. 7, we set the delay parameters to
{0.01, 0.85, 10−3, 0.085, 4, 2, 0.4, 0.2}. We see that S = 5
beats the baseline with a notable gap and with fewer number
of global rounds. In addition, we also see that in case there
were no strict system time constraints, one may set S = 20
which eventually approaches the baseline while saving 37%
in terms of global rounds. We next change cg to 30 and rerun
our experiments and show the results in Fig. 7. We notice that
S = 5 is still the optimum choice, but in case the system
has an additional constraint on communicating with the GPS,
S = 20 will be a better option, especially that the accuracy
gain will not be sacrificed much. It is also worth noting that
the system time T (training time budget) plays a significant
role in choosing S: S = 0 (always communicate with the GPS)
outperforms S = 20 as long as T � 750, and the opposite
is true afterwards. This means that in some scenarios, the
hierarchical setting may not be the optimal setting (which is
different from the findings in [13]). For instance, if the system
has a stringent time constraint on learning, it would be better
to communicate directly with GPS more frequently to get the
advantage of learning the resulting models from different data.

To emphasize the significance of choosing S in more
challenging system setups, we train the CNN model on the

Fig. 9. Effect of the number of groups on the performance of HFL.

Federated E-MNIST dataset under non-i.i.d. data distribu-
tion. We consider a large number of clients, 3400, divided
equally among |Ng | = 4 groups, with delay parameters
{0.1, 1.4, 0.01, 0.14, 4, 2, 0.5, 1}. In Fig. 8, the baseline S = 0
beats S = 12 and S = 24 for T � 300, while eventually S = 12
achieves the best performance. We note that one reason for the
relatively larger choices of S compared to previous cases is
that the delay parameters are relatively larger. This emphasizes
how S depends on the intra- and inter-group delays.

C. Clustering: Effect of the Number of Groups

Adopting the linear delay model presents an interesting
phenomenon that we investigate in this section. That is,
increasing the number of groups results in increasing the
delay between the GPS and the LPSs (i.e., cg and 1/λg will
increase), but at the same time the delay between an LPS
and its associated clients will decrease since there would be
a smaller number of clients in a group (i.e., ci and 1/λi
will decrease). In Fig. 9, we consider a system of 64 clients
divided equally between 2, 4, and 8 groups. The delay system
parameters are given by {0.1, 1.4, 0.01, 0.14, 0.5, 5, 0.05, 0.5}.
We show that under the same choice of S = 6, clustering
clients into 4 groups is better than clustering them into 2 or
8 groups. We justify this since in the 4-group setting, the
system strikes a balance between two extremes. That is, in the
2-group setting, the relatively high intra-group delay reduces
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Fig. 10. Impact of the groups’ shift parameters c1 and c2 on the group-client association under S = 8 and cg = 10.

Fig. 11. The symmetric and asymmetric user association under linear delay
model.

the number of local iterations (tui ), while in the 8-group setting
the relatively high LPS-to-GPS delay reduces the number of
global rounds (U).

D. Effects of Client Association and Global Delay

In this section, we study the effects of the shift parameters
on the overall performance of HFL, with a focus on client
association and LPS-to-GPS delay.

In Fig. 10, the effect of the groups’ shift parameters c1
and c2 on determining the optimal group-client association is
investigated. The results show that it is not always optimal
to cluster the clients evenly among the groups. In Fig. 10 for
instance, we see that assigning less clients to a group with a
relatively smaller shift parameter performs better than an equal
assignment of clients among both groups; this observation is
reversed in Fig. 10, in which a larger number of clients is
assigned to the relatively slower LPS.

In Fig. 11, we train the RNN model on the
Shakespeare dataset under non-i.i.d. data distribution
with S = 12. The delay parameters are set to
{0.1, 0.7, 0.001, 0.13, 3, 3, 0.01, 0.2}. We observe that the
symmetric setting outperforms the non-symmetric one. The
main reason behind this is that in the asymmetric case, the
second group with fewer clients has to idly wait for the other
group until it finishes its iterations, and hence the straggler
effect becomes dominant.

Fig. 12. The effect of global shift parameter cg under S = 10.

Finally, in Fig. 12, the impact of the global shift parameter
cg on the global accuracy is shown. As the global shift
delay parameter increases, the performance gets worse. This is
mainly because the number of global communication rounds
with the GPS, U , is reduced, preventing clients from getting
the benefit of accessing other clients’ learning models.

Future Investigation. Guided by our understanding from
the convergence bounds and the simulation results, we observe
that it is better to make the parameter S variable especially
during the first global communication rounds. For instance,
instead of fixing S = 5, we allow S to increase gradually with
each round from 1 to 5, and then fix it at 5 for the remaining
rounds. Our reasoning behind this is that the clients’ models
need to be directed towards global optimum, and not their
local optima. Since this direction is done through the GPS,
it is reasonable to communicate with it more frequently at
the beginning of learning to push the local models towards
the optimum direction. To investigate this setting, we train
a logistic regression model over the MNIST dataset, and
distribute it in a non-iid fashion over 500 clients per group. As
shown in Fig. 13, the variable S approach achieves a higher
accuracy than the fixed one, with the effect more pronounced
as S increases.

V. CONCLUSION

A delay sensitive HFL algorithm has been proposed, in
which the effects of wall-clock times and delays on the
accuracy of FL are investigated. A sync time S governs how
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Fig. 13. Comparison between variable and fixed S with respect to the global learning accuracy.

many local iterations are allowed at LPSs before forwarding
to the GPS, and a system time T constrains the overall training
period. Our findings reveal that the optimal S depends on
different factors such as the delays at the LPSs and the
GPS, the number of clients per group, and the value of T.
Multiple insights are drawn on the performance of HFL in
time-restricted training settings.

Mitigating the impact of stragglers in delay sensitive HFL
could be further mitigated via effective scheduling, or through
changing the system into asynchronous learning. Both direc-
tions will be investigated in future work.

APPENDIX A
PRELIMINARIES

We will use the following relationships throughout our
proofs without explicit reference:

• For any x , y ∈ R
n , we have: 〈x , y〉 ≤ 1

2‖x‖2 + 1
2‖y‖2.

• By Jensen’s inequality, for xi ∈ R
n , i ∈ {1, 2, 3, . . . ,N },

we have ‖ 1
N

∑N
i=1 xi‖2 ≤ 1

N

∑N
i=1 ‖xi‖2, which

implies ‖∑N
i=1 xi‖2 ≤ N

∑N
i=1 ‖xi‖2.

APPENDIX B
PROOF OF LEMMA 1

Conditioning on the number of local updates of group i up
to and including global round u, tui , we evaluate the expected
difference between the aggregated global model and the latest
local model at group i, by the end of global round u. Based
on (8) and (12), the following holds:
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(23)

The proof now follows by applying Assumption 3 (bounded
gradient in (16)) to the bound above.

APPENDIX C
PROOF OF THEOREM 1

Based on the smoothness assumption of the loss function at
LPS i, the SGD update rule in (5), and the local aggregation
rule in (6), one can write
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For the inner product term above, we have
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where (i) follows from Assumption 2 (unbiased stochastic
gradient in (15)), and then applying 〈x , y〉 = 1

2 (‖x + y‖2 −
‖x‖2 − ‖y‖2). Regarding second term in (24), the following
holds:
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where (ii) follows from adding and subtracting
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independent across different clients. Substituting (25) and (26)
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where (27) follows from (1), and the last inequality follows
by choosing 0 < α ≤ 1

L .
Next, rearranging the terms above and summing over all

local iterations until tui , we have
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Now taking the average over all global communication rounds
yields
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Now let us consider one of the summands in the equality
above. We have
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)
, xu+1

i − x
u,tui
i 〉

≤ 1

2
E|tui

(∥∥∥∇fi

(
x
u,tui
i

)∥∥∥
2
+
∥∥∥xu+1

i − x
u,tui
i

∥∥∥
2
)

+
L

2
E|tui

∥∥∥xu+1
i − x

u,tui
i

∥∥∥
2
≤ G2

2
+ (L+ 1)α2

×

⎛
⎜⎝(tui )

2 +
|Ng |(∑

i∈Ng
|Ni |

)2
∑
j∈Ng

|Nj |2
⎞
⎟⎠G2, (31)

where the last inequality follows directly from Lemma 1
(note that each group restarts its model updates following
each global iteration, and hence x

u+1,0
i = xu+1). Finally, by

substituting (31) into (30) we get

1∑U
u=1 t

u
i

U∑
u=1

tui∑
l=1

E|tui

∥∥∥∇fi

(
xu,l−1
i

)∥∥∥
2

≤ 2

α
∑U

u=1 t
u
i

×
(
E|tui fi

(
x1
i

)− E|tui fi

(
x
U,tUi
i

))
+
αLσ2

|Ni |
+

(U − 1)G2

α
∑U

u=1 t
u
i

+
2G2(L+ 1)α∑U

u=1 t
u
i

U−1∑
u=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
(tui )

2 +
|Ng |(∑

i∈Ng
|Ni |

)2
∑
j∈Ng

|Nj |2

︸ ︷︷ ︸
�κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
2

α
∑U

u=1 t
u
i

(
E|tui fi

(
x1
i

)− E|tui fi

(
x
U,tUi
i

))
+
αLσ2

|Ni |

+

(
1

α
∑U

u=1 t
u
i

+
2(L+ 1)κα∑U

u=1 t
u
i

)
(U − 1)G2

+
2(L+ 1)α∑U

u=1 t
u
i

U−1∑
u=1

(tui )
2G2. (32)

APPENDIX D
PROOF OF THEOREM 2

We first use the smoothness assumption of the global loss
function, together with the SGD update rule in (12) to get the
following:

E|tui f
(
xu+1

) ≤ E|tui f (x
u ) +

α2L

2
(∑

i∈Ng
|Ni |

)2

× E|tui

∥
∥
∥
∥
∥
∥

∑

i∈Ng

1

tui

tui −1∑

l=0

∑

k∈Ni

g̃i,k

(
xu,l
i

)
∥
∥
∥
∥
∥
∥

2

+ α

× E|tui 〈∇f (xu ),
−1

∑
i∈Ng

|Ni |
∑

i∈Ng

1

tui

tui −1∑

l=0

∑

k∈Ni

g̃i,k

(
xu,l
i

)
〉.

(33)
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For the inner product term above, we have

αE|tui 〈∇f (xu ),
−1∑

i∈Ng
|Ni |

∑
i∈Ng

1

tui

tui −1∑
l=0

∑
k∈Ni

g̃i,k

(
xu,l
i

)
〉

=
α

2
E|tui

∣∣∣∣∣

∣∣∣∣∣∇f (xu )− 1∑
i∈Ng

|Ni |
∑
i∈Ng

1

tui

tui −1∑
l=0

×
∑
k∈Ni

∇Fi,k

(
xu,l
i

)∣∣∣∣∣

∣∣∣∣∣
2

− α

2
E|tui ‖∇f (xu )‖2

− α

2
E|tui

∥∥∥∥∥∥∥
1∑

i∈Ng

|Ni |
∑
i∈Ng

1

tui

tui −1∑
l=0

∑
k∈Ni

∇Fi,k

(
xu,l
i

)
∥∥∥∥∥∥∥

2

.(34)

For the second term in (33), we have

E|tui

∥
∥
∥
∥
∥
∥

∑

i∈Ng

1

tui

tui −1∑

l=0

∑

k∈Ni

g̃i ,k

(
xu,li

)
∥
∥
∥
∥
∥
∥

2

≤ |Ng |
∑

i∈Ng

|Ni |2σ2

+ E|tui

∥
∥
∥
∥
∥
∥

∑

i∈Ng

1

tui

tui −1∑

l=0

∑

k∈Ni

∇Fi ,k

(
xu,li

)
∥
∥
∥
∥
∥
∥

2

. (35)

Substituting (34) and (35) into (33) and choosing 0 < α ≤ 1
L

yields

E|tui f
(
xu+1

) ≤ E|tui f (x
u ) +

α

2

× E|tui

∥∥∥∥∥∥∥
∇f (xu )− 1∑

i∈Ng

|Ni |
∑
i∈Ng

1

tui

tui −1∑
l=0

∑
k∈Ni

∇Fi,k

(
xu,l
i

)
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2

− α

2
E|tui ‖∇f (xu )‖2 +

α2L|Ng |
∑

i∈Ng
|Ni |2σ2

2
(∑

i∈Ng
|Ni |

)2 . (36)

Regarding the second term in (36), although the division by
tui fixes the bias issue of the cumulative gradient at the GPS,
it does not make it not coincide with its theoretical definition
in (2). Hence, different from the analogous step in (27)
in the proof of Theorem 1, the term above requires more
mathematical manipulations. Towards that end, we bound it as
follows:

E|tui

∥∥∥∥∥∥∥
∇f (xu )− 1∑

i∈Ng

|Ni |
∑
i∈Ng

1

tui

tui −1∑
l=0

∑
k∈Ni

∇Fi,k

(
xu,l
i

)
∥∥∥∥∥∥∥

2

≤ |Ng |(∑
i∈Ng

|Ni |
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∑
i∈Ng

|Ni |

×
∑
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E|tui
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∇Fi,k (x

u )− 1
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tui −1∑
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(
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i
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2
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|Ni |
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∑
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1
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i
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∥∥∥∥
2
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i
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i
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2

. (37)

For the last term above, we have

E|tui

∥
∥
∥
∥x
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i
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∥
∥
∥
∥

2

≤ 2E|tui
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∥
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i
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∥
∥
∥

2
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i
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∥

2
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2α2

|Ni |
∑
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l2G2. (38)

Next, substituting the bound of (38) in (37),
and then substituting (37) in (36) and rearranging, we get

E|tui ‖∇f (xu )‖2 ≤ 2

α

(
E|tui f (x
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(
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+
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)
. (39)

Then, taking the average over global communication rounds
U yields

1

U
U∑

u=1

E|tui
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1

U
(
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(
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(
xU+1

))

+
αL|Ng |∑i∈Ng

|Ni |2σ2

(∑
i∈Ng

|Ni |
)2

+
1

U
U∑

u=1
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l2.

(40)

Direct simplifications of the above expression give the result
of the theorem.

APPENDIX E
PROOF OF COROLLARY 1

By Theorem 2, we have shown the convergence rate of the
whole setting. Furthermore, bounding the local iteration time,
and as a consequence the number of local iterations as stated
in (21) and (22), one can show that the bound in Theorem 2
behaves as follows:

1

U
U∑

u=1

E|tui ‖∇f (x
u)‖2 ≤ 2

α

1

U
(
Ef
(
x1
)
− Ef

(
xU+1

))
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6
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α

1

U
(
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(
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)
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(
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+
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i )2
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(∑
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i

)2

3
. (41)

Choosing α ≤ 1√U in the final bound above directly gives the

required O( 1√U ) bound.
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