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Delay Minimal Policies in Energy Harvesting
Communication Systems

Ahmed Arafa , Member, IEEE, Tian Tong, Minghan Fu, Sennur Ulukus , Fellow, IEEE,

and Wei Chen , Senior Member, IEEE

Abstract— We characterize delay minimal power scheduling
policies in energy harvesting communication systems. We con-
sider a continuous-time system, where the delay experienced by
each bit is given by the time spent by the bit in the queue waiting
to be transmitted to its receiver. We first consider a single-
user channel, where the transmitter has a finite-sized battery
to save its harvested energy. Data arrives during the course of
communication and are saved in a finite data buffer as well.
We find the optimal power policy that minimizes the average
delay experienced by the bits subject to energy and data causality
constraints. We characterize the optimal solution in terms of
Lagrange multipliers, and calculate their values in a recursive
manner. We show that, different from the existing literature,
the optimum transmission power is not constant between the
energy and data arrival events; the transmission power starts
high, decreases linearly, and potentially reaches zero between
energy and data arrivals. Intuitively, untransmitted bits experi-
ence cumulative delay due to the bits to be transmitted ahead
of them, and hence the reason for transmission power starting
high and decreasing over time. Next, we study a multiuser
version of this problem, namely, a two-user broadcast channel,
and characterize the optimal transmission policies that minimize
the sum delay. For this setting, we consider the case, where the
transmitter has an infinite-sized battery, and that all data packets
intended for the receivers are available at the beginning of the
communication session. We characterize the optimal solution in
terms of Lagrange multipliers, and present an iterative solution
that calculates their values. Our results show that in the optimal
policy, both users may not be served simultaneously all the time;
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there may be times, where only one of the two users is served
alone. We also show that the optimal policy may have gaps in
transmission in between energy arrivals, where none of the users
is served, echoing the results of the single-user setting.

Index Terms— Energy harvesting, delay minimization, single-
user channel, broadcast channel, finite battery, finite buffer.

I. INTRODUCTION

WE CONSIDER energy harvesting communication
systems where the transmitter relies solely on energy

harvested from nature to maintain the power necessary for data
transmission. According to a specific data demand, the trans-
mitter needs to schedule the transmission of data packets using
the available energy such that the average delay experienced
by the data is minimal.

Optimal resource allocation and scheduling policies have
been considered for various energy harvesting communication
models. Earlier works focus on throughput maximization and
transmission completion time minimization policies for single-
user settings [3]–[6], broadcast channels [7]–[9], multiple
access channels [10], interference channels [11], relay chan-
nels [12]–[15], and settings with energy cooperation [16].
In addition, energy leakage from battery over time [17], battery
inefficiency at the time of charging [18], systems with hybrid
energy storage [19], processing costs [20], [21], and receiver
decoding costs [22], [23] have been considered.

In [3], the problem of minimizing the transmission com-
pletion time is considered. Reference [3] and the subsequent
literature showed that, due to the concavity of the rate-
power relationship, the transmit power must be kept constant
between energy harvesting and data arrival events, and the
transmitter must schedule data transmissions using longest
possible stretches of constant power, subject to energy and data
causality. While [3] minimizes the time by which all of the
data packets are transmitted, different data packets experience
different delays, and the average delay of the system is
not minimized. In particular, when the earlier-arriving data
packets are transmitted slowly, the later-arriving data packets
experience not only the delay in their own transmissions,
but a portion of the delay experienced by the earlier-arriving
packets, as they have to wait extra time in the data queue
while those packets are being transmitted. This compounds
the delays that the later-arriving data packets experience. The
delay minimization problem was considered previously in [24]
for a non energy harvesting system.
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In this paper, we consider the problem of average delay min-
imization in an energy harvesting system. First, we consider
a single-user channel where the transmitter is equipped with
a finite-sized battery and a finite-sized data buffer. We show
that, unlike the previous literature, the transmission power
should not be kept constant between energy harvesting and
data arrival events. We let the power (and therefore the rate)
vary even during the transmission of a single packet. We show
that the optimal packet scheduling is such that the transmit
power starts with a high value and decreases linearly over
time possibly reaching zero before the arrival of the next
energy or data packet into the system. The high initial transmit
power values ensure that earlier bits are transmitted faster,
decreasing their own delay and also the delays of the later-
arriving data packets. We develop a recursive solution that
finds the optimal transmit power over time by determining the
optimal Lagrange multipliers.

Next, we consider a two-user energy harvesting broadcast
channel where the transmitter is equipped with an infinite-
sized battery, and data packets intended for both users are
available before the transmission starts. In this system, there
is a tradeoff between the delays experienced by both users;
as more resources (power) is allocated to a user, its delay
decreases while the delay of the other user increases. We con-
sider the minimization of the sum delay in the system.
We formulate the problem using a Lagrangian framework, and
express the optimal solution in terms of Lagrange multipliers.
We develop an iterative solution that solves the optimum
Lagrange multipliers by enforcing the KKT optimality condi-
tions. Similar to the single-user setting, we show that the opti-
mal transmission power decreases between energy harvests,
and may possibly hit zero before the next energy harvest,
yielding communication gaps, where no data is transmitted.
During active communication, data may be sent to both
users, or only to the stronger user, or only to the weaker user,
depending on the energy harvesting profile. We contrast our
work with [7] which developed an algorithm that minimizes
the transmission completion time, i.e., a time by which all data
is delivered to users. To that end, [7] studies the throughput
maximization problem, and shows that, for general user prior-
ities, there exists a cut-off power level such that only the total
power above this level is used to serve the weaker user. In par-
ticular, for sum throughput maximization, this cut-off is infin-
ity, and all power is allocated to packets sent to the stronger
user. In contrast, in our sum delay minimization problem,
the weaker user always gets a share of the transmitted power,
as otherwise, its delay becomes unbounded, and the sum delay
will not be minimized. In our work, we show that there exists
a cut-off time, beyond which data is sent only to the weaker
user.

II. SINGLE-USER CHANNEL

In this section we consider a single-user AWGN channel,
see Fig. 1, where at arrival time tm , m = 0, 1, . . . , M −1, with
t0 = 0, energy is harvested at the transmitter with amount Em

and data intended for the receiver arrives with amount Bm .
The transmitter saves energy and data in a battery with finite
capacity Emax and in a data buffer with finite capacity Bmax,

Fig. 1. Single-user energy harvesting channel with finite-sized battery and
data buffer.

respectively. We denote the cumulative harvested energy and
the total amounts of received data at time t by

Ea(t) =
m−1∑

i=0

Ei , tm−1 < t ≤ tm, m = 1, . . . , M (1)

Ba(t) =
m−1∑

i=0

Bi , tm−1 < t ≤ tm, m = 1, . . . , M (2)

where we define tM = ∞. For a power policy p(t) at time t ,
the cumulative consumed energy and the total departed data
to the receiver at time t are given by

E(t) =
∫ t

0
p(τ )dτ (3)

B(t) =
∫ t

0

1

2
log(1 + p(τ ))dτ (4)

where log is the natural logarithm throughout this paper.
We call a policy feasible if the following is satisfied

Ea(t) − Emax ≤ E(t) ≤ Ea(t), ∀t (5)

Ba(t) − Bmax ≤ B(t) ≤ Ba(t), ∀t (6)

The above conditions assure that the policy conforms to energy
and data causality constraints, and that energy and data buffers
are not overflown.

The delay experienced by each bit is the time interval from
its arrival time to its actual transmission time. The total average
delay for the system is given by

D̄ =
∫ ∞

0
td B(t) −

∫ ∞

0
td Ba(t) (7)

which represents the area in between the data arrival and
departure curves, see Fig. 2. Our objective is to characterize
the optimal power policy that minimizes the total average
delay in (7) subject to feasibility conditions in (5) and (6). For
a given data arrival profile, the second term in (7) is constant,
and therefore minimizing D̄ is equivalent to minimizing the
gross delay defined as

D =
∫ ∞

0
td B(t) =

∫ ∞

0

t

2
log(1 + p(t))dt (8)

We note that the maximum data buffer constraint can model
strict delay requirements for data packets in this setting.
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Fig. 2. Example of data arrival and departure curves. The area in between
represents the total average delay to be minimized.

Our optimization problem is now formulated as

min
p

∫ ∞

0
t log(1 + p(t))dt

s.t. Ea(tm) − Emax ≤
∫ tm

0
p(t)dt ≤ Ea(tm),

m = 1, . . . , M

Ba(tm) − Bmax ≤
∫ tm

0
log(1 + p(t))dt ≤ Ba(tm),

m = 1, . . . , M − 1∫ ∞

0
log(1 + p(t))dt = Ba(tM )

p(t) ≥ 0, ∀t (9)

where for convenience we dropped the half term of the rate-
power function.1 We solve problem (9) in the remainder of
this section.

A. Properties of the Optimal Solution
We note that problem (9) is not a convex optimization prob-

lem. However, our analysis will show that the KKT optimality
conditions2 admit a unique, and therefore the optimal, solution.
We introduce the following Lagrangian

L =
∫ ∞

0
t log(1 + p(t))dt −

∫ ∞

0
η(t)p(t)dt

+
M∑

m=1

λ1m

(∫ tm

0
p(t)dt − Ea(tm)

)

+
M∑

m=1

λ2m

(
Ea(tm) − Emax −

∫ tm

0
p(t)dt

)

+
M−1∑

m=1

μ1m

(∫ tm

0
log(1 + p(t))dt − Ba(tm)

)

+
M−1∑

m=1

μ2m

(
Ba(tm) − Bmax −

∫ tm

0
log(1 + p(t))dt

)

− ν

(∫ ∞

0
log(1 + p(t))dt − Ba(tM )

)
(10)

1This is indeed without loss of optimality as the objective function and the
data constraints can both be multiplied by 2.

2Please refer to Appendix A for justification of the necessity of KKT
conditions for optimality in this non-convex problem. We also refer the
reader to [25] for general treatments of optimality conditions of constrained
optimization problems.

where {λ1m, λ2m , μ1m, μ2m}, ν, and η(t) are Lagrange multi-
pliers. Taking the (functional) derivative with respect to p(t)
and equating to 0, and using the fact that η(t) is non-negative,
we get the following KKT optimality conditions

p(t) =
(

μ(t) − t

λ(t)
− 1

)+
(11)

where we have defined

λ(t) =
∑

{m: tm≥t}
λ1m − λ2m (12)

μ(t) = ν −
∑

{m: tm≥t}
μ1m − μ2m (13)

along with the complementary slackness conditions

λ1m

(∫ tm

0
p(t)dt − Ea(tm)

)
= 0, ∀m

(14)

λ2m

(
Ea(tm) − Emax −

∫ tm

0
p(t)dt

)
= 0, ∀m

(15)

μ1m

(∫ tm

0
log(1 + p(t))dt − Ba(tm)

)
= 0,

m = 1, . . . , M − 1 (16)

μ2m

(
Ba(tm) − Bmax −

∫ tm

0
log(1 + p(t))dt

)
= 0,

m = 1, . . . , M − 1 (17)

We now state the following lemma.
Lemma 1: The optimal λ(t) (resp. μ(t)) is a piece wise

constant function, with possible changes only if the energy
(resp. data) buffer is either depleted or full.

Proof: By the complementary slackness conditions we
have

λ1m = λ2m = 0, if Ea(tm) − Emax < E(tm) < Ea(tm)

(18)

E(tm) = Ea(tm), if λ1m > 0 (19)

E(tm) = Ea(tm) − Emax, if λ2m > 0 (20)

Therefore, λ(t) stays constant between arrival times, and can
only change when λ1m > 0 or λ2m > 0 for some m, which
occurs only if the energy buffer is either depleted or full at tm .
Similar arguments follow for μ(t).

By Lemma 1, both λ(t) and μ(t) are sequences rather than
continuous functions of time. We denote by {s1, s2, . . . , sL} ⊆
{t0, t1, . . . , tM−1} the change times of λ(t) and μ(t), with
s1 = 0. Therefore we have

λ(t) =
{

λc
k, t ∈ [sk, sk+1)

λc
L , t ∈ [sL,∞)

(21)

μ(t) =
{

μc
k, t ∈ [sk, sk+1)

μc
L, t ∈ [sL ,∞)

(22)

where the superscript c is short for change. Therefore, by def-
inition of {sk}, at least one constraint is met with equality
at sk , ∀k, and no constraint is met with equality during
the interval (sk−1, sk). The following lemma provides the
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necessary conditions for the two sequences {λc
k} and {μc

k} to
increase/decrease.

Lemma 2: In the optimal policy: 1) λc
k > λc

k−1 (resp. λc
k <

λc
k−1) only if the battery is full (resp. depleted) at time sk−1;

and 2) μc
k > μc

k−1 (resp. μc
k < μc

k−1) only if the data buffer
is depleted (resp. full) at time sk−1.

Proof: By definition of λ(t) in (12), the function can only
increase (resp. decrease) after time sk−1 if λ2m > 0 (resp.
λ1m > 0) for m such that tm = sk−1. By complementary
slackness, the battery must be full (resp. depleted) at time sk−1.
The second statement of the lemma follows using similar
arguments.

We conclude the optimality conditions by the following
lemma.

Lemma 3: Whenever the optimal power p(t) > 0 on some
open interval in between arrival times, it is monotonically
decreasing.

Proof: Let us have p(t) > 0 ∀t ∈ (l1, l2) where (l1, l2)
lies in between arrival times. By Lemma 1, we know that
both λ(t) and μ(t) are constants during that interval (say
λl and μl). Hence, from (11), p(t) is either monotonically
increasing or decreasing (depending on the sign of λl ). Now
assume it is increasing during this interval, i.e., λl < 0, and
denote λ′

l = −λl , and μ′
l = l2 − μl + l1. Now define a new

power policy p′(t) = (μ′
l − t)/λ′

l − 1, for t ∈ (l1, l2). It is
direct to see that both p(t) and p′(t) use the same energy and
deliver the same data amount during (l1, l2), as what we did
is merely flipping the curve of p(t) in (l1, l2) around l1+l2

2 .
However, the (now decreasing) new policy p′(t) does so with
a strictly less delay. This is due to the multiplicative term t in
the objective function; it is strictly better to use higher powers
at the beginning and lower powers at the end, so that data
arriving earlier in time are delivered faster.

By Lemma 3, we conclude that the optimal λ(t) is non-
negative for all t , and that it is necessary, from (11), to have
μ(t) > t for all t before the total amount of data is
delivered. Lemma 3 also shows that power can reach 0 in
between arrivals, where the communication stops until the next
energy or data arrival instant.

B. Recursive Formulas

In this section, we show how to find λc
k , μc

k , and sk in
a recursive manner. We will use these recursive formulas to
construct the optimal solution in the next section. First, assume
sk , E(sk), B(sk), and μc

k are known, and define the following
values for all {m : tm > sk}

λeu
m : E(sk) +

∫ tm

sk

(
μc

k − t

λeu
m

− 1

)+
dt = Ea(tm) (23)

λbu
m : B(sk) +

∫ tm

sk

log

(
1 +

(
μc

k − t

λbu
m

− 1

)+)
dt = Ba(tm)

(24)

λu
m = max{λeu

m , λbu
m } (25)

λel
m : E(sk) +

∫ tm

sk

(
μc

k − t

λel
m

− 1

)+
dt = Ea(tm) − Emax

(26)

λbl
m : B(sk)+

∫ tm

sk

log

(
1+

(
μc

k −t

λbl
m

−1

)
+
)

dt = Ba(tm)−Bmax

(27)

λl
m = min{λel

m , λbl
m } (28)

Therefore, λu
m is the minimum value of λ such that either the

energy or the data buffer is depleted by time tm , i.e., an upper
bound is met with equality. On the other hand, λl

m is the max-
imum value of λ such that either the energy or the data buffer
is full by time tm , i.e., a lower bound is met with equality.
Observe that these values are unique, by monotonicity of the
integrands on the left hand side of the above equations. Let
us denote �(m) = [λu

m , λl
m ]. Hence, to maintain feasibility,

we need to have λc
k ∈ �(m) if sk+1 ≥ tm . Now define the

following integers

mmax
1 (k) = max

⎧
⎨

⎩m :
m⋂

i: ti>sk

�(i) 	= ∅
⎫
⎬

⎭ (29)

mu
1(k) = max

⎧
⎨

⎩m : λu
m ∈

m⋂

i: ti>sk

�(i)

⎫
⎬

⎭ (30)

ml
1(k) = max

⎧
⎨

⎩m : λl
m ∈

m⋂

i: ti>sk

�(i)

⎫
⎬

⎭ (31)

We now have the following lemma; with the assumption that
the optimal solution of the problem is only partially revealed
up to a given time, it provides a method to proceed forward
and find the optimal solution up to some specific future time.

Lemma 4: Assume that one has the optimal solution up to
time sk , along with μc

k . Then, λc
k and sk+1 are found as follows:

If �
(
mmax

1 (k) + 1
)

>

mmax
1 (k)⋂

i: ti>sk

�(i)

⇒ λc
k = λl

ml
1(k)

, sk+1 = tml
1(k)

Else, if �
(
mmax

1 (k) + 1
)

<

mmax
1 (k)⋂

i: ti>sk

�(i)

⇒ λc
k = λu

mu
1 (k), sk+1 = tmu

1 (k)

where the comparisons of the intervals above are pointwise.3

Proof: Let us assume that �
(
mmax

1 (k) + 1
)

>
⋂mmax

1 (k)

i: ti>sk
�(i) and consider two different possibilities. First,

if λc
k > λl

ml
1(k)

, then a lower bound will be met before tml
1(k).

By Lemma 2, we know that λ(t) can only increase if a lower
bound is met with equality. This means that eventually the
lower bound at tml

1(k) will be breached. On the other hand,

if λc
k < λl

ml
1(k)

, then by definition of ml
1(k), we know that

λl
m ≥ λl

ml
1(k)

for all m : sk < tm < ml
1(k). This means

that only an upper bound can be met before or at tml
1(k).

3By [a1, a2] > [b1, b2] we mathematically mean that a1 > b2, and
inversely by [a1, a2] < [b1, b2] we mathematically mean that a2 < b1.
Note that by definition of mmax

1 (k), the two intervals �
(
mmax

1 (k) + 1
)

and
⋂mmax

1 (k)
i: ti >sk

�(i) have no intersection, and thus the two cases considered in the
lemma are mutually exclusive.
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By Lemma 2, we know that λ(t) can only decrease if an upper
bound is met with equality. Therefore, λ(t) will not increase
to have a value inside �

(
mmax

1 (k) + 1
)

(which lies above
⋂mmax

1 (k)

i: ti>sk
�(i) by assumption) at tmmax

1 (k)+1, i.e., the upper
bound at tmmax

1 (k)+1 will be breached. Thus, we must have λc
k =

λl
ml

1(k)
, sk+1 = tml

1(k) in this case. Similar arguments follow

for the other case when �
(
mmax

1 (k) + 1
)

<
⋂mmax

1 (k)

i: ti>sk
�(i).

Similarly to what we did above, we can define the quantities
{μeu

m , μbu
m , μu

m , μel
m , μbl

m , μl
m} as we did in (23)-(28) with fixed

(known) λc
k . Further, we can also define the set U(m) =

[μl
m, μu

m ], which gives rise to the following integers

mmax
2 (k) = max

⎧
⎨

⎩m :
m⋂

i: ti>sk

U(i) 	= ∅
⎫
⎬

⎭ (32)

mu
2(k) = max

⎧
⎨

⎩m : μu
m ∈

m⋂

i: ti>sk

U(i)

⎫
⎬

⎭ (33)

ml
2(k) = max

⎧
⎨

⎩m : μl
m ∈

m⋂

i: ti>sk

U(i)

⎫
⎬

⎭ (34)

We now have the following lemma, complementing and serv-
ing the same purpose as Lemma 4. The proof follows using
similar arguments as in that of Lemma 4, and is therefore
omitted for brevity.

Lemma 5: Assume that one has the optimal solution up to
time sk , along with λc

k . Then, μc
k and sk+1 are found as follows

If U
(
mmax

2 (k) + 1
)

>

mmax
2 (k)⋂

i: ti>sk

U(i)

⇒ μc
k = μu

mu
2 (k), sk+1 = tmu

2 (k)

Else, if U
(
mmax

2 (k) + 1
)

<

mmax
2 (k)⋂

i: ti>sk

U(i)

⇒ μc
k = μl

ml
2(k)

, sk+1 = tml
2(k)

where the comparisons of the intervals above are pointwise.
Lemmas 4 and 5 show how to optimally construct λc

k
and μc

k , along with sk+1, given μc
k and λc

k , respectively,
along with the optimal solution up to sk . In solving our
problem, we neither know the optimal value of λc

1 or μc
1 in

order to apply those lemmas, and hence, we need to assume
some initialization values for either of them in order to start
computing the remaining ones recursively. It then remains to
find out if such initializations were erroneous, and how to
adjust them if this were the case. In addition to that issue,
we also note that Lemmas 4 and 5 only give the value
of sk+1. One needs either λc

k+1 or μc
k+1 along the way in

order to reapply the results of the lemmas and move forward
to find sk+2. We address these issues formally through the next
series of lemmas. Throughout the lemmas, we first assume a
value for μc

k and find the corresponding values of λc
k and

sk+1 by Lemma 4. We then assess the optimality of the
assumed μc

k according to the constraints met at sk+1. The next

lemma will help in that assessment. We provide its proof in
Appendix B.

Lemma 6: Given a time interval [s, s̄], and a decreasing
power policy p0(t), if we define another decreasing power
policy p1(t) that consumes the same amount of energy dur-
ing [s, s̄], and has a slower decline, i.e., has a larger slope,
then the policy p1(t) departs more data during that interval.
Similarly, if we define another power policy p2(t) that departs
the same amount of data during [s, s̄], and has a slower
decline, i.e., has a larger slope, then the policy p2(t) consumes
less energy during that interval.

Next, we use the results in Lemma 6 to prove the state-
ments in the following lemmas. Throughout the lemmas,
as mentioned previously, we assess the optimality of an
assumed value of μc

k based on how the constraints at sk+1
are met/violated. We provide proofs of these lemmas in
Appendices C through F.

Lemma 7: If an energy constraint is binding at sk+1, while
data constraints are not, and if μc

k > sk+1, then we have
μc

k+1 = μc
k . Otherwise, μc

k is not optimal, and needs to
increase. Similarly, if a data constraint is binding at sk+1,
while energy constraints are not, and if sk+1 < tM = ∞, then
we have λc

k+1 = λc
k . Otherwise, μc

k is not optimal, and needs
to decrease.

Lemma 8: If the battery is empty at sk+1, and the data
buffer is overflown, then μc

k is not optimal and needs to
increase. Similarly, if the data buffer is empty at sk+1, and
the battery is overflown, then μc

k is not optimal and needs to
decrease.

The next two lemmas deal with the cases where both data
and energy constraints are binding at sk+1. In such cases,
we re-solve a shifted problem starting at sk+1 recursively
using the above analysis, with initial conditions as indicated by
the binding constraints at sk+1, e.g., a full/empty data/energy
buffer, and denote the optimal Lagrange multipliers of this
shifted problem by {λ̄i , μ̄i }M

i=k+1. We then compare the val-
ues of those Lagrange multipliers obtained from the shifted
problem to λc

k and μc
k and examine their optimality as follows.

Lemma 9: If the battery is empty (resp. full) and the data
buffer is full (resp. empty) at sk+1, and the solution of the
shifted problem satisfies: λ̄k+1 ≤ λc

k and μ̄k+1 ≤ μc
k (resp.

λ̄k+1 ≥ λc
k and μ̄k+1 ≥ μc

k), then the solution of the shifted
problem, as well as the pair {λc

k, μ
c
k}, is optimal. Otherwise,

μc
k is not optimal and needs to increase (resp. decrease).
Lemma 10: If both the battery and the data buffer are empty

(resp. full) at sk+1, and the solution of the shifted problem
satisfies: λ̄k+1 ≤ λc

k and μ̄k+1 ≥ μc
k (resp. λ̄k+1 ≥ λc

k and
μ̄k+1 ≤ μc

k), then the solution of the shifted problem, as well
as the pair {λc

k, μ
c
k}, is optimal. Otherwise, if λ̄k+1 > λc

k (resp.
μ̄k+1 > μc

k), then μc
k is not optimal and needs to increase.

On the other hand, if μ̄k+1 < μc
k (resp. λ̄k+1 < λc

k ), then μc
k

is not optimal and needs to decrease.
It is clear from the above recursive formulas that the

optimal Lagrange multipliers can only have one unique set
of values. For instance, equations (23)-(28) constitute the
method of computing the Lagrange multipliers from one
epoch to the next. In there, we note that the left hand
sides are all monotone in λm given μc

k is fixed, and vice
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Fig. 3. Two-user energy harvesting broadcast channel.

versa. Since our solution approach is based on fixing one
parameter and finding the other one through these equations in
Lemma 4 (and their complements in Lemma 5), we conclude
that the KKT conditions have a unique solution for this
problem, as mentioned in the beginning of the analysis in
Section II-A. We summarize the proposed algorithmic solution
next.

C. Constructing the Optimal Solution

In this section, we summarize the solution of the single-user
problem. We first initialize by setting s1 = 0, and choosing a
value for μc

1. We then find the value of λc
1 and s1 by Lemma 4.

Next, we check the constraints at s1 and use Lemmas 7, 8, 9,
and 10 to assess the optimality of the initialized μc

1. This
results into one of the following cases: 1) the value of μc

2 or λc
2

is given because μc
1 is optimal; 2) μc

1 is not optimal and
needs to increase or decrease; 3) the optimal solution of the
problem is obtained according to Lemmas 9 and 10. In case 3,
we need to solve a shifted problem starting at s2; we do
so by initializing a value of μc

2 and continue as discussed
above. In case 2, one can find the optimal μc

1 by using,
e.g., a bisection search. In case 1, we either use Lemma 4
to find λc

2 and s3 if μc
2 was given, or use Lemma 5 to find μc

2
and s3 if λc

2 was given; we then repeat the above constraints’
checks at s3, and so on. We stop when all data is transmitted
under the above conditions.

III. BROADCAST CHANNEL

In this section, we consider an energy harvesting two-
user broadcast channel, see Fig. 3, where energy is harvested
at times {t0, t1, . . . , tM−1} in amounts {E0, E1, . . . , EM−1},
respectively, with t0 = 0. Unlike the single-user problem,
the data packets in this broadcast setting are available before
the communication starts, in amounts B1 and B2, for the first
and the second user, respectively.

The physical layer is a degraded broadcast channel,

Y j = X + Z j , j = 1, 2 (35)

where X is the transmitted signal, Y j is the received signal
of user j , and Z j is the Gaussian noise at receiver j with
variance σ 2

j . We assume σ 2
1 = 1 < σ 2

2 � σ 2, i.e., the first

user is stronger. The capacity region for this channel is [26]

r1 ≤ 1

2
log (1 + αP) , r2 ≤ 1

2
log

(
1 + (1 − α) P

αP + σ 2

)
(36)

where α is the fraction of the total power assigned to the first
(stronger) user, and log is the natural logarithm. Working on
the boundary of the capacity region we have,

P = e2(r1+r2) +
(
σ 2 − 1

)
e2r2 − σ 2 � g (r1, r2) (37)

which is the minimum power needed to achieve rates r1 and r2,
at the first and the second user, respectively. Note that g(r1, r2)
is strictly convex in (r1, r2) [27]. We call a policy feasible if
the following are satisfied:

∫ t

0
g (r1(τ ), r2(τ )) dτ ≤ Ea(t), ∀t (38)

∫ ∞

0
r1(t)dt = B1 (39)

∫ ∞

0
r2(t)dt = B2 (40)

where the first constraint is the energy causality constraint with
Ea(t) as defined in (1), and the remaining two are to ensure
data delivery to both users.

As discussed in the single-user scenario, the average gross
delay experienced by each user is given by

D1 =
∫ ∞

0
r1 (t) tdt (41)

D2 =
∫ ∞

0
r2 (t) tdt (42)

Note that, unlike the single-user scenario, in this two-user
setting, there is a tradeoff between the delays experienced by
the two users. This tradeoff can be characterized by developing
the delay region, similar to departure region in [7], where
all achievable (D1, D2) can be plotted. It can be shown that
this region is strictly convex, and in order to achieve pareto-
optimum delay points, one needs to solve weighted sum delay
minimization problems in the form of min μ1 D1 + μ2 D2
subject to energy causality constraints. We focus on the sum
delay minimization problem by taking μ1 = μ2 = 1. There-
fore, in this section, we consider the following optimization
problem:

min
r1,r2

∫ ∞

0
r1 (τ ) τdτ +

∫ ∞

0
r2 (τ ) τdτ

s.t.
∫ tm

0
g (r1(τ ), r2(τ )) dτ ≤ Ea(tm), m = 1, . . . , M

∫ ∞

0
r1(τ )dτ = B1

∫ ∞

0
r2(τ )dτ = B2

r1(t) ≥ 0, r2(t) ≥ 0, ∀t (43)
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A. Minimum Sum Delay Policy

We note that (43) is a convex optimization problem [27].
We solve using a Lagrangian approach:

L =
∫ ∞

0
r1 (τ ) τdτ +

∫ ∞

0
r2 (τ ) τdτ

+
M∑

m=1

λm

(∫ tm

0
g (r1(τ ), r2(τ )) dτ − Ea(tm)

)

− ν1

(∫ ∞

0
r1(τ )dτ − B1

)
− ν2

(∫ ∞

0
r2(τ )dτ − B2

)

−
∫ ∞

0
γ1(τ )r1(τ )dτ −

∫ ∞

0
γ2(τ )r2(τ )dτ (44)

where {λm}, ν1, ν2, γ1(t), and γ2(t) are Lagrange multipliers.
KKT optimality conditions are:

t + λ(t)
∂g (r1(t), r2(t))

∂r1(t)
− ν1 − γ1(t) = 0 (45)

t + λ(t)
∂g (r1(t), r2(t))

∂r2(t)
− ν2 − γ2(t) = 0 (46)

where we have:

λ(t) =
∑

{m:tm≥t}
λm (47)

∂g (r1(t), r2(t))

∂r1(t)
= 2e2(r1(t)+r2(t)) (48)

∂g (r1(t), r2(t))

∂r2(t)
= 2e2(r1(t)+r2(t)) + 2

(
σ 2 − 1

)
e2r2(t) (49)

along with the complementary slackness conditions:

λm

(∫ tm

0
g (r1(τ ), r2(τ )) dτ − Ea(tm)

)
= 0, ∀m (50)

ν1

(∫ ∞

0
r1(τ )dτ − B1

)
= 0, γ1(t)r1(t) = 0 ∀t (51)

ν2

(∫ ∞

0
r2(τ )dτ − B2

)
= 0, γ2(t)r2(t) = 0 ∀t (52)

From the above KKT conditions, we can write the rates and
total power expressions in terms of the Lagrange multipliers.
First, we write the rate expressions as:

r1(t) = 1

2
log

((
σ 2 − 1

)
(γ1 (t) + ν1 − t)

γ2 (t) − γ1 (t) + ν2 − ν1

)
(53)

r2(t) = 1

2
log

(
γ2 (t) − γ1 (t) + ν2 − ν1

λ (t)
(
σ 2 − 1

)
)

(54)

We now state the following result.
Lemma 11: The optimal Lagrange multipliers (ν∗

1 , ν∗
2 )

satisfy: ν∗
1 < ν∗

2 < σ 2ν∗
1 .

Proof: We show this by contradiction. Assume ν∗
2 ≤ ν∗

1 .
Then, by (54), the value of r2(t) is well-defined only if γ2(t) >
0 ∀t , which means by complementary slackness that r2(t) =
0 ∀t . Therefore, assuming B2 > 0, the weak user will never
get to receive any of its data. This proves the first inequality.

To show the second inequality, assume σ 2ν∗
1 ≤ ν∗

2 . Thus,
(
σ 2 − 1

)
(ν1 − t)

γ2 (t) + ν2 − ν1
≤ 1, ∀t, γ2(t) ≥ 0 (55)

Therefore, the right hand side of (53) can only be positive if
γ1(t) > 0, but this means, by complementary slackness, that
r1(t) = 0, which is a contradiction. Hence, r1(t) = 0 ∀t , and,
assuming B1 > 0, the strong user will never get to receive any
of its data.

Next, we characterize the optimal total transmit power
g (r1(t), r2(t)) by the following lemma. The proof is in
Appendix G.

Lemma 12: In the optimal policy, the total transmit power
g (r1(t), r2(t)) is given by

g(r1(t), r2(t)) = max

{
ν2 − t

λ(t)
− σ 2,

ν1 − t

λ(t)
− 1

}+
(56)

The above lemma shows that the optimal power in the
broadcast channel decreases with time between energy har-
vests, and can reach zero before increasing again with the
next energy harvest, similar to the results of the single-user
channel in Section II. The following lemmas characterize the
structure of the optimal policy.

Lemma 13: In the optimal policy, the transmission starts by
sending data to the strong user, and finishes by sending data
to the weak user.

Proof: We show this by contradiction. Assume that the
transmission starts by sending data to the weak user only,
i.e., r2(0) > r1(0) = 0.4 By complementary slackness,
we have γ2(0) = 0. By Lemma 11, since σ 2ν1 > ν2, we have

(
σ 2 − 1

)
(γ1(0) + ν1)

ν2 − ν1 − γ1(0)
> 1, ∀γ1(0) ≥ 0 (57)

which implies, by (53), that r1(0) > 0, which is a contra-
diction. For the second part of the lemma, assume that the
transmission ends at some time t f with r1(t f ) > r2(t f ) = 0.
By Lemma 12, we know that this can only occur if λ(t f ) >
ν2−ν1
σ 2−1

� λth . Since λ(t) is non-increasing, we have λ(t) ≥
λ(t f ), ∀t ≤ t f . This means that λ(t) does not fall below λth

throughout the transmission, which is equivalent to saying,
again by Lemma 12, that the weak user does not receive any
of its data, which is a contradiction.

Lemma 14: For t < tth � σ 2ν1−ν2
σ 2−1

, if the transmitter is
sending data, then it is sending to the strong user.

Proof: We show this by contradiction. Assume that for
some t < tth data is sent only to the weak user, i.e., we
have r1(t) = 0 and r2(t) > 0. By complementary slackness,
we have γ2(t) = 0. Since t < tth , it follows by simple
manipulations that the numerator of the term inside the log
in (53) is strictly larger than its denominator ∀γ1(t) ≥ 0,
i.e., r1(t) > 0, which is a contradiction. The only case where
r1(t) = 0 for some t < tth is when γ2(t) > 0, which means
by complementary slackness that r2(t) = 0.

1) Modes of Operation: There can be four different modes
of operation at a given time, depending on which user is
receiving data. The first mode is when only the strong user
is receiving data, i.e., r1(t) > 0 and r2(t) = 0. By Lemma 12,
this can be the case only if λ(t) ≥ λth = ν2−ν1

σ 2−1
. In this mode,

4Extension of the contradiction arguments in this lemma to an ε-length
interval, ε > 0, follows directly.
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we have the total power and the strong user’s rate given by

g(r1(t), 0) = ν1 − t

λ(t)
− 1 (58)

r1(t) = 1

2
log

(
ν1 − t

λ(t)

)
(59)

The second mode of operation is when both users are
receiving data, i.e., r1(t) > 0 and r2(t) > 0. Again by
Lemma 12, this can be the case only if λ(t) < λth . Moreover,
by (53), we also need t < tth = σ 2ν1−ν2

σ 2−1
. In this mode, the total

power and the users’ rates are given by

g(r1(t), r2(t)) = ν2 − t

λ(t)
− σ 2 (60)

r1(t) = 1

2
log

(
(σ 2 − 1)(ν1 − t)

ν2 − ν1

)
(61)

r2(t) = 1

2
log

(
ν2 − ν1

λ(t)(σ 2 − 1)

)
(62)

The third mode of operation is when only the weak user is
receiving data, i.e., r1(t) = 0 and r2(t) > 0. For this to occur
we need both λ(t) < λth and t ≥ tth . The total power and the
weak user’s rate are then given by

g(0, r2(t)) = ν2 − t

λ(t)
− σ 2 (63)

r2(t) = 1

2
log

(
ν2 − t

λ(t)σ 2

)
(64)

The fourth mode is when both rates (and the power) are
zero. We denote this mode as a communication gap. These
gaps may occur, for instance, if there is a small amount of
energy in the battery that is insufficient to deliver all the data,
and a large amount of energy arrives later. The transmitter
may then finish up this small amount of energy to send some
bits out and wait for additional energy to send the remaining
bits.

2) Finding the Value of λ(t): We next characterize the rates
and powers. The following lemma shows that λ(t) is a piece-
wise constant function. The proof follows by complementary
slackness as in the proof of Lemma 1, and is omitted for
brevity.

Lemma 15: In the optimal policy, the Lagrange multiplier
function λ(t) is piecewise constant, with possible changes only
when energy is depleted.

By Lemma 15, λ(t) is a sequence rather than a continuous
function of time. Following the same notation as in the single-
user channel, we denote the times of change of λ(t) by
{s1, s2, . . . , sL} with s1 = 0, and the values of λ(t) between
such times by

λ(t) =
{

λc
k, t ∈ [sk, sk+1)

λc
L , t ∈ [sL,∞)

(65)

Next, we characterize the optimal {λc
k} sequentially. Deter-

mining the value of λc
k requires the knowledge of ν∗

1 and ν∗
2 ,

and also which mode of operation is active during the inter-
val [sk, sk+1). Let us define B j (t) as the total amount of bits
transmitted to user j by time t . The next lemma shows how
to compute λc

k given the mode of operation. The proof uses

similar steps as in the proof of Lemma 4 in the single-user
setting and is omitted for brevity.

Lemma 16: Given a mode of operation, with the optimal
ν∗

1 , ν∗
2 , λc

l , sl , ∀l < k, define the following quantities ∀m:
tm > sk

λ̄m : E∗(sk) +
∫ tm

sk

g(r1(τ ), r2(τ ))+dτ = Ea(tm) (66)

λ̃1 : B∗
1 (sk) +

∫ ∞

sk

r1(τ )+dτ = B1 (67)

λ̃2 : B∗
2 (sk) +

∫ ∞

sk

r2(τ )+dτ = B2 (68)

where r1, r2, and g(r1, r2) are defined by the mode of operation
in Section III-A.1, with the convention that λ̃ j = 0 whenever a
mode of operation has r j = 0, j = 1, 2. Then, the optimal λc

k
for this mode of operation is given by

λc
k = max{λ̄m , λ̃1, λ̃2}, ∀m : tm > sk (69)

The results in Lemma 16 imply that one has to know
the mode of operation before computing the optimal values
of the Lagrange multipliers. Note that communication gaps
occur naturally due to the (·)+ operation in these expressions.
In the next section, we develop an iterative solution that
computes {λc

k} based on an initial assignment of the mode
of operation and the values of ν1, ν2. The solution is based
on the necessary conditions stated in the previous lemmas.
By Lemma 11, we know that the optimal values of ν1, ν2 lie in
a cone in R

2++. We also know, by Lemmas 12 and 13, that the
communication stops if t > ν2. Therefore, we find an upper
bound on the value of ν∗

2 as follows. First, we move all of
the energy to tM−1, the arrival time of the last energy packet,
and start the communication from there. Second, we solve this
single energy arrival problem and find its optimal ν∗

2 which
we denote by ν

single
2 . Therefore, an upper bound on ν∗

2 of the
multiple energy arrival problem is

ν∗
2 ≤ ν

single
2 + tM−1 � νub (70)

Once this upper bound is found, one can perform a two-
dimensional grid search over the feasible region of ν1, ν2:

Rν1ν2 =
{
ν1, ν2 : 0 < ν1 < ν2 < σ 2ν1, ν2 ≤ νub

}
(71)

Next, we analyze the single energy arrival case to characterize
the upper bound on ν∗

2 .
3) Single Energy Arrival: For the single energy arrival case,

we first note that there can be no communication gaps, as this
can only increase the delay. We also note that since there
is only one value of λ, corresponding to only one energy
arrival constraint, the optimal power is given by the first term
in (56). If not, then the weak user will never receive its data.
Hence, the first mode of operation where only the strong user
is receiving data never occurs. Thus, the optimal total power
is given by

ps(t) = ν2 − t

λ
− σ 2, ∀t ≤ t f � ν2 − λσ 2 (72)

where the subscript s denotes single arrival, and t f is such
that ps(t) is non-negative. From the above, we also note that
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λ cannot be 0, or else the power is infinitely large. Since λ > 0,
by complementary slackness, the transmitter has to consume
all of its energy by the end of transmission. This simplifies the
single energy arrival problem, as in this case, we have all the
three constraints, both users’ data and transmitter’s energy, met
with equality. Therefore, we can solve for the optimal values
of the Lagrange multipliers satisfying the following:

∫ tth

0

1

2
log

(
(σ 2 − 1)(ν1 − t)

ν2 − ν1

)
dt = B1 (73)

tth

2
log

(
ν2 − ν1

λ(σ 2 − 1)

)
+

∫ t f

tth

1

2
log

(
ν2 − t

λσ 2

)
dt = B2 (74)

∫ t f

0
ps(t)dt = E (75)

The above three equations are direct consequences of the
modes of operation analysis in Section III-A.1. These can be
further simplified into:

ν1

2
log

(
(σ 2 − 1)ν1

ν2 − ν1

)
= B1 (76)

ν2

2
log

(
ν2 − ν1

λ(σ 2 − 1)

)
= B2 (77)

(
ν2 − λσ 2

)2

2λ
= E (78)

Note that (76)-(78) are three equations in three unknowns, and
can be solved numerically for the values of λ∗, ν∗

1 , and ν∗
2 .

Note from the above analysis that, since we always start with
the second mode of operation, where both users receive data,
in this setting, we have λ < λth . This implies that t f > tth ,
and enables the following stronger version of Lemma 13.

Lemma 17: In the optimal policy solving (43), transmission
always ends by sending data only to the weak user.

Proof: In the single energy arrival case, since t f > tth ,
we always end transmission by sending data only to the weak
user. In the multiple arrival case, the last energy arrival can be
viewed as a single energy arrival problem with the remaining
data in the data buffers as modified constraints. Then the single
energy arrival result applies, yielding the stated result.

We have now characterized how to get the upper bound νub

in (70). In the next section we present an iterative method to
find the optimal Lagrange multipliers solving problem (43).

B. Iterative Solution
The analysis presented in Lemma 16 describes an optimal

method of finding {λc
k} given ν∗

1 and ν∗
2 . To find the latter two,

we perform a grid search over the region Rν1ν2 , which is fully
characterized by the single arrival analysis. We perform the
search as follows. We fix (ν1, ν2) ∈ Rν1ν2 , and solve for {λc

k}
to acquire a transmission policy accordingly. We denote by
Mode 1, Mode 2, and Mode 3, the mode of operation where
data is sent only to the strong user, both users, and only to the
weak user, respectively. Since Mode 1 can only occur at the
beginning, we assume that the transmission starts according to
that mode, and compute the corresponding λs by Lemma 16.
If these λs are all less than λth , then they are correct. We move
to Mode 2 once we get a value of λ larger than λth . We stay at

Fig. 4. Optimal solution for a single-user system with 3 energy arrivals and
2 data arrivals.

Mode 2 until the time passes tth , then move to Mode 3 till the
end of communication. By Lemma 17, we know that Mode 3
always exists. The transmission then ends whenever the weak
user’s data or the transmission energy is finished.

After we find the transmission policy, we check whether
the data buffers of both users are empty. If this is the case,
then by the convexity of the problem, this policy is optimal
as we have thus found a feasible policy satisfying the KKT
conditions [27]. Note that we might end up with a policy that
either does not finish up all the users’ data, or even transmits
more than the available. If either is the case, we re-solve using
another (ν1, ν2) point. We summarize how to find the optimal
(ν1, ν2) iteratively as follows. We initialize by setting ν1 = ε
and ν2 = ν1 + ε for some ε > 0 small enough. We then solve
for {λc

k} as described above. If we do not reach a feasible KKT
point, we increase ν2 by another ε and repeat. We keep doing
this until we reach a feasible KKT point, or ν2 becomes larger
than min{σ 2ν1, ν

ub}. In the latter case, we increase ν1 by ε and
repeat the whole procedure again. Since the region Rν1ν2 is
bounded, iterations are guaranteed to find the optimal solution.

IV. NUMERICAL RESULTS

In this section, we present some numerical examples to
further illustrate the results in this paper. We begin by consid-
ering a single use channel with Emax = Bmax = 10 units.
Energy arrives with amounts of [8, 12, 20] at times
t = [0, 10, 30], while data arrives with amounts of [10, 15]
at times t = [0, 10]. In Fig. 4 we show the delay minimal
solution in this setting. We see that the power is monoton-
ically decreasing between arrival times, and actually drops
to 0 before the last energy arrival. The optimal energy and
data profiles are also shown in the figure. The upper and
lower dotted lines represent the upper and lower constraints,
respectively, as dictated by the arrival profile and the value of
the finite-sized battery or data buffer.

In Fig. 4, we see that the size of the buffers is not
a bottleneck to the system. We therefore consider another
example where energy arrives with amounts of [10, 15, 20, 25]
at times t = [0, 15, 20, 40], while data arrives with amounts
of [10, 18, 22] at times t = [0, 20, 40], and plot the optimal
solution in Fig. 5. We see that the power in this case does
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Fig. 5. Effects of having a finite-sized battery and data buffer in a single-user
system.

Fig. 6. Optimal power and rates for a system with four energy arrivals.

not drop down to 0 until at the end of communication,
and that its slope changes when the optimal energy or data
profiles hit the lower bounds indicated by the size of the
buffers.

Next, we present a numerical example to illustrate the
results of the broadcast setting. We consider a system
where energy arrives with values [6, 10, 4, 5] at times t =
[0, 70, 100, 150], with amounts of data B1 = 8 and B2 = 4.25
intended for the strong and the weak user, respectively. We first
find the upper bound on ν∗

2 by solving the single energy arrival
case by setting E = 25 in (78) and finding the value of ν

single
2 .

Adding tM−1 = 150, we get νub  170. We then apply the
iterative solution described in Section III-B to find the optimal
total power allocation for the multiple arrival case and the
corresponding users’ rates. These are shown in Fig. 6 as a
function of time. We see that all four modes of operation are
present in this example: the transmitter begins by sending data
only to the strong user (Mode 1) until it consumes the initial
energy arrival, and stays silent until the next energy arrival,
then it sends data to both users simultaneously (Mode 2) until
all strong user’s data is finished, which occurs at tth  79.4.
Then, it starts sending data only to the weak user (Mode 3),
before keeping silent until the third energy arrival, and then
finishes up the weak user’s data. Note that the fourth energy

Fig. 7. Optimal energy and data consumption.

arrival is not used in this example. In Fig. 7, we show the
corresponding optimal total energy and data consumption for
this policy as a function of time.

Finally, we compare this to the transmission completion
time minimization problem in [7] with the same data values
and energy arrival profile. The optimal transmission com-
pletion time is equal to T ∗ = 90. Calculating the delay
achieved by such policy gives D  717.2. On the other
hand, our delay minimizing policy achieves a smaller delay of
D∗  593.3, however, it takes a larger amount of time to finish
T  101.5. This shows that there exists a tradeoff between
delay minimization and transmission completion time mini-
mization, and that the two problems are different, even when
all data is available before the start of communication. That is,
finishing data delivery by a minimum time, and having data
experience minimum overall delay yield different optimum
policies.

V. CONCLUSION AND DISCUSSION

We considered delay minimization in energy harvesting
communication channels. First, we studied the single-user
channel where the transmitter has a finite-sized battery and
data buffer, and energy and data packets become available at
the transmitter during the course of communication. We deter-
mined the optimum power control policy in terms of the
Lagrange multiplier functions. We identified the properties
of these functions and gave a method that evaluates them
recursively. We proposed a solution which iteratively updates
the initial value of a Lagrange multiplier, and obtains the
optimum power allocation policy. The optimal power values
start high, decrease linearly, potentially reaching zero between
energy harvests and data arrivals. This policy is different from
the piecewise constant power policies of the existing literature
which focus on minimizing a deadline by which all packets
are transmitted or maximizing the throughput before a fixed
deadline. Initial high powers in our case make sure that the
delay does not accumulate by transmitting data at faster rates
first, then decreasing the rate gradually.

Next, we considered a two-user energy harvesting broadcast
channel and characterized the minimal sum delay policy
subject to energy harvesting constraints, when the transmitter
has an infinite-sized battery, and all data intended for both
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users is available before transmission. We showed that the
optimal power is decreasing between energy harvests, and that
there can be times when data is sent only to the strong user,
both users, or only to the weak user. We also showed that there
can be communication gaps where the transmitter is silent
between energy arrivals. We presented a method to find the
optimal policy iteratively.

We note that there is another metric that is considered in
current energy harvesting literature that resembles delay in cer-
tain aspects. That is, the age of information metric [28]–[37].
This metric measures the delay from the receiver’s perspec-
tive, and is defined as the time spent since the freshest
information packet has been received by the receiver. In our
recent work [32], we have discussed the precise difference,
mathematically, between delay and age minimization problems
in energy harvesting systems; see [32, Sec. V]. In summary,
the main difference lies in that the age metric is more sensitive
to data packets’ arrival times than the delay metric (which is
mainly due to the difference in definitions of both metrics), and
hence the solutions of both problems can be much different.
It is therefore of interest to study the problems in this paper
under an age metric and relate the solutions of these two lines
of research.

APPENDIX

A. Necessity of KKT Conditions of Optimality
for Problem (9)

It is known that the (extended) Fritz John conditions for
optimality [38] are always necessary. If we apply such con-
ditions for our problem, we get that any optimal solution
should be a stationary point of a slightly modified Lagrangian
compared to L in (10) where an extra Lagrange multiplier
κ ≥ 0 is multiplied by the objective function. We note
that the Fritz John conditions are weaker than the KKT
conditions since the optimal κ∗ may turn out to be 0, and
hence the objective function vanishes from the Lagrangian at
the optimal solution. We also note that the KKT conditions
will be directly implied if one can show that κ∗ > 0, since
one can divide all other Lagrange multipliers by κ∗ in this case
after differentiating and equating to 0, and hence any optimal
solution would be a stationary point of the Lagrangian in (10)
in this case, i.e., with κ = 1. We show that κ∗ > 0 by the
following contradiction argument.

Assume that κ∗ = 0. Then, the optimal p(t) should satisfy

p(t) =
(

μ(t)

λ(t)
− 1

)+

which means, by Lemma 1, that in any optimal solution,
the power policy is a piece wise constant function. Now choose
any interval (l1, l2) over which p(t) = l for some constant
l > 0. Using arguments similar to those in Lemma 3, we can
define another policy p′(t) to be monotonically decreasing
on (l1, l2), consuming the same amount of energy, delivering
the same amount of data, and achieving strictly less delay.
Since this monotonically decreasing policy can only be satis-
fied if and only if κ∗ > 0, and is better than any other policy
with κ∗ = 0, then the assumption of κ∗ = 0 cannot be true,
and KKT conditions are necessary for optimality.

B. Proof of Lemma 6

Assume without loss of generality that Ei (s) = Bi (s) = 0,
for i = 0, 1, 2. Since we have E1(s̄) = E0(s̄), and that
p1(t) declines slower than p0(t), therefore it must hold that
E0(t) = ∫ t

s p0(τ )dτ ≥ ∫ t
s p1(τ )dτ = E1(t) ∀t ∈ [s, s̄],

i.e., p0(t) majorizes p1(t) in the interval [s, s̄]. By concavity of
the log, it then follows that B1(s̄) = ∫ s̄

s
1
2 log(1 + p1(t))dt >

∫ s̄
s

1
2 log(1 + p0(t))dt = B0(s̄) by the theory of continuous

majorization [39]. This proves the first part of the lemma.
We prove the second part by contradiction. Assume E2(s̄) ≥

E0(s̄). Since p2(t) declines slower than p0(t), therefore there
must exist some point t ′ ∈ (s, s̄] at which E2(t ′) = E0(t ′)
with E0(t) ≥ E2(t) ∀t ∈ [s, t ′]. Using the first assertion of
the lemma, we have

B2(t
′) > B0(t

′) (79)

Since E2(s̄) ≥ E0(s̄), then we must have

B2(s̄) − B2(t
′) > B0(s̄) − B0(t

′) (80)

From (79) and (80), we get B2(s̄) > B0(s̄), which contradicts
the assumption that both policies depart the same amount of
data. Therefore we must have E2(s̄) < E0(s̄).

C. Proof of Lemma 7
By complementary slackness, we know that we must have

μc
k+1 = μc

k since the data constraints are not binding at sk+1.
However, if μc

k ≤ sk+1, then by (11), p(t) = 0 ∀t ≥ sk+1,
and the transmitter will not be able to deliver the required
amount of data to the receiver. Hence, μc

k needs to increase in
order to maintain feasibility of the problem. This proves the
first part of the lemma. To show the second part, we also note
that by complementary slackness, we must have λc

k+1 = λc
k

since the energy constraints are not binding at sk+1. However,
if sk+1 = ∞, i.e., we reached the end of the communication
session, then we can use some extra amounts of energy to
decrease the delay as follows: decrease the value of μc

k and
decrease that of λc

k such that the amounts of departed bits in
[sk,∞) stays the same. This makes the power in the interval
[sk,∞) be of a faster decline, i.e., finish transmission faster,
and in turn by Lemma 6 will consume more energy, which is
feasible since the energy constraints are not binding.

D. Proof of Lemma 8
To show the first part, let us increase the value of μc

k
and increase that of λc

k such that the consumed energy in
the interval [sk, sk+1) stays the same. This means that the
power in the interval [sk, sk+1) will have a slower decline.
By Lemma 6, this new policy departs more bits, and prevents
the overflow of the data buffer. Similarly, for the second part,
let us decrease the value of μc

k and decrease that of λc
k such

that the data delivered in the interval [sk, sk+1) stays the same.
This means that the power in the interval [sk, sk+1) will have
a faster decline, and in turn by Lemma 6 will consume more
energy and prevent the overflow of the battery.

E. Proof of Lemma 9
We first note that the conditions of optimality stated in the

lemma are those stated in Lemma 2. If these are not satisfied,
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and the battery is empty while the data buffer is full at sk+1,
then we can increase the value of μc

k and increase that of λc
k

such that the consumed energy in [sk, sk+1) stays the same.
This means that the power in the interval [sk, sk+1) will have
a slower decline. By Lemma 6, this new policy departs more
bits, which is feasible since the data buffer is full at sk+1, and
eventually achieves less delay. The proof of the other scenario
stated in the lemma where the battery is full and the data
buffer is empty at sk+1 follows using similar arguments as in
the proof of the second part of Lemma 8.

F. Proof of Lemma 10
We first note that the conditions of optimality stated in the

lemma are those stated in Lemma 2. If these are not satisfied,
and both the battery and the data buffer are empty at sk+1,
and λ̄k+1 > λc

k , then we can increase the value of μc
k and

increase that of λc
k such that the amount of data delivered

in [sk, sk+1) stays the same. This means that the power in the
interval [sk, sk+1) will have a slower decline. By Lemma 6, this
new policy consumes a smaller amount of energy, i.e., energy
constraints will not be binding at sk+1, and therefore we will
have λc

k+1 = λc
k . On the other hand if μ̄k+1 < μc

k , then we
can decrease the value of μc

k and decrease that of λc
k such

that the amount of energy consumed in [sk, sk+1) stays the
same. This means that the power in the interval [sk, sk+1) will
have a faster decline. By Lemma 6, this new policy delivers
a smaller amount of data, i.e., data constraints will not be
binding at sk+1, and therefore we will have μc

k+1 = μc
k . The

proof of the other scenario stated in the lemma where both
the battery and the data buffer are full follows using similar
arguments.

G. Proof of Lemma 12
From (46) and (49), we have

g(r1(t), r2(t)) = ν2 + γ2(t) − t

λ(t)
− σ 2 (81)

Since from (48) and (49) we always have

∂g(r1(t), r2(t))

∂r2(t)
− σ 2 ≥ ∂g(r1(t), r2(t))

∂r1(t)
− 1 (82)

with equality iff r2(t) = 0, from (45) and (46), we have

ν2 + γ2(t) − t

λ(t)
− σ 2 ≥ ν1 + γ1(t) − t

λ(t)
− 1 (83)

Thus, if r2(t) > 0, by complementary slackness γ2(t) = 0,
and the total power is given by

g(r1(t), r2(t)) = ν2 − t

λ(t)
− σ 2 (84)

>
ν1 + γ1(t) − t

λ(t)
− 1 (85)

≥ ν1 − t

λ(t)
− 1 (86)

On the other hand, if r2(t) = 0 and r1(t) > 0, we have

g(r1(t), r2(t)) = ν2 + γ2(t) − t

λ(t)
− σ 2 (87)

= ν1 − t

λ(t)
− 1 (88)

≥ ν2 − t

λ(t)
− σ 2 (89)

Finally, if both rates are zero, then the total power is zero.
Combining this with the above gives (56).
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