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Abstract—We study the effects of decoding and processing costs
in an energy harvesting two-way channel. We design the optimal
offline power scheduling policies that maximize the sum through-
put by a given deadline, subject to energy causality constraints,
decoding causality constraints, and processing costs at both users.
In this system, each user spends energy to transmit data to the
other user, and also to decode data coming from the other user;
that is, each user divides its harvested energy for transmission
and reception. Further, each user incurs a processing cost per
unit time as long as it communicates. The power needed for
decoding the incoming data is modeled as an increasing convex
function of the incoming data rate; and the power needed to
be on, i.e., the processing cost, is modeled to be a constant per
unit time. We solve this problem by first considering the cases
with decoding costs only and processing costs only individually.
In each case, we solve the single energy arrival scenario, and
then use the solution’s insights to provide an iterative algorithm
that solves the multiple energy arrivals scenario. Then, we con-
sider the general case with both decoding and processing costs
in a single setting, and solve it for the most general scenario of
multiple energy arrivals.

Index Terms—Energy harvesting transmitters, energy harvest-
ing receivers, twoway channels, decoding costs, processing costs.

I. INTRODUCTION

IN THIS paper, we consider an energy harvesting two-way
channel, see Fig. 1, where each user relies solely on

energy harvested from nature. We design optimal offline power
scheduling policies that maximize the sum throughput by
a given deadline, subject to energy and decoding causality
constraints at both users, with processing costs. We divide
our development into three main parts. We first discuss the
case with only decoding costs at both users, followed by the
case with only processing costs. Then, we solve the gen-
eral case with both decoding and processing costs using ideas
developed for the solution of the first two cases.

Energy harvesting communication systems have been stud-
ied extensively in recent literature. References [3]–[22] focus
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Fig. 1. Two-way channel with energy harvesting transceivers.

on energy harvesting at the transmitter side, and consider
the single-user setting [3]–[6], broadcast, multiple access,
and interference channels [7]–[12], two-hop and relay chan-
nels [13]–[15], two-way channels [16], [17], energy sharing
and energy cooperation concepts [18]–[20], battery imper-
fections [21], [22], sensor networks [23]–[25], MIMO sys-
tems [26], and so on. Most of these references optimize the
transmit power schedules of the users over time, using con-
cave rate-power relationships, to minimize the transmission
completion time or maximize the throughput by a deadline.

References [27]–[32] focus on energy harvesting at the
receivers. In these references, the energy needed for receiv-
ing incoming data is modeled as a monotone increasing convex
function of the incoming rate (see also [33], [34]). In this case,
the receivers need to optimally allocate their harvested energy
for decoding, and the transmitters need to optimize their trans-
mit powers (and therefore rates) such that the receivers can
handle, i.e., decode, the incoming data with their available
energies. In the above references, each energy harvesting node
is either a transmitter or a receiver, i.e., each node either needs
to optimize its transmit power over time slots or needs to
optimize its decoding power over time slots.

In the two-way energy harvesting channel we consider in
this paper, each node transmits data to the other user, and
receives data from the other user in a full duplex manner.
Therefore, each node is simultaneously an energy harvest-
ing transmitter and an energy harvesting receiver, and needs
to optimize its power schedule over time slots by optimally
dividing its energy for transmission and decoding. The power
used for transmission is modeled through a concave rate-power
relationship as in the Shannon formula; and the power used
for decoding is modeled as a convex increasing function of
the incoming rate. In particular, throughout this paper, we
focus on decoding costs that are exponential in the incoming
rate [30], [33].
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Even in the case of energy harvesting transmitters only
and energy harvesting receivers only, the energy availability
of one side limits the transmission and reception abilities of
the other side; energy harvesting introduces coupling between
transmitters and receivers. In the energy harvesting two-way
channel, this coupling is even stronger. In addition, we assume
that power consumption at a user includes power spent for
processing as well, i.e., power spent for the circuitry. This is
the power spent for the user to be on and communicating.
Depending on the energy availability and the communication
distance, processing costs at the transmitter could be a sig-
nificant system factor. References [35]–[39] study the impact
of processing costs on energy harvesting communications. As
discussed, decoding power at the receiver could be a signifi-
cant system factor as well [27]–[32]. The differentiating aspect
regarding processing costs and decoding costs is as follows:
the processing cost is modeled as a constant power spent per
unit time whenever the transmitter is on [40], whereas the
decoding cost at a receiver is modeled as an increasing con-
vex function of the incoming rate to be decoded [28], [32]. In
this paper, we consider both decoding and processing costs in
a single setting.

In the first part of this work, we focus on the case with
only decoding costs. We first consider the case with a single
energy arrival at each user. We show that the transmission is
limited by the user with smaller energy; the user with larger
energy may not consume all of its energy. We next consider the
case with multiple energy arrivals at both users. We show that
the optimal power allocations are non-decreasing over time,
and they increase synchronously at both users. We develop
an iterative algorithm based on two-slot updates to obtain the
optimal power allocations for both users that converges to the
optimal solution.

Next, we focus on the case with only processing costs. We
assume that both users incur processing costs per unit time as
long as they are communicating. We first consider the formu-
lation for a single energy arrival. In this case, we show that
transmission can be bursty [40]; users may opt to communi-
cate for only a portion of the time. We also show that it is
optimal for the two users to be fully synchronized; the two
users should be switched on for the same portion of the time
during which they both exchange data, and then they switch
off together. Then, we generalize this to the case of multiple
energy arrivals, and show that any throughput optimal policy
can be transformed into a deferred policy, in which users post-
pone their energy consumption to fill out later slots first. We
find the optimal deferred policy by iteratively applying a mod-
ified version of the single energy arrival result in a backward
manner.

Finally, we study the general case with both decoding and
processing costs in a single setting. We formulate a sum
throughput optimization problem that it is a generalization
of the setting with only decoding costs or only processing
costs. We solve this general problem in the single energy
arrival scenario, and then present an iterative algorithm to
solve the multiple energy arrival case that is a combination
of the algorithms used to solve the cases with only decoding
and only processing costs.

II. THE CASE WITH ONLY DECODING COSTS

A. Single Energy Arrival

In this section, we consider the case where both users
have a single energy arrival each. Users 1 and 2 have
E1 and E2 amounts of energy available at the beginning of
communication, respectively. Without loss of generality, the
communication takes place over a time slot of unit length.
The physical layer is Gaussian with unit-variance noise at
both users. In the full-duplex Gaussian two-way channel, the
sum rate is given by the sum of the single-user rates [41].
Therefore, the rate per user is the single-user Shannon rate
of 1

2 log(1 + p), where p is the transmit power. Throughout
this paper, log is the natural logarithm. A receiver decodes a
message of rate r by spending a decoding power φ(r) that is
exponential in the incoming rate, i.e., φ(r) = a(ebr + c) for
some a, b > 0 and c ≥ −1. Throughout this paper, we take
b = 2 and c = −1 for convenience and mathematical tractabil-
ity. Without loss of generality, any other such exponential
decoding power can be handled by appropriately modifying
the incoming energy. Therefore, if the first user transmits with
power p, the incoming rate is 1

2 log(1 + p), and the second
user spends a power of ap to decode the incoming data. Thus,
the throughput maximization problem is

max
p1,p2

1

2
log(1+ p1)+ 1

2
log(1+ p2)

s.t. p1 + ap2 ≤ E1

p2 + ap1 ≤ E2 (1)

where p1 and p2 are the powers of users 1 and 2, respectively.
We assume a �= 1, for if a = 1, by concavity of the log, the
optimal solution will be given by p∗1 = p∗2 = min{E1, E2}/2.
We have the following lemma regarding this problem.

Lemma 1: In the optimal policy, at least one user consumes
all of its energy in transmission and decoding. This is the user
with the smaller energy.

Proof: The first part of the lemma follows directly by noting
that if neither of the constraints holds with equality, then we
can increase the power (and therefore rate) of one of the users
until one of the constraints becomes tight. Now assume that
E1 ≤ E2, but only the second user consumes all of its energy,
i.e., p∗2 + ap∗1 = E2 ≥ E1 > p∗1 + ap∗2, which further leads to
having

p∗1 < p∗2, if a < 1 (2)

p∗1 > p∗2, if a > 1 (3)

Let us consider the case in (2) (similar arguments follow for
the case in (3)), choose some ε > 0, and define the following
new policy: p̃1 = p∗1 + ε, p̃2 = p∗2 − ε. Since the first user did
not consume all of its energy, we can choose ε small enough
such that the new policy consumes the following amounts of
energy

p̃2 + ap̃1 = p∗2 + ap∗1 − (1− a)ε < E2 (4)

p̃1 + ap̃2 = p∗1 + ap∗2 + (1− a)ε ≤ E1 (5)

By concavity of the log, this new policy strictly increases the
sum rate, and therefore, the original policy cannot be optimal,
i.e., the first user has to consume all of its energy.
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The above lemma states that, in the presence of decoding
costs, one user may not be able to use up all of its energy.
This is because each user now needs to adapt its power (and
rate) to both its own energy and to the energy of the other
user, in order to guarantee decodability. This makes the user
with smaller energy be a bottleneck for the system.

Without loss of generality, we continue assuming E1 ≤ E2.
Therefore, by Lemma 1, we have p∗1+ ap∗2 = E1. Substituting
this condition in (1), we get the following problem for a < 1

max
p2

1

2
log(1+ E1 − ap2)+ 1

2
log(1+ p2)

s.t. 0 ≤ p2 ≤ E2 − aE1

1− a2
(6)

Alternatively, we get the following problem for a > 1

max
p1

1

2
log(1+ p1)+ 1

2
log

(
1+ E1 − p1

a

)

s.t. 0 ≤ p1 ≤ aE2 − E1

a2 − 1
(7)

In both problems, the objective function is concave and the
feasible set is an interval. It then follows that the optimal
power can be found via equating the derivative of the objective
function to 0, and projecting the solution onto the feasible set.
For instance, the optimal second user power in problem (6) is
given by

p∗2 = min

{[
1+ E1 − a

2a

]+
,

E2 − aE1

1− a2

}
(8)

where [x]+ = max(x, 0).

B. Multiple Energy Arrivals

We now consider the case of multiple energy arrivals.
Energies arrive at the beginning of time slot i with amounts E1i

and E2i at the first and the second user, respectively, ready to
be used in the same slot. Unused energies are saved in batter-
ies for later slots. The goal is to maximize the sum throughput
by a given deadline N. The problem becomes

max
p1,p2

N∑
i=1

1

2
log(1+ p1i)+ 1

2
log(1+ p2i)

s.t.
k∑

i=1

p1i + ap2i ≤
k∑

i=1

E1i, ∀k
k∑

i=1

p2i + ap1i ≤
k∑

i=1

E2i, ∀k (9)

which is a convex optimization problem [42]. The
Lagrangian is

L = −
N∑

i=1

1

2
log(1+ p1i)−

N∑
i=1

1

2
log(1+ p2i)

+
N∑

k=1

λ1k

(
k∑

i=1

p1i + ap2i −
k∑

i=1

E1i

)

+
N∑

k=1

λ2k

(
k∑

i=1

p2i + ap1i −
k∑

i=1

E2i

)
(10)

where {λ1k} and {λ2k} are non-negative Lagrange multipliers
associated with the energy causality constraints of the
first and the second user, respectively. KKT optimality
conditions [42] are

p1i = 1∑N
k=i(λ1k + aλ2k)

− 1, ∀i (11)

p2i = 1∑N
k=i(λ2k + aλ1k)

− 1, ∀i (12)

along with the complementary slackness conditions

λ1k

(
k∑

i=1

p1i + ap2i −
k∑

i=1

E1i

)
= 0, ∀k (13)

λ2k

(
k∑

i=1

p2i + ap1i −
k∑

i=1

E2i

)
= 0, ∀k (14)

In the following lemmas, we characterize the properties of
the optimal solution of this problem.

Lemma 2: In the optimal policy, both users’ powers are
non-decreasing in time, i.e., p1(i+1) ≥ p1i and p2(i+1) ≥ p2i, ∀i.

Proof: The proof follows from (11)-(12) since the
denominators are non-negative and non-increasing as λ1k,

λ2k ≥ 0, ∀k.
Lemma 3: In the optimal policy, the power of user j ∈ {1, 2}

increases in a time slot only if at least one of the two users
consumes all of its available energy in transmission/decoding
in the previous time slot.

Proof: From (11)-(12), we see that powers can only increase
from slot i to slot i+1 if at least λ1i or λ2i is strictly positive, or
else powers will stay the same. By complementary slackness
conditions in (13)-(14), we see that the first (resp., second)
user’s energies must all be consumed by slot i if λ1i > 0
(resp., λ2i > 0).

Lemma 4: In the optimal policy, powers of both users
increase synchronously.

Proof: Let us assume that we have p1i < p1(i+1). By
Lemma 3, we must have at least λ1i > 0 or λ2i > 0. This
in turn makes p2i < p2(i+1) from (12). Similarly, if we have
p2i < p2(i+1), then we must also have p1i < p1(i+1) from (11).
This concludes the proof.

1) The Case of Two Arrivals: We now solve the case of
two energy arrivals at each user explicitly. We will provide
an iterative algorithm to solve the general multiple energy
arrivals case by utilizing the two-slot solution. In a two-slot
setting, it is optimal to have at least one user consume all of
its energy in the second slot. It is not clear, however, if this is
the case in the first slot. Towards that, we check the feasible
energy consumption strategies and choose the one that gives
the maximum sum rate. For each strategy, we find the optimal
residual energy transferred from the first to the second slot for
a given user. We begin by checking a constant-power strategy
which, by concavity of the objective function, is optimal if it is
feasible [3]. This occurs when neither user consumes all of its
energy in the first slot, and hence, by Lemma 3, the powers of
each user in the two slots are equal, i.e., p11 = p12 � p1, and
p21 = p22 � p2. This leaves us with solving a single-arrival
problem, as discussed in Section II-A, with the average energy
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E1 = E11+E12
2 and E2 = E21+E22

2 , at the first and the second
user, respectively. There can be four more energy consumption
strategies to check if the above is infeasible. We highlight one
of them in the following analysis. The remaining ones follow
similarly.

We consider the strategy in which the first user consumes
all of its energy in the first slot, and the second user consumes
all of its energy in the second slot. The second user may have
some residual energy left from the first slot to be used in
the second slot. Denoting this energy residual by r, we have:
p11 + ap21 = E11, and p21 + ap11 = E21 − r. Solving these
two equations for p11 and p21, we obtain: p11 = E11−a(E21−r)

1−a2 ,

and p21 = E21−r−aE11
1−a2 . Since the second user consumes all of

its energy in the second slot we have: p22 + ap12 = E22 + r.
Next, we divide the energy consumption in the second slot
between the two users as: p12 = δ

a and p22 = E22+ r− δ, for
some δ ≥ 0. Finding the optimal sum rate in this strategy is
tantamount to solving for the optimal values of r and δ. Thus,
problem (9) for N = 2 in this case can be rewritten as

max
r,δ

1

2
log

(
1+ E11 − a(E21 − r)

1− a2

)

+ 1

2
log

(
1+ E21 − r − aE11

1− a2

)

+ 1

2
log

(
1+ δ

a

)
+ 1

2
log(1+ E22 + r − δ)

s.t. 0 ≤ δ ≤ E22 + r(
E21 − E11

a

)+
≤ r ≤ E21 − aE11

δ ≤ a

1− a2 (E12 − a(E22 + r)) (15)

which is a convex optimization problem in (r, δ) [42]. Note
that for the above problem to be feasible, we need to have:
E21 ≥ aE11, and E12 ≥ aE22. Other consumption strategies
will have similar necessary conditions.

To solve the above problem, we first assume that the
Lagrange multiplier associated with the last constraint is zero,
i.e., the constraint is not binding (this is the energy causality
constraint of the first user in the second time slot), and obtain
a solution. The solution is optimal if it satisfies that constraint
with strict inequality. Otherwise, the constraint is binding, and
needs to be satisfied with equality. In the latter case, we substi-
tute δ = 1

1−a2 (E12 − a(E22 + r)) in the objective function and
solve a problem of only one variable, r, which can be solved
by direct first derivative analysis over the feasible region of
r. We now characterize the solution after removing that last

constraint. We define r1 �
(

E21 − E11
a

)+
and r2 � E21−aE11

for convenience, and introduce the following Lagrangian

L = −1

2
log

(
1+ E11 − a(E21 − r)

1− a2

)

− 1

2
log

(
1+ E21 − r − aE11

1− a2

)

− 1

2
log

(
1+ δ

a

)
− 1

2
log(1+ E22 + r − δ)

+ λδ(δ − E22 − r)− ηδδ + λr(r − r1)+ ηr(r2 − r)

(16)

where λδ , ηδ , λr, and ηr are the non-negative Lagrange
multipliers. Taking the derivatives with respect to δ, r, and
equating to 0, we get the following

1

a+ δ
+ ηδ = 1

1+ E22 + r − δ
+ λδ (17)

1

1+ E22 + r − δ
+ a

1− a2 + E11 − a(E21 − r)
+ ηr

= 1

1− a2 + E21 − r − aE11
+ λr (18)

From (17), we solve for δ in terms of r as follows

δ(r) =

⎧⎪⎨
⎪⎩

0, a > 1+ E22 + r
1+E22+r−a

2 , 1− (E22 + r) ≤ a ≤ 1+ E22 + r

E22 + r, a < 1− (E22 + r)

(19)

Next, we find the optimal value of r. For that, we substitute
by δ(r) in (18). Assuming that the middle expression in (19)
holds, we have

ηr + f1(r) = λr + f2(r) (20)

where f1 and f2 are given by

f1(r) = 2

1+ E22 + a+ r
+ a

1− a2 + E11 − aE21 + ar
(21)

f2(r) = 1

1− a2 + E21 − aE11 − r
(22)

To solve this, we first assume λr = ηr = 0, and equate both
sides of (20). The existence of a feasible solution of r in this
case depends on the extreme values of f1 and f2. In partic-
ular, since f1(r) is decreasing in r, while f2(r) is increasing
in r, the solution exists if and only if f1(r2) ≤ f2(r2) and
f1(r1) ≥ f2(r1). Note that such solution can be found, for
example, by a bisection search. If this condition is not satis-
fied, then one of the Lagrange multipliers (λr, ηr) needs to be
strictly positive in order to equate both sides in (20). In par-
ticular, if f1(r2) > f2(r2), then we need λr > 0, which implies
by complementary slackness that r = r2. On the other hand,
if f1(r1) < f2(r1), then we need ηr > 0, which implies by
complementary slackness that r = r1. After solving for r, we
check if it is consistent with the chosen expression of δ(r)
by checking the conditions in (19). If not, then we check the
other two cases: δ(r) = 0 and δ(r) = E22 + r, and re-solve
for r. The analysis in these cases follows similarly as above.
This concludes the solution of the two-slot case. In the next
section, we use the above analysis to find the optimal solution
in the general case of multiple energy arrivals.

2) Iterative Solution for the General Case: We solve
problem (9) iteratively in a two-slot by two-slot manner, start-
ing from the last two slots and going backwards. Once we
reach the first two slots, we re-iterate starting from the last
two slots, and go backwards again. Iterations stop if the pow-
ers do not change after we reach the first two slots. The details
are as follows.

We first initialize the energy status of each slot of both users
by S1 = E1 and S2 = E2, where E1 and E2 are vectors of
energy arrivals at user 1 and 2, respectively, and solve each slot
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independently, as discussed in Section II-A, to get an initial
feasible power policy {p(0)

1 , p(0)
2 }. We then start by examin-

ing slots N− 1 and N. We solve the throughput maximization
problem for these two slots with energies {S1(N−1), S1N} and
{S2(N−1), S2N} at the first and second user, respectively, as
discussed in Section II-B1. After we solve this problem, we
update the energy status vectors S1 and S2, and move back one
slot to examine slots N−2 and N−1. We solve the throughput
maximization problem for these two slots using the updated
energy status {S1(N−2), S1(N−1)} and {S2(N−2), S2(N−1)} at the
first and second user, respectively. We update the energy status
vector after solving this problem, and continue moving back-
wards until we solve for slots 1 and 2. After that, we get
another feasible power policy {p(1)

1 , p(1)
2 }, where the super-

script stands for the iteration index. We then compare this
power policy with the initial one. If they are the same, we
stop. If not, we perform this process again starting from the
last two slots, going backwards, until we get an updated power
policy {p(2)

1 , p(2)
2 }. We stop after the kth iteration if p(k−1)

1 = pk
1

and p(k−1)
2 = pk

2. Since the sum throughput can only increase
with the iterations, and since it is also upper bounded due to
the energy constraints, the convergence of the above two-slot
iterations is guaranteed.

Next, we check whether the limit point satisfies the KKT
optimality conditions. Namely, we solve for the Lagrange
multipliers in (11) and (12). If they are all non-negative, then
the KKT conditions are satisfied and, by the convexity of the
problem, the limit point is optimal [42]. If not, then the energy
status vectors need to be updated. This might be the case for
instance if while updating some given two slots, more than
necessary amount of energy is transferred forward. While this
may be optimal with respect to these two slots, it does not
take into consideration the energy arrival vectors in the entire
N slots. Therefore, in such cases, we perform another round
of iterations where we take some of the energy back if this
increases the objective function. Taking energy back without
violating causality can be done, e.g., via putting measuring
meters in between the slots during the two-slot update phase
to record the amount of energy moving forward [18]. Since
the problem feasibility is maintained with each update, and
by the convexity of the problem, cycling through all the slots
infinitely often converges to the optimal policy.

This concludes the discussion of the problem with only
decoding costs. In the next section, we discuss the case with
only processing costs.

III. THE CASE WITH ONLY PROCESSING COSTS

A. Single Energy Arrival

In this section, we study the case where each user has only
one energy arrival. In this two-way setting, we incorporate
the processing costs into our problem as follows: each user
incurs a processing cost when it is on for either transmitting
or receiving or both. We note that due to the processing costs,
it might be optimal for the users to be turned on for only
a portion of the time. In this case, the transmission scheme
becomes bursty [40]. At this point, it is not clear whether it is
optimal for the two users to be fully synchronized, i.e., switch

on/off simultaneously. For instance, it might be the case that
the second user’s energy is higher, and therefore it uses the
channel for a larger portion of the time θ2 > θ1. In this case,
the first user stops transmitting after θ1 amount of the time,
but stays on for an extra θ2 − θ1 amount of time to receive
the rest of the second user’s data. The same argument could
hold for the second user if the first user’s energy is larger.
Therefore, for the general case of θ1 �= θ2, each user stays on
for a max{θ1, θ2} amount of time. We formulate the problem as

max
θ1,θ2,p1,p2

θ1

2
log(1+ p1)+ θ2

2
log(1+ p2)

s.t. θ1p1 +max{θ1, θ2}ε1 ≤ E1

θ2p2 +max{θ1, θ2}ε2 ≤ E2

0 ≤ θ1, θ2 ≤ 1 (23)

where εj is the processing cost per unit time for user j, j = 1, 2.
We have the following two lemmas regarding this problem:

Lemma 5 states that both users need to use up all of their
available energies. Lemma 6 states that both users need to be
fully synchronized, i.e., they need to turn on for exactly the
same duration of time, and turn off together. Hence, whenever
a user is turned on, it both sends and receives data.

Lemma 5: In the optimal solution of problem (23), both
users exhaust their available energies.

Proof: This follows by directly noting that if one user does
not use all its energy, then we can increase its power until it
does. This strictly increases the objective function.

Lemma 6: In the optimal solution of problem (23), we have
θ∗1 = θ∗2 .

Proof: We show this by contradiction. Assume without loss
of generality that it is optimal to have θ1 < θ2. By Lemma 5,
we have the powers given by

p1 = E1 − θ2ε1

θ1
, p2 = E2

θ2
− ε2 (24)

Therefore, we rewrite problem (23) as

max
θ1,θ2

θ1

2
log

(
1+ E1 − θ2ε1

θ1

)
+ θ2

2
log

(
1+ E2

θ2
− ε2

)

s.t. 0 ≤ θ1 ≤ θ2 ≤ θm (25)

where θm � min{1, E1
ε1

, E2
ε2
} assures positivity of powers. Next,

we note that the first term in the objective function above
is monotonically increasing in θ1, and therefore its value is
maximized at the boundary of the feasible set, i.e., at θ1 = θ2,
which gives a contradiction.

By Lemma 6, problem (23) now reduces to having only one
time variable θ � θ1 = θ2

max
θ,p1,p2

θ

2
log(1+ p1)+ θ

2
log(1+ p2)

s.t. θ(p1 + ε1) ≤ E1

θ(p2 + ε2) ≤ E2

0 ≤ θ ≤ 1 (26)

We will solve (26), and its most general multiple energy
arrival version, in the rest of this section. We first note that
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the problem is non-convex. Applying the change of variables:
p̄1 � θp1, p̄2 � θp2, we get the following equivalent problem

max
θ,p̄1,p̄2

θ

2
log

(
1+ p̄1

θ

)
+ θ

2
log

(
1+ p̄2

θ

)

s.t. p̄1 + θε1 ≤ E1

p̄2 + θε2 ≤ E2

0 ≤ θ ≤ 1 (27)

which is convex, as the objective function is now concave
because it is the perspective of a concave function [42], and
the constraints are affine in both variables. Using Lemma 5,
we equate the energy constraints and substitute them back in
the objective function to get

max
0≤θ≤θm

θ

2
log

(
1+ E1 − θε1

θ

)
+ θ

2
log

(
1+ E2 − θε2

θ

)

(28)

where θm is as in Lemma 6. Note that the objective function in
the above problem is concave since the function x log(b+c/x)
is concave in x, for x > 0, and for any real-valued constants b
and c. Since the feasible set is an interval, it then follows that
the optimal solution is given by projecting stationary points
of the objective function onto the feasible set. Differentiating,
we obtain the following equation in θ

f1(θ) · f2(θ) = e−2 (29)

where the function fj(θ), for j = 1, 2, is defined as

fj(θ) � e(εj−1)/((Ej/θ)−(εj−1))

(Ej/θ)− (εj − 1)
(30)

One can show that fj(θ) is monotonically increasing in θ , for
all θ feasible. Therefore, (29) has a unique solution in θ , which
we denote by θ̄ . Finally, the optimal (burstiness factor) θ∗ is
given by θ∗ = min{θ̄ , 1}.

We note that the value of θ∗ can be strictly less than 1,
which leads to bursty transmission from the two users. The
amount of burstiness depends on the available energies at both
users and their processing costs, the relation among which is
captured by the functions f1 and f2 in (29). The two users’
energies and processing costs affect each other; one user hav-
ing relatively low energy or relatively high processing cost can
decrease the value of θ∗, i.e., increase the amount of bursti-
ness in the channel. Finally, once the optimal θ∗ is found, the
optimal powers of the users are found by substituting θ∗ in
the energy constraints.

B. Multiple Energy Arrivals

We now extend our results to the case of multiple energy
arrivals. During slot i, the two users can be turned on for a θi

portion of the time. We argue that the users have to be syn-
chronized. For if they were not, then given the optimal energy
distribution among the slots, we can synchronize both users in
each slot independently, which gives higher throughput, as dis-
cussed in the single energy arrival scenario. Then, the problem
becomes

max
θ ,p1,p2

N∑
i=1

θi

2
log(1+ p1i)+ θi

2
log(1+ p2i)

s.t.
k∑

i=1

θi(p1i + ε1) ≤
k∑

i=1

E1i, ∀k
k∑

i=1

θi(p2i + ε2) ≤
k∑

i=1

E2i, ∀k

0 ≤ θi ≤ 1, ∀i (31)

As we did in the single energy arrival case, we apply the
change of variables p̄1i = θip1i and p̄2i = θip2i, ∀i, to get the
following equivalent convex optimization problem

max
θ ,p̄1,p̄2

N∑
i=1

θi

2
log

(
1+ p̄1i

θi

)
+ θi

2
log

(
1+ p̄2i

θi

)

s.t.
k∑

i=1

p̄1i + θiε1 ≤
k∑

i=1

E1i, ∀k
k∑

i=1

p̄2i + θiε2 ≤
k∑

i=1

E2i, ∀k

p̄1i ≥ 0, p̄2i ≥ 0, 0 ≤ θi ≤ 1, ∀i (32)

The Lagrangian for this problem is

L = −
(

N∑
i=1

θi

2
log

(
1+ p̄1i

θi

)
+ θi

2
log

(
1+ p̄2i

θi

))

+
N∑

j=1

λ1j

⎛
⎝ j∑

i=1

p̄1i + θiε1 −
j∑

i=1

E1i

⎞
⎠−

N∑
i=1

η1ip̄1i

+
N∑

j=1

λ2j

⎛
⎝ j∑

i=1

p̄2i + θiε2 −
j∑

i=1

E2i

⎞
⎠−

N∑
i=1

η2ip̄2i

+
N∑

i=1

ωi(θi − 1)−
N∑

i=1

νiθi (33)

where λ1i, η1i, λ2i, η2i, ωi, νi are non-negative Lagrange
multipliers. Differentiating with respect to p̄1i and p̄2i, we
obtain the following KKT optimality conditions

p̄1i

θi
=
(

1∑N
j=i λ1j

− 1

)+
,

p̄2i

θi
=
(

1∑N
j=i λ2j

− 1

)+
(34)

along with the usual complementary slackness condi-
tions [42]. The following two lemmas characterize the optimal
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power policy for problem (32). The proofs follow as in
Lemmas 2 and 3, and are omitted for brevity.

Lemma 7: In the optimal solution of problem (32), powers
of both users are non-decreasing over time.

Lemma 8: In the optimal solution of problem (32), if a
user’s energy is saved from one time slot to the next, then the
powers spent by this user in the two slots have to be equal.

Next, we note that the optimal solution of problem (32)
is not unique. For instance, assume that one solution of the
problem required some energy to be transferred from the ith
to the (i + 1)st slot at both users, and that the optimal val-
ues of θi and θi+1 are both less than 1. By Lemma 8, since
we transferred some energy between the two slots, we must
have equal powers in both slots. Now, if we transfer an extra
amount of energy between the two slots, this allows us to do
the following: 1) decrease the value of θi and increase that of
θi+1, and 2) change the value of p̄ji and p̄j(i+1), j = 1, 2, cor-
respondingly so that we obtain the same values of powers at
the two slots as before. This leaves us with the same value for
the objective function, as what we did is that we changed the
values of the pre-log factors in a feasible manner while keep-
ing the values inside the logs as they were. We can keep doing
this until either slot i + 1 is completely filled, i.e., θi+1 = 1,
or all of the energy is transferred from slot i, i.e., θi = 0.

We coin this type of policies as deferred policies; no new
time slots are opened unless all time slots in the future are
completely filled, i.e., 0 < θi ≤ 1 iff θk = 1, ∀k = i+1, . . . , N.
Consequently, {θi}Ni=1 will be non-decreasing. There can only
be one unique optimal deferred policy for problem (32). In
the sequel, we determine that policy.

1) Optimal Deferred Policy: Finding the optimal deferred
policy relies on the fact that, by energy causality, energies
can only be used after they have been harvested. To this end,
we begin from the last slot, and make sure that it is com-
pletely filled, i.e., it has no burstiness, before opening up
a previous slot. We apply a modified version of the single
energy arrival result iteratively in a backward manner through
two main phases: 1) deferring, and 2) refinement. These are
illustrated as follows.

We first start by the deferring phase. The goal of this phase
is to determine an initial feasible deferred policy. In the refine-
ment phase, the optimality of such policy is investigated. We
first initialize the energy status of each slot of both users by
S1 = E1 and S2 = E2, and start from the last slot and move
backwards. In the kth slot, we start by examining the use of
the kth slot energies in the kth slot only. This is done using
the results of the single energy arrival (29). If the resulting
θk < 1, then we transfer some energy from previous slots for-
ward to the kth slot until either it is completely filled, i.e.,
θk = 1, or all previous slots’ energies are exhausted. We test
the possibility of the former condition by moving all energy
from a previous slot l < k, and re-solving for θk. If the result
is unity, then the energies of slot l can for sure fill out slot k.
Next, we show how much energy is actually needed to do so.

We have two conditions to satisfy: 1) θk = 1, and 2) powers
of user j in slots l and k are equal, pjl = pjk � p′j, if user j
transfers energy from slot l to k (according to Lemma 8). Let
us denote the burstiness in slot l by θ ′. Hence, if both users

transfer energy, the optimal policy is found by solving the
following problem

max
θ ′,p′1,p′2

1+ θ ′

2
log(1+ p′1)+

1+ θ ′

2
log(1+ p′2)

s.t.
(
1+ θ ′

)(
p′1 + ε1

) = S1l + S1k(
1+ θ ′

)(
p′2 + ε2

) = S2l + S2k

0 ≤ θ ′ ≤ 1 (35)

Following the same analysis as in the single energy arrival
case, we solve

f1
(
1+ θ ′

) · f2(1+ θ ′
) = e−2 (36)

On the other hand, if only the first user transfers energy, the
optimal policy is found by replacing the second constraint in
problem (35) by θ ′(p2l + ε2) = S2l, where p2k = S2k − ε2 in
this case. This gives the following to solve for θ ′

f1
(
1+ θ ′

) · f2(θ ′) = e−2 (37)

Similarly, if the transfer is done only from the second user we
solve

f1
(
θ ′
) · f2(1+ θ ′

) = e−2 (38)

In all the three cases of energy transfer above, the equa-
tions to solve have an increasing left hand side, and hence
a unique solution. Finally, the optimal policy is the one that
gives the maximum sum throughput among the feasible ones.
It is worth noting that, by the concavity of the objective func-
tion, transferring energy from both users is optimal if feasible,
since it equalizes arguments (powers) of a concave objective
function [3].

If the initially resulting θk = 1 in the kth slot, we do
directional water-filling over the future slots, which gives the
optimal sum rate [5]. Next, we check if energy should be
transferred from a previous slot l from the first, second, or
both users, in exactly the same way as above, i.e., by solv-
ing (36)-(38). If energy transfer (from either or both users)
is feasible and gives a higher objective function, we do direc-
tional water-filling again from slot k over future slots, followed
by repeating the above energy transfer checks once more.
These inner iterations stop if either no energy transfer occurs,
or no directional water-filling occurs. The deferring phase ends
after examining the first slot. During this phase, we record how
much energy is being moved forward to fill up future slots.
Meters are put in between slots for that purpose.

In the refinement phase, the goal is to check whether the
currently reached energy distribution is optimal. One reason
it might not be optimal is that during the deferring phase,
some excess amounts of energy can be transferred from, e.g.,
slot k forward unnecessarily without taking into account the
energies available before slot k. We check the optimality of the
deferring phase policy by performing two-slot updates starting
from the last two slots going backwards. During the updates,
energy can be drawn back from future slots if this increases
the objective function as long as it does not violate causality.
This can be done by checking the values stored in the meters
in between the slots. See [1] for details on how to update a
given two slots. We summarize the steps of finding the optimal
solution discussed in this section in Algorithm 1.
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Algorithm 1 Optimal Deferred Policy
Phase 1: Deferring

1: Set S1 = E1, S2 = E2, m1 = m2 = 0, and k = N
2: while k ≥ 1 do
3: Using energies {S1k, S2k}, solve for θk using (29)
4: if θk < 1 then
5: repeat
6: Transfer all energy from slot k − l to slot k
7: Re-solve for θk using (29)
8: if Slot k is completely filled then
9: Find energy needed to fill it using (36)-(38)

10: else l← min{l+ 1, k − 1}
11: end if
12: until θk = 1, or all previous energies are exhausted
13: else
14: repeat
15: Directional water-filling over slots {k, . . . , N}
16: Check for energy transfer using (36)-(38)
17: until No water-filling or energy transfer occur
18: end if
19: Update the energy status values S1 and S2
20: Update the meters’ values m1 and m2
21: k← k − 1
22: end while

Phase 2: Refinement

23: repeat
24: for k = 0 : N − 2 do
25: Update the energy status of slots (N−k−1, N−k)

taking energy back if needed
26: end for
27: until Meters’ values m1 and m2 do not change
28: p∗1 = S1, and p∗2 = S2.

IV. DECODING AND PROCESSING COSTS COMBINED

We have thus far considered throughput maximizing policies
for two-way channels with either decoding or processing costs.
In this section, we study the general setting with both decoding
and processing costs. In this setup, user j spends a decoding
cost whenever it is receiving the other user’s message, and in
addition to that, it incurs a processing cost per unit time εj

whenever it is operating. We allow user j to transmit for a θj

portion of the time, and formulate the general problem where
θ1 can be different than θ2 as follows

max
θ ,p

N∑
i=1

θ1i

2
log(1+ p1i)+ θ2i

2
log(1+ p2i)

s.t.
k∑

i=1

θ1ip1i + θ2iap2i +max(θ1i, θ2i)ε1 ≤
k∑

i=1

E1i, ∀k
k∑

i=1

θ2ip2i + θ1iap1i +max(θ1i, θ2i)ε2 ≤
k∑

i=1

E2i, ∀k

0 ≤ θ1i, θ2i ≤ 1, ∀i (39)

Note that the above problem is a generalization of the prob-
lems considered in Sections II and III. On one hand, if we set

a = 0, i.e., do not consider decoding costs, we get back to
problem (31), after applying the synchronization argument to
get θ1i = θ2i, ∀i. On the other hand, setting ε1 = ε2 = 0, i.e.,
not considering processing costs, and applying the change of
variables p̄j � θjpj, j = 1, 2, we get

max
θ ,p̄

N∑
i=1

θ1i

2
log

(
1+ p̄1i

θ1i

)
+ θ2i

2
log

(
1+ p̄2i

θ2i

)

s.t.
k∑

i=1

p̄1i + ap̄2i ≤
k∑

i=1

E1i, ∀k
k∑

i=1

p̄2i + ap̄1i ≤
k∑

i=1

E2i, ∀k

0 ≤ θ1i, θ2i ≤ 1, ∀i (40)

It is direct to see that the objective function is increas-
ing in θ1, θ2, and therefore the maximum is attained at
θ∗1 = θ2

∗ = 1, i.e., we get back to problem (9). We solve
problem (39) in the remainder of this paper.

A. Single Energy Arrival

We first consider the case where each user harvests only
one energy packet. Note that (39) is not a convex optimization
problem. We apply the change of variables p̄j � θjpj, j = 1, 2,
to get

max
θ1,θ2,p̄1,p̄2

θ1

2
log

(
1+ p̄1

θ1

)
+ θ2

2
log

(
1+ p̄2

θ2

)

s.t. p̄1 + ap̄2 +max(θ1, θ2)ε1 ≤ E1

p̄2 + ap̄1 +max(θ1, θ2)ε2 ≤ E2

0 ≤ θ1, θ2 ≤ 1 (41)

which is now a convex optimization problem [42]. Next, we
have the following lemma.

Lemma 9: In the optimal solution of problem (41), θ∗1 = θ∗2 .
Proof: Assume, e.g., θ∗1 < θ∗2 . Setting θ1 = θ∗2 is always

feasible since the feasible set is only affected by the maximum
of the θ1 and θ2. This strictly increases the objective function
since it is monotonically increasing in θ1.

Lemma 9 shows that it is optimal for the two users to be
fully synchronized; they turn on, exchange information, and
then turn off simultaneously, similar to what Lemma 6 states in
the scenario with no decoding costs. This reduces the problem
to the following

max
θ,p̄1,p̄2

θ

2
log

(
1+ p̄1

θ

)
+ θ

2
log

(
1+ p̄2

θ

)

s.t. p̄1 + ap̄2 + θε1 ≤ E1

p̄2 + ap̄1 + θε2 ≤ E2

0 ≤ θ ≤ 1 (42)

We have the following lemma regarding this problem, whose
proof is similar to that of Lemma 1.

Lemma 10: In the optimal solution of problem (42), at least
one user consumes all its energy.

Next, we solve (42) for the case a = 1. By the previous
lemma, we have p̄∗1+ p̄∗2 = min{E1− θ∗ε1, E2− θ∗ε2}, and by
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concavity of the objective function, we further have p̄∗1 = p̄∗2.
Substituting the powers back in the objective function, we get
a reduced problem in only one variable θ

max
0≤θ≤θm

θ log

(
1+ min{E1 − θε1, E2 − θε2}

2θ

)
(43)

where θm � min{1, E1
ε1

, E2
ε2
} assures the positivity of the pow-

ers. Note that by monotonicity of the log, and non-negativity
of θ , we have

θ log

(
1+ min{E1 − θε1, E2 − θε2}

2θ

)

= min

{
θ log

(
1+ E1 − θε1

2θ

)
, θ log

(
1+ E2 − θε2

2θ

)}

(44)

It is direct to show that each of the terms inside the minimum
expression on the right hand side of the above equation is
concave in θ , and therefore the minimum of the two is also
concave in θ [42]. Hence, problem (43) is a convex optimiza-
tion problem [42]. Let us define θ̄ � E1−E2

ε1−ε2
as the value of θ

at which E1− θε1 = E2− θε2. We now consider two different
cases.

The first case is when θ̄ /∈ [0, θm], then the minimum expres-
sion in the objective function reduces to only one of its two
terms for all θ feasible. Let us assume without loss of gener-
ality that it is equal to E1 − θε1. Hence, taking the derivative
of the objective function and setting it to 0, we solve the
following for θ

log

(
1− ε1

2
− E1

2θ

)
= E1/2θ

1− ε1/2+ E1/2θ
(45)

The above equation has a unique solution since both sides are
monotone in θ ; the term on the left is higher than the term
on the right as θ approaches 0; and is lower than the term on
the right as θ approaches E1

ε1
. We denote this unique solution

by θ̂ . We note that in this problem, we always have θ∗ > 0;
we also have θ∗ = θm only if θm = 1, or else the throughput
is zero. Thus, if θm < 1, then θ̂ is always feasible and θ∗ = θ̂ .
While if θm = 1, then θ̂ might not be feasible, and therefore
in general we have θ∗ = min{θ̂ , 1}. This concludes the first
case.

The second case is when θ̄ ∈ [0, θm]. In this case, depending
on the sign of ε1−ε2, the minimum expression in the objective
function is given by one term in the interval [0, θ̄ ] (let us
assume it to be E1 − θε1 without loss of generality), and is
given by the other term (E2 − θε2) in the interval [θ̄ , θm].
We solve the problem in this case sequentially as follows:
We solve (45) for θ̂1 and compute θ∗1 = min{θ̂1, 1}. If θ∗1 is
less than θ̄ then, by concavity of the objective function, it is
the optimal solution. Else, if θ∗1 ≥ θ̄ , we solve the following
equation

log

(
1− ε2

2
− E2

2θ

)
= E2/2θ

1− ε2/2+ E2/2θ
(46)

for θ̂2 and compute θ∗2 = min{θ̂2, 1}, which will now be no
less than θ̄ , and is equal to the optimal solution. We finally
note that θ∗ = θ̄ iff θ∗1 = θ∗2 = θ̄ . This concludes the second
case.

Next, we discuss the case a < 1 (similar arguments follow
for the case a > 1, and are omitted for brevity). We have the
following lemma in this case, whose proof is similar to that
of Lemma 1.

Lemma 11: If the energies and processing costs are such
that E1 − θε1 is less (resp., larger) than E2 − θε2 for all θ

feasible, then the first (resp., second) user consumes all its
energy.

We solve the problem by assuming the situation of the above
lemma is true, i.e., one user is energy tight for all θ fea-
sible. If this is not the case, then as we did in the a = 1
case above, we solve the problem twice assuming one user is
tight at each time, and check which is feasible (or equivalently
pick the solution with higher sum throughput). Thus, without
loss of generality, we assume the first user consumes all its
energy, i.e., we have p̄1 = E1− θε1− ap̄2. Substituting this in
problem (42), we get the following

max
θ,p̄2

θ

2
log

(
1+ E1 − θε1 − ap̄2

θ

)
+ θ

2
log

(
1+ p̄2

θ

)

s.t. 0 ≤ p̄2 ≤ E1 − θε1

a

p̄2 ≤ E2 − aE1 − θ(ε2 − aε1)

1− a2

0 ≤ θ ≤ θm (47)

where the upper bound in the first constraint assures the
non-negativity of the first user’s power. We note that if
p̄∗2 ∈ {0, E1−θ∗ε1

a }, i.e., if either of the two users is not trans-
mitting, the problem reduces to the following in terms of only
one variable θ

max
0≤θ≤θm

θ

2
log

(
1+ E1 − θε1

θ

)
(48)

which can be solved in a similar manner as we solved
problem (43). On the other hand, if the third constraint is
tight, i.e., if the second user also consumes all its energy, the
problem becomes

max
θ̃l≤θ≤θ̃m

θ

2
log

(
1+ E2 − aE1 − θ(ε2 − aε1)

(1− a2)θ

)

+ θ

2
log

(
1+ E1 − aE2 − θ(ε1 − aε2)

(1− a2)θ

)
(49)

where θ̃l and θ̃m are such that E1 − aE2 ≥ θ(ε1 − aε2) and
E2− aE1 ≥ θ(ε2− aε1), i.e., to assure non-negativity of pow-
ers. Note that the objective function in the above problem is
concave. Hence, following a Lagrangian approach [42], we
solve the following for θ

f̃1(θ) · f̃2(θ) = e−2 (50)

where f̃j(θ), j = 1, 2 is defined as

f̃j(θ) � e(ε̃j−1)/
(
Ẽj/θ

)−(ε̃j−1)(
Ẽj/θ

)− (ε̃j − 1
) (51)

with Ẽj � Ej − aEk and ε̃j � εj − aεk, j �= k. We note that
the above equation is similar to (29), in the case with only
processing costs. It can be shown by simple first derivative
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analysis that f̃1 and f̃2 are both increasing in θ , and there-
fore (50) has a unique solution. Let us denote such solution
by θ̃ . Finally, by concavity of the objective function, the opti-
mal θ∗ in this case is given by projecting θ̃ onto the feasible
set {θ :θ̃l ≤ θ ≤ θ̃m} [42].

Now that we know how to solve problem (47) when
either of the first two constraints is tight, we proceed to
solve the problem in general as follows. We first solve the
problem assuming p̄∗2 is an interior point, i.e., neither of the
first two constraints is tight. If the solution in this case is
feasible, then it is optimal. Else, by concavity of the objec-
tive function, we project the solution onto the feasible set
{p̄2 : 0 ≤ p̄2 ≤ min{E1−θε1

a ,
E2−aE1−θ(ε2−aε1)

1−a2 }}. In case p̄2
is given by the upper limit in this feasible set, we solve the
problem twice assuming the minimum expression is given
by one of its terms in each, and pick the one with higher
throughput.

Finally, it remains to present the interior point solution. We
introduce the following Lagrangian for the problem in this
case

L = −θ

2
log

(
1+ E1 − θε1 − ap̄2

θ

)
− θ

2
log

(
1+ p̄2

θ

)

+ ω(θ − θm) (52)

Taking the derivative with respect to p̄2 and θ and equating
to 0, we get the following

a

(
1+ p̄2

θ

)
= 1− ε1 + E1 − ap̄2

θ
(53)

log

(
1+ p̄2

θ

)
+ log

(
1− ε1 + E1 − ap̄2

θ

)

= p̄2/θ

1+ p̄2/θ
+ (E1 − ap̄2)/θ

1− ε1 + (E1 − ap̄2)/θ
+ ω (54)

substituting the first equation in the second, and denoting y �
1+ p̄2/θ , we further get

log(y) = 1− 1

2
log(a)−

1
2 (1+ (1− ε1)/a)

y
+ ω/2 (55)

which has a unique solution, y∗, for y ≥ 1. If ω∗ > 0, then
by complementary slackness, θ∗ = θm, and p̄∗2 is found by
substituting in (53), else if ω∗ = 0, then θ∗ is found by sub-
stituting y∗ also in (53). By that, we conclude our analysis of
the single arrival case.

B. Multiple Energy Arrivals

In this section, we study the multiple energy arrival
problem. Following the same synchronization argument as in
Section III-B, problem (39) reduces to

max
θ ,p̄1,p̄2

N∑
i=1

θi

2
log

(
1+ p̄1i

θi

)
+

N∑
i=1

θi

2
log

(
1+ p̄2i

θi

)

s.t.
k∑

i=1

p̄1i + ap̄2i + θiε1 ≤
k∑

i=1

E1i, ∀k
k∑

i=1

p̄2i + ap̄1i + θiε2 ≤
k∑

i=1

E2i, ∀k

0 ≤ θi ≤ 1, ∀i (56)

which is a convex optimization problem [42]. The
Lagrangian is

L = −
N∑

i=1

θi

2
log

(
1+ p̄1i

θi

)
−

N∑
i=1

θi

2
log

(
1+ p̄2i

θi

)

+
N∑

k=1

λ1k

(
k∑

i=1

p̄1i + ap̄2i + θiε1 −
k∑

i=1

E1i

)

+
N∑

k=1

λ2k

(
k∑

i=1

p̄2i + ap̄1i + θiε2 −
k∑

i=1

E2i

)

+
N∑

i=1

ωi(θi − 1)−
N∑

i=1

ηiθi (57)

Taking the derivative with respect to p̄1i and p̄2i and equating
to 0 we get

p̄1i

θi
=
(

1∑N
k=i λ1k + aλ2k

− 1

)+
(58)

p̄2i

θi
=
(

1∑N
k=i λ2k + aλ1k

− 1

)+
(59)

along with the complementary slackness conditions [42].
Therefore, we have the following lemma for this
problem. The proof follows using similar arguments as
in Lemmas 2, 3, and 4.

Lemma 12: In the optimal policy of problem (56), the pow-
ers of both users are non-decreasing; increase only if at least
one user consumes all energy; and increase synchronously.

We note that, as discussed in Section III-B, the optimal pol-
icy for problem (56) is not unique. Using similar arguments,
any optimal policy can be transferred into a (unique) deferred
policy. Hence, in the remainder of this paper, we find the opti-
mal deferred policy for problem (56). We present an algorithm
that is a combination of the ideas used in Sections II and III
as follows.

We start by a deferring phase similar to the one discussed
in Section III-B1. We highlight the main differences in the
following. First, to determine how much energy is needed to
be transferred to fill a given slot k from a previous slot l,
we assume that both users transfer energy, and similar to
problem (35), we solve the following single energy arrival
problem

max
θ,p̄1,p̄2

1+ θ

2
log

(
1+ p̄1

1+ θ

)
+ 1+ θ

2
log

(
1+ p̄2

1+ θ

)

s.t. p̄1 + ap̄2 + (1+ θ)ε1 ≤ S1l + S1k

p̄2 + ap̄1 + (1+ θ)ε2 ≤ S2l + S2k

0 ≤ θ ≤ 1 (60)

After solving this problem, we set θk−1 = θ∗, and pj(k−1) =
pjk = (1 + θ∗)p̄∗j , j = 1, 2. The resulting policy is optimal
if feasible since it equalizes powers [3]. If not, then we need
to check the other ways of transfer, namely, transferring from
the first user only, or from the second user only. We also
need to assume an energy consumption strategy in slot k, i.e.,
which user consumes all its energy. We solve for all possible
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Fig. 2. Two-slot system with only decoding costs.

strategies, and pick the one with maximum sum throughput
among the feasible ones. We highlight the solution of one
energy consumption strategy in the following discussion. The
rest follows similarly.

We discuss the strategy of transferring energy only from
the second user in slot l, and that the second user consumes
all its energy in slot k. Towards that end, we first fix θl = θ ,
and then, as discussed in Section II-B, we solve the following
equivalent problem in (r, δ)

max
r,δ

1

2
log

(
1+ S1l − aS2l − θ(ε1 − aε2)+ ar

θ
(
1− a2

)
)

+ 1

2
log

(
1+ S2l − aS1l − θ(ε2 − aε1)− r

θ
(
1− a2

)
)

+ 1

2
log

(
1+ δ

a

)
+ 1

2
log(1+ S2k + r − δ)

s.t. 0 ≤ δ ≤ S2k − ε2 + r

r ≥
(

aS2l − S1l + θ(ε1 − aε2)

a

)+

r ≤ min{S2l, S2l − aS1l − θ(ε2 − aε1)}
δ ≤ a

1− a2 (S1k − aS2k − (ε1 − aε2)− ar) (61)

We note that the above problem is exactly the same as
problem (15) if we set θ = 1, and ε1 = ε2 = 0. With
processing costs, the problem can be solved similarly. We
solve the above problem for all given θ and do a one
dimensional line search to find the optimal θ∗l .

By the end of the deferring phase above, there will exist a
time slot k∗, after which all time slots are completely filled,
and before which all time slots are empty, i.e., we will have
θl = 1, ∀l > k∗; θl = 0, ∀l < k∗; and θk∗ ≤ 1. We can
now focus on the non-empty time slots k∗, . . . , N. Each will
have a certain energy distribution {Sji}Ni=k∗ , j = 1, 2, from the
deferring phase. We also record the amount of energy trans-
ferred to future slots in meters as we did in Section II-B. Next,
we check if such energy distributions need improvement. We
note that if θk∗ = 1, then the problem becomes a decoding
cost problem that can be solved iteratively as discussed in
Section II-B with equivalent energies: {Sji − εj}Ni=k∗ , j = 1, 2.
If θk∗ < 1, however, then as we reach slots {k∗, k∗ + 1} in the
two-slot updates, we update the distributions by finding the
best energy transfer strategy, i.e., transfer from only one or
both users, as discussed in problems (60) and (61). Iterations
converge to the optimal solution.

V. NUMERICAL RESULTS

A. Deterministic Arrivals

In this section we present numerical examples to further
illustrate our results. We begin by the building blocks of the
proposed algorithms; two-slot systems. We start with the case
with only decoding costs and consider a system with ener-
gies E1 = [0.5, 3.5] and E2 = [1, 1.5]. The decoding power
factor is equal to a = 0.5. We first solve for each slot inde-
pendently using the single arrival result to get p1 = [0, 1]
and p2 = [0.33, 1.33]. Then, we find the optimal solution
as discussed in Section II-B1. First, we check the constant-
power strategy, where neither user consumes its energy in
the first slot, and solve a single arrival problem with aver-
age energy arrivals Ē1 = 2 and Ē2 = 1.25 to get p̄1 = 1.75
and p̄2 = 0.375, which are found infeasible. Thus, we move to
check the second consumption strategy: the first user consumes
all energy in the first slot while the second user consumes all
energy in the second slot, i.e., we solve problem (15). We
first remove the last constraint, and take δ(r) = 1+E22+r−a

2 ,
the middle term of (19), and solve for r using (20). This gives
r = 0.55, which satisfies the middle constraint in (19), thus
the assumed δ(r) is correct, and gives δ = 1.27. Finally, we
check the relaxed (last) constraint of (15); we find that it is sat-
isfied with strict inequality. Therefore, (r∗ = 0.55, δ∗ = 1.27)

is the optimal solution for this consumption strategy. The
corresponding powers are given by p1 = [0.36, 2.55] and
p2 = [0.26, 0.77]. Next, we check the other strategies. Among
the feasible ones, we find that the maximum throughput is
given by that of the second strategy above, and is therefore
the optimal solution of this two-slot system. In Fig. 2, we
show the single-slot solution on the left and the optimal solu-
tion on the right of the figure. The height of the water in blue
represents the power level of a user in a given slot. We note
that the first user’s optimal power in the first slot is larger
than the corresponding single-slot power allocation. That is
because the second user’s optimal power is smaller than the
single-slot power allocation, which gives more room for the
first user to transmit. This shows how decoding costs closely
couple the performance of the two users.

Next, we consider the case with only processing costs, with
energies E1 = [0.5, 1] and E2 = [1, 1], and processing costs
ε1 = 0.5 and ε2 = 0.4. In Fig. 3, we present one feasible, and
two optimal, power policies. The height of the water levels in
blue represents the actual transmit powers {p1i, p2i}, while the
width represents the burstiness {θi}, for i = 1, 2. On the left,
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Fig. 3. Optimal deferred policy in a two-slot system with only processing costs.

Fig. 4. Optimal policy in a four-slot system with both decoding and processing costs.

we solve for each slot independently using the single arrival
result. This gives a non-deferred policy with θ = [0.47, 0.65],
p1 = [0.57, 1.04], p2 = [1.75, 1.14], and a sum throughput
equal to 0.541. We then transfer all the energy from the 1st
to the 2nd slot and re-solve for θ2 using (29). The result is
θ2 = 1, which means that the 1st slot’s energies are capable
of totally filling the 2nd slot. We therefore compute the exact
amount needed to do so by setting θ2 = 1 and solving for
θ1 = θ ′ assuming both users transfer energy, i.e., using (36).
This gives θ1 = 0.122, p∗1 = [0.84, 0.84], p∗2 = [1.39, 1.39],
and a sum throughput equal to 1.656. This transfer strategy
is found feasible, and hence optimal. We show the optimal
deferred policy at the middle of Fig. 3. Finally, on the right
of Fig. 3, we show another optimal, yet non-deferred, power
policy. This is simply done by shifting some of the water
back, in a feasible manner, from slot 2 to slot 1. Namely,
we increase the value of θ1 to 0.35 and decrease that of θ2
to 0.772, with the same transmit powers. This is a feasible
non-deferred policy, and gives the same objective function
of 1.656. This shows the non-uniqueness of the solution of
problem (32).

We now solve a more involved four-slot system with
energies E1 = [0.9, 0.1, 3, 0.8] and E2 = [0.8, 1.5, 2, 2].
Here we consider both decoding and processing costs with
parameters a = 0.7, ε1 = 0.3, and ε2 = 0.6. We begin by
the initialization step; filling up later slots first in a back-
ward manner. This leaves us with an energy distribution of
S1 = [0, 1, 1.7788, 2.021] and S2 = [0, 0.936, 3.236, 2.128]
at the first and the second user, respectively. We then begin the
two-slot updates to check whether the given distributions need
improvement. With the possibility of drawing back energy
as feasible as imposed by the meters put between slots, our
algorithm converges to the optimal solution in 8 iterations.
The optimal powers are given by p∗1 = [0, 0.3585, 0.65, 0.65],
p∗2 = [0, 0.9407, 1.357, 1.357], and the deferred burstiness is
given by θ∗ = [0, 0.76, 1, 1]. We see that the optimal pow-
ers are non-decreasing, and increase synchronously, as stated

in Lemma 12, and that {θ∗i } is non-decreasing, which is an
attribute of a deferred policy. The optimal policy is shown
in Fig. 4. Next, we remove the decoding costs and solve
the same problem with only processing costs as discussed
in Section III-B. We reach the optimal deferred policy after
5 iterations, which is given by p∗1 = [0.67, 0.67, 1.6, 1.6],
p∗2 = [1.47, 1.47, 1.47, 1.47], and θ∗ = [0.033, 1, 1, 1]. We
notice that the first time slot is utilized in this case, when the
decoding costs are removed. Finally, we remove the processing
costs and solve the same problem with only decoding costs as
discussed in Section II-B. After 7 iterations, we get the optimal
p∗1 = [0.1, 0.1, 0.8, 0.8] and p∗2 = [0.57, 0.57, 1.57, 1.57].

In Fig. 5, we show the effect of decoding and processing
costs on the sum rate. We consider a five-slot system with
E1 = [2, 3, 1, 1, 5] and E2 = [4, 2, 2, 3, 3]. Initially we set
a = 0.7, ε1 = 0.8, and ε2 = 0.5. We then vary one parameter
and fix the rest, and observe how it affects the sum rate. As
expected, adding costs decreases the achievable throughput as
we see from the figure. We also note that the sum rate is
almost constant for initial small values of ε2. That is due to
the fact that the second user’s processing costs are not the
bottleneck to the system in this range. In fact, the first user
is the bottleneck in this range. This shows how the two users
are strongly coupled in this two-way setting with decoding
and processing costs.

B. Stochastic Arrivals

We now discuss online scenarios where energy is known
causally after being harvested, while only its statistics is
known a priori. We present a best effort online scheme to com-
pare with our optimal offline solution. Namely, we assume that
the energy harvesting process is i.i.d. with mean μ, and that
in time slot i, the jth user energy consumption is bounded by
min{bji, μ}, where bji is the battery state of user j in slot i,
capturing the energy arrival at slot i, Eji, and the residual from
previous slots, if any. This scheme decouples the multiple
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Fig. 5. Effect of processing and decoding costs on the sum rate in a five-slot
system.

Fig. 6. Comparison of an online best effort scheme and the optimal offline
scheme.

arrival problem into N single arrival problems that can be
solved as discussed in Section IV-A, without violating the
causal knowledge of the energy arrival information. In Fig. 6,
we plot the average throughput of this online policy for differ-
ent time slots, and compare it with the optimal offline policy
discussed in Section IV-B. Energies follow a uniform distri-
bution on [0, 3], processing costs are ε1 = 0.8 and ε2 = 0.5,
and the decoding cost factor is a = 0.7. We run the simula-
tions multiple times for every time slot and take the average,
and then plot the sum rate divided by the number of time
slots. We see from the figure that as the number of time slots
increases, the gap between the online and the offline through-
puts increases, and then converges to a constant value. This
is due to the fact that in this best effort policy the problem is
decoupled as discussed above, and the optimal energy distribu-
tion among the slots is no longer achieved, and therefore, the
loss of optimality increases with the increase in the number
of slots. However, as N grows large, and since we are using
i.i.d. arrivals, the best effort policy’s loss with respect to the
optimal offline one converges to a constant value.

VI. CONCLUSION

We designed throughput-optimal offline power scheduling
policies in an energy harvesting two-way channel where users
incur decoding and processing costs. Each user spends a
decoding power that is an exponential function of the incom-
ing rate, and in addition, incurs a constant processing power as
long is it is communicating. We first studied the case with only
decoding costs, followed by that with only processing costs.
We then formulated the general problem with both decod-
ing and processing costs in a single setting, and provided an
iterative algorithm to find the optimal power policy in this
case using insights from the solutions of the case with only
decoding and only processing costs.
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