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ABSTRACT

MD NURUL ABSAR SIDDIKY. Timely Status Updating with Time Stamp Errors.
(Under the direction of DR. AHMED ARAFA)

This thesis examines a status updating system where multiple processes are sampled

and transmitted through a shared communication channel. Each process has its ded-

icated server that processes its samples before time stamping them for transmission.

Time stamps, however, are prone to errors, and hence the status updates received

may not be credible. Our setting models the time stamp error rate as a function of

the servers’ busy times. Hence, to reduce errors and enhance credibility, servers need

to process samples on a relatively prolonged schedule. This, however, deteriorates

timeliness, which is captured through the age of information (AoI) metric.

An optimization problem is formulated whose goal to characterize the optimal

processes’ schedule and sampling instances to achieve the optimal trade-off between

timeliness and credibility. The problem is first solved for a single process setting,

where it is shown that a threshold-based sleep-wake schedule is optimal, in which

the server wakes up and is allowed to process newly incoming samples only if the AoI

surpasses a certain threshold that depends on the required timeliness-credibility trade-

off. Such insights are then extended to the multi-process setting, where two main

scheduling and sleep-wake policies, namely round-robin scheduling with threshold-

waiting and asymmetric scheduling with zero-waiting, are introduced and analyzed.

Following this, another perspective of the problem is considered in which a single

process is served by multiple servers, each having its dedicated channel to the des-

tination. That is, a time-stamped sample from the same process gets transmitted

multiple times by different servers. Each server introduces its own time stamp error,

and each channel takes its own time to deliver its time stamps. At the destination, the

average of all time stamps is computed. This is shown to reduce the time stamp error,
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at the expense of waiting an extra time until all time stamps are received. Hence,

a trade-off arises between adding more servers, which reduces the error, and having

to wait more time for all of them to finish, which hurts the AoI. We characterize the

optimal number of servers needed in this variant problem setting that balances AoI

and time stamp error.

The results of this thesis provide a framework for designing efficient status updating

systems, offering practical insights into balancing timeliness and credibility in real-

time monitoring, networked control, and wireless communication systems.
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CHAPTER 1: INTRODUCTION

Several current and emerging applications in communications, networking and con-

trol require timely information processing and transfer in order to accurately achieve

their goals. This has led to the emergence of the age of information (AoI) met-

ric, which assesses data freshness data at the destinations [1], and is defined as the

difference between the current time and the time stamp of the latest received data

[2]. In time-sensitive applications, it is crucial to measure the AoI accurately in or-

der to take timely decisions. However, when time stamps are erroneous, the AoI

value becomes unreliable, and the credibility of the decision-making process becomes

questionable. In this work, we introduce the notion of timeliness-credibility trade-off

through modeling analyzing the effects of time stamp errors on AoI optimization in

a system where multiple processes are monitored through a shared communication

channel, see Fig. 1.1.

Optimizing AoI, or maximizing timeliness and freshness of data, has been consid-

ered in a plethora of works in the literature. The pioneering work in queuing networks

[2] and what follows in that line of research have shown that AoI-optimal policies are

neither throughput-optimal (high server utilization) nor delay-optimal (low server

utilization). Rather, AoI aims at balancing server utilization to deliver fresh data.

Other lines of research to which these ideas are extended include, e.g., energy har-

vesting communications [3], federated learning [4], gossip networks [5], data trading

[6], coding [7], internet-of-things (IoT) networks [8], random access networks [9], edge

computing [10], and privacy-preserving systems [11].

A notable challenge to achieve accurate AoI is the issue of timestomping [12],

where time stamps on data packets are intentionally falsified, typically as part of
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Figure 1.1: System model: process k’s ith sample arrives at time Sk,i, yet is time-
stamped as S ′k,i by its server.

an adversarial attack. This manipulation can occur through several mechanisms,

including falsifying time stamps to make stale data appear fresh, introducing network

delays, or due to natural factors such as sensor malfunctions or synchronization issues.

These time stamp errors lead to inaccurate AoI calculations, which in turn result in

misleading assessment of data freshness. This performance degradation is particularly

concerning in energy-constrained IoT systems, remote monitoring, and decentralized

networks, where accurate updates are critical. In [13], the effects of adversarial time

stamp manipulation in gossip networks have been studied, demonstrating that even

a compromised node in fully connected networks can significantly increase AoI and

worsen how it scales with the size of the network.

Although time stamp manipulation has been explored in gossip networks, there is

a lack of research on how time stamp inaccuracies affect AoI in conventional update

systems. To address this gap, our work investigates the optimization of both AoI and

time stamp accuracy, with the goal of enhancing system reliability and timeliness.

Minimizing AoI alone is insufficient when time stamp errors are present, as these

errors can lead to poor decision making in critical applications such as remote sensing

and energy-constrained systems. Therefore, we propose integrating time stamp error

management into AoI optimization to provide more accurate and reliable decision-

making and system performance.
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Specifically, we consider a system in which time stamps from multiple processes are

sent through a shared channel towards a destination. Each process has a dedicated

server to process its samples and assign them time stamps before sending them on

the channel. A server introduces time stamp errors with a rate that depends on its

busy time. That is, to reduce the errors, a server needs to sleep for a while. This,

in turn increases the AoI and reduces timeliness. Hence, a trade-off arises between

minimizing AoI and minimizing time stamp errors. We introduce an optimization

problem to characterize the optimal trade-off by optimizing the sleep-wake schedules

of the servers. We first solve the problem for the single process setting. Towards

that end, we show that the optimal sleep-wake schedule has a threshold structure:

the server wakes up only if the AoI surpasses a certain threshold that depends on the

target credibility of time stamps. We then build on these insights and present two

main scheduling policies for the multiple-source setting: round-robin scheduling with

threshold-waiting, and asymmetric scheduling with zero-waiting. We analyze and

compare the performances of both policies and show that the optimal choice between

them highly depends on the system parameters and the target time stamp credibility.

Following this, another perspective of the problem is considered. Instead of serving

multiple processes over the same channel, we serve one process over multiple channels.

A time stamp from a single process is served by multiple servers and sent through

multiple channels to the destination, see Fig. 1.2. Each server introduces its own time

stamp error, and each channel introduces its own delay. At the destination, an aver-

age of the received time stamps is computed. We show that this averaging reduces

the time stamp error, yet increases the AoI since the destination needs to wait for all

servers/channels to finish before computing the average. Hence, we characterize an-

other trade-off between AoI and time stamp credibility, captured through the number

of available servers/channels. The optimal number of servers that balances AoI and

error is then analyzed under a zero-wait policy.
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Figure 1.2: Variant system model: a single process is sampled at time Si and trans-
mitted K times through orthogonal channels. Destination computes the average of
all received time stamps {S ′k,i} to get an estimate S ′i.

The rest of the thesis is organized as follows: Chapter 2 discusses the main setting

of monitoring multiple processes through a shared channel; Chapter 3 then discusses

the variant problem of monitoring a single process through multiple channels; and

Chapter 4 drawas some conclusions and discusses potential future work.



CHAPTER 2: SINGLE CHANNEL STATUS UPDATING SYSTEM WITH TIME

STAMP ERROR

2.1 System Model and Problem Formulation

We consider a status update system composed of K sensors and K servers, as

shown in Fig. 1.1. Sensor k receives samples from a λk-Poisson process, and passes

them to server k for time-stamping and transmission. Transmissions go through a

shared communication channel that adds a random delay and can only be utilized by

one server at a time.

Let π denote the transmission schedule. This schedule also defines a sleep-wake

policy for servers (and sensors); to avoid samples becoming stale, sensor k does not

acquire new samples and goes into sleep mode unless it is scheduled to transmit

according to π. More precisely, when sensor k’s turn comes up for the ith time, it

may choose to continue to sleep (or wait) forWk,i extra time units, after which it wakes

up and becomes ready to receive new samples. Then, it receives its ith sample after

Xk,i time units. Note that Xk,i’s are independent and identically distributed (i.i.d.).

∼ exp(λk) across process k samples. We denote by {Wk,i} the servers’ waiting policy.

Now, let Sk,i denote the arrival time of the ith sample of the kth process. Such

sample gets served immediately upon arrival, and reaches the destination at time

Dk,i = Sk,i + Yk,i, (2.1)

where Yk,i’s are i.i.d. across samples and processes, denoting channel busy times. We

assume that the destination is unaware of the values of the channel busy times {Yk,i};

only the sensor-server side is aware.
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Figure 2.1: Example AoI evolution at the destination forK = 2 processes (1 in blue; 2
in red). Filled circles denote true time stamps and crosses denote received (erroneous)
time stamps.

Servers may introduce time stamp errors, in which the received time stamp of the

process k’s ith sample is given by S ′k,i as opposed to the true time stamp Sk,i. Errors

occur at a rate that depends on the sleep-wake schedule of the sensors as we explain

below. Statistically, we assume that S ′k,i and Sk,i are related as follows:

E
[
S ′k,i|Sk,i, Dk,i

]
= Sk,i, (2.2)

Var
(
S ′k,i|Sk,i, Dk,i

)
= hk (Sk,i −Xk,i − Sk,i−1) , (2.3)

where E[·] and Var(·) denote expectation and variance, respectively, and hk(·) is

some monotonically decreasing convex function. Hence, the server’s introduced (and

received) time stamp S ′k,i is unbiased from the true time stamp Sk,i, yet its variance

is inversely proportional with the inter-sampling duration. Therefore, to reduce er-

rors of a certain server, one needs to reduce its sampling rate. The rationale is that

errors occur more often when servers do not get enough sleep time. Such approach
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has been considered previously in, e.g., use-dependent channels [14]. While our re-

sults are presented for general functions hk(·), our experiments will be focusing on

exponentially-decaying functions given by

hk(x) = e−αkx, (2.4)

for some parameter αk ≥ 0 denoting server k’s recovery rate. That is, higher values

of αk represent faster recovery, in which server k introduces relatively less errors and

can tolerate being awake for relatively longer periods of time, and vice versa.

We assess timeliness at the destination using AoI. For process k, the AoI at time t

is defined as

ak(t) = t− S ′k,i, Dk,i ≤ t < Dk,i+1. (2.5)

An example of the AoI evolution at the destination for K = 2 processes is shown in

Fig. 2.1. Note that due to timestamping errors, the AoI value seen at the destination

may not represent the true value of the AoI. We define by an epoch the time elapsed in

between two consecutive deliveries of samples from a specific process. Let us denote

by

Lk,i , Dk,i −Dk,i−1 (2.6)

the length of the ith epoch for process k. We are interested in the long-term average

AoI for process k defined by the area under its AoI curve. From Fig. 2.1, such quantity

is given by

AoIk=lim sup
n→∞

∑n
i=1E [ak (Dk,i−1)Lk,i] +

1
2
E
[
L2
k,i

]∑n
i=1 E [Lk,i]

. (2.7)
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As we can see from the above, the timeliness measured at the destination is not

always credible due to time stamping errors. Therefore, one also needs to measure

the long-term average error for a specific process when evaluating its timeliness. Such

quantity is given by

ek = lim sup
n→∞

1

n

n∑
i=1

E
[(
Sk,i − S ′k,i

)2]
. (2.8)

Using (2.2) and (2.3), observe that one can reduce the value of ek by increasing the

inter-sampling duration. However, this may negatively impact timeliness. Hence, a

trade-off arises between timeliness and credibility. Note that a schedule π combined

with a waiting policy {Wk,i} completely characterize the values of AoIk and ek for

all processes. Our main goal is to optimize a weighted average of timeliness and

credibility. That is, to solve the following optimization problem:

min
π, {Wk,i≥0}

K∑
k=1

βkAoIk + (1− βk) ek, (2.9)

for some βk ∈ [0, 1], ∀k.

We first solve the single-process version of the above problem in the next section.

Then, we present solutions for the multi-process version in the following one.

2.2 The Single Process Setting

In the case of K = 1 process, we drop the index k from all the variables, and drop

the schedule π from the optimization problem in (2.9). That is, the only variable of

the optimization problem in (2.9) is now the waiting policy {Wi}.

Towards characterizing the long-term average AoI, observe that the starting AoI of



9

epoch i is given by

a (Di−1) =


Yi−1 −

(
S ′i−1 − Si−1

)
, S ′i−1 ≥ Si−1

Yi−1 + Si−1 − S ′i−1, S ′i−1 < Si−1

=Yi−1 + Si−1 − S ′i−1. (2.10)

Next, we focus on stationary deterministic waiting policies in which the waiting

time in epoch i is given by a deterministic function of the channel busy time in epoch

i− 1. That is,

Wi , ω (Yi−1) , (2.11)

for some function ω(·) to be optimized. Such waiting policy has been shown optimal

in similar settings of AoI optimization [11], in which the channel busy times are

i.i.d.1 Such choice of waiting policies induces a stationary distribution across epochs.

Specifically, the ith epoch length is now given by

Li = ω (Yi−1) +Xi + Yi, (2.12)

and the long-term average AoI now reduces to the following:

AoI =
E [a (Di−1)Li] +

1
2
E [L2

i ]

E [Li]
. (2.13)

Now let us further analyze the term E [a (Di−1)Li] in the numerator above. Using

(2.2) and (2.3), one can see that the time stamp error Si−1 − S ′i−1 only depends on

channel busy time Yi−2, and is therefore independent from Li. Further, one can show
1Observe that the waiting policy is determined completely at the sensor-server side where full

knowledge of the channel busy times Yi’s is provided. Hence, the policy is implementable in our
setting.
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that its average value is equal to 0 as follows:

E
[
Si−1 − S ′i−1

]
= E

[
E
[
Si−1 − S ′i−1|Si−1, Di−1

]]
= E

[
E
[
S ′i−1|Si−1, Di−1

]
− E

[
S ′i−1|Si−1, Di−1

]]
= 0. (2.14)

Therefore, using (2.10) we get that

E [a (Di−1)Li] = E [Yi−1Li] . (2.15)

In other words, the time stamp error, on average, does not affect the long-term average

AoI viewed from the destination.2

We now turn to the long-term average error. Since we have stationary distributions

across epochs, we get

e =E
[
(Si − S ′i)

2
]

=E
[
E
[
(Si − S ′i)

2 |Si, Di

]]
=E

[
E
[
(E [S ′i|Si, Di]− S ′i)

2 |Si, Di

]]
=E [Var (S ′i|Si, Di)]

=E [h (Si −Xi − Si−1)]

=E [h (Yi−1 + ω (Yi−1))] . (2.16)

The optimization problem is now given by

min
ω(·)≥0

AoI+
1− β
β

e, (2.17)

2This, however, necessitates the addition of a credibility measure as in (2.8).



11

which can be equivalently represented as

min
ω(·)≥0

AoI, s.t. e ≤ τ, (2.18)

for some τ ≥ 0 [15]. We call the constraint in (2.18) the credibility constraint. We

focus on analyzing the second formulation in (2.18) in the remainder of this section.

Specifically, we follow Dinkelbach’s approach [16] to transform the problem into the

following auxilliary one:

p(θ) , min
ω(·)≥0

E [(Yi−1 − θ) (ω (Yi−1) +Xi + Yi)] +
1

2
E
[
(ω (Yi−1) +Xi + Yi)

2]
s.t. E [h (Yi−1 + ω (Yi−1))] ≤ τ, (2.19)

for some θ ∈ R. The optimal solution of problem (2.18) is now given by the unique

θ∗ that solves p(θ∗) = 0, which can be found by, e.g., a bisection search.

The objective function of problem (2.19) can be further simplified as follows:

E [(Yi−1 − θ)ω (Yi−1)] + (µY − θ)
(
1

λ
+ µY

)
+

1

2
E
[
ω (Yi−1)

2]+ E [ω (Yi−1)]

(
1

λ
+ µY

)
+

1

λ2
+

1

λ
µY +

1

2
µY 2 , (2.20)

where µY and µY 2 denote the first and second moments of Yi, respectively. We now

introduce the following Lagrangian for problem (2.19):

L =

∫ ((
y − θ + 1

λ
+ µY

)
ω(y) +

1

2
ω(y)2

)
fY (y)dy

+ (µY − θ)
(
1

λ
+ µY

)
+

1

λ2
+

1

λ
µY +

1

2
µY 2

+ γ

(∫
h (y + ω(y)) fY (y)dy − τ

)
−
∫
η(y)ω(y)dy, (2.21)
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where fY (y) denotes the distribution of Yi, whereas γ and η(y) are Lagrange multi-

pliers. Taking the functional derivative of the above with respect to ω(y), equating

to 0, and rearranging, we get

y + ω(y) + γh′ (y + ω(y)) = θ − 1

λ
− µY +

η(y)

fY (y)
, (2.22)

where h′(·) denotes the derivative of h(·). Now observe that since h(·) is convex, and

γ ≥ 0, the function

Hγ(x) , x+ γh′(x) (2.23)

is monotonically increasing. Hence, by (2.22) we have

ω(y) = H−1γ

(
θ − 1

λ
− µY +

η(y)

fY (y)

)
− y. (2.24)

By complementary slackness [15], we get η(y) = 0 if ω(y) > 0, in which case

H−1γ
(
θ − 1

λ
− µY

)
> y. On the other hand, if H−1γ

(
θ − 1

λ
− µY

)
< y, then we must

have η(y) > 0 so as to increase the argument inside H−1γ and make ω(y) non-negative.

This means, again by complementary slackness, that ω(y) = 0. Combining the ar-

guments, we finally have the optimal waiting policy that solves problem (2.19) given

by

ω∗(y) =

[
H−1γ∗

(
θ − 1

λ
− µY

)
− y
]+

(2.25)

where [·]+ , max(·, 0) and γ∗ denotes the optimal Lagrange multiplier associated

with the credibility constraint.

The result above shows that the optimal waiting policy has a threshold struc-

ture; as long as the starting AoI of an epoch is below a certain threshold, given by
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H−1γ∗
(
θ − 1

λ
− µY

)
, the sensor should continue in sleeping mode until the AoI sur-

passes that threshold, and then wake up. The threshold, however, remains partially

unknown unless we can evaluate γ∗. We do so indirectly as follows. First, let us

assume that γ∗ = 0. In this case, the threshold is simply given by

H−10

(
θ − 1

λ
− µY

)
= θ − 1

λ
− µY . (2.26)

We now use the above to check if the credibility constraint is satisfied. If it is not, then

it must be that γ∗ > 0, which means by complementary slackness that the credibility

constraint is satisfied with equality. In this case, all we need to do is to find some

threshold value ξ that solves

E
[
h
(
Yi−1 + [ξ − Yi−1]+

)]
= τ, (2.27)

which can be evaluated by, e.g., a bisection search since h(·) is monotonically decreas-

ing.

The approach above provides the optimal solution of problem (2.19), i.e., it evalu-

ates p(θ). The final step to link all this back to problem (2.18) is to find the optimal

value θ∗ that solves p(θ∗) = 0. We have now proven the following theorem that

summarizes the theoretical results in this section:

The optimal solution of problem (2.18) is given by a threshold-waiting policy

ω∗(·) = [ξ∗ − ·]+. The threshold ξ∗ is given by θ∗ − 1
λ
− µY , provided that the

credibility constraint is satisfied. Otherwise, it is given by the solution of (2.27). The

value of θ∗ is such that p(θ∗) = 0 in (2.19).

2.3 The Multi-Process Setting

We now use the results developed for the single process setting to present solutions

for problem (2.9) in the case of K ≥ 2 processes. We first note that finding the jointly
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optimal scheduling and waiting policies is highly nontrivial. One reason behind this

is that the functions governing the time-stamp errors, hk(·)’s, can vary from one

server/process to another. For example, let us consider the exponentially decaying

model in (2.4) for K = 2. If α1 > α2, then server 1 recovers faster than server 2.

Hence, it could be optimal to schedule process 1 more often than process 2 so as

to allow a sufficient time for server 2 to recover and reduce errors. Thus, the often

studied round-robin schedule (or maximum-age-first) in the AoI literature [17] may

not be optimal in our setting. This, in addition to the fact that we need to evaluate

optimal waiting times renders the problem challenging.

To alleviate this hurdle, in this preliminary work on this problem we aim at devel-

oping policies that optimize the scheduling policy or the waiting policy individually,

as opposed to jointly, and compare their performances against each other. We focus

on two specific kinds of policies that we discuss next.

2.3.1 Round Robin Scheduling with Threshold Waiting

The first policy that we discuss considers a round-robin (RR) schedule, in which

process 1 is scheduled for sampling, followed 2, all the way toK, and then the schedule

repeats. We denote this schedule by πRR.

As for the waiting policy, and given the results of the single process setting, we

combine RR scheduling with a threshold-waiting policy, which is illustrated as follows.

Instead of waiting prior to each process sampling, we only wait once before scheduling

process 1. This is then followed by the scheduled RR transmissions. We note that

such approach has been shown optimal in the relatively similar setting of [17]. Hence,

let us focus on process 1’s epoch. The waiting time at the beginning of epoch i is

now given by the following function of epoch i− 1’s sum service times:

ω

(
K∑
k=1

Yk,i−1

)
=

[
ξ −

K∑
k=1

Yk,i−1

]+
, (2.28)
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for some threshold ξ to be optimized. For simplicity of presentation, we refer to the

above expression by ωRRi .

Now observe that for the kth process, we get from (3.4) that

Lk,i=
K∑

s=k+1

Xs,i−1 + Ys,i−1 + ωRRi +
k∑
s=1

Xs,i + Ys,i. (2.29)

The above expression, together with the definition of ωRRi in (2.28), shows that the

location of the waiting time could possibly lead to different distributions of epochs

across different processes. However, we note that the sums of their corresponding

AoI’s, denoted by AoIk(πRR), and time stamp errors, denoted by ek(πRR), can be

shown to be still be the same. Based on this, we focus on the case in which all βk’s

are equal in this work. This implies that the relationship between AoI and the time-

stamp error remains consistent across all processes, leading to a uniform stationary

behavior in the system’s performance.3

Using the above expression, we simplify equations (2.7) and (2.8) and specialize

them to the case of RR scheduling with threshold waiting. The resulting expres-

sions are used for specific service time distribution to get closed-form expression for

AoIk(πRR) and ek(πRR) in terms of the threshold ξ, which can then be found by, e.g.,

line search algorithms.

2.3.2 Asymmetric Scheduling with Zero Waiting

The second policy under consideration is an asymmetric scheduling (AS) policy,

indicated by πAS. In here, process 1 is scheduled for m1 sampling and transmission

trials, followed by process 2 for m2 trials, and so on until process K completes its mk

trials, after which the schedule repeats. In this asymmetric schedule, different from

πRR, we do not consider waiting prior to transmission.

Using πAS, an epoch for any process k includes the same number of (possibly
3The general case in which βk’s are not equal can be solved by optimizing the location of the

waiting time, and is to be analyzed in future work.
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different) transmissions from every other process. Since the waiting time is 0 and all

random variables are i.i.d., it follows that the system is stationary and all epochs’

distributions are the same. We denote the corresponding AoI and time stamp error

for process k by AoIk(πAS) and ek(πAS), respectively.

Let us denote by X(j)
k,i and Y

(j)
k,i the jth inter-arrival and service times of the kth

process in the ith epoch, respectively, where the epoch index is counted with respect

to process 1 without loss of generality. Therefore, we have

Lk,i=
K∑

s=k+1

ms∑
j=1

X
(j)
s,i−1 + Y

(j)
s,i−1+

k∑
s=1

ms∑
j=1

X
(j)
s,i + Y

(j)
s,i . (2.30)

Based on the above expression, we specialize the equations in (2.7) and (2.8) and

derive the AoI and time stamp error expressions for AS scheduling with zero waiting.

Given a service time distribution, one can then find the optimal selection of the

number of trials mk for process k.

2.4 Numerical Results

In this section, we present some numerical results to further illustrate the theoretical

analysis of this chapter. We focus on showing the AoI vs. time stamp error trade-

off under different system settings. From the optimization problem in (2.9), such a

trade-off can be characterized by varying the values of βk’s. In our simulations, and

in agreement with our theoretical results, we focus on the case in which βk = β, ∀k.

The service time distribution is ∼ exp(1/µY ).

We first present results for the single process setting. In Fig. 2.2, we vary the value

of β ∈ [0, 1] to show how the AoI behaves with respect to time stamp error. We set

λ = 9 and µY = 1. Clearly, the higher the value of β the better the AoI and the worse

the error, and vice versa. Moreover, as the recovery rate α increases, the trade-off

behaves better: for a relatively higher value of α, one can achieve lower errors for

the same AoI values. As a baseline, we show the single AoI-error pair achieved by
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Figure 2.2: Single process AoI vs. time-stamp error for different recovery rate α values.

the zero-wait policy. It is clear from the figure that the optimal threshold-wait policy

outperforms zero-wait in terms of both AoI and error for relatively higher values of

β.

Next, we compare the behavior of πRR and πAS for K = 2 processes. We set

λ1 = λ2 = 6, α2 = 50, and µ = 1.5, and plot the sum AoI vs. sum time stamp

error (by varying β) in Fig. 2.3. The results generally show that the behavior of πRR

relative to πAS depends on the value of α1 and β. For instance, for smaller α1 and

smaller β, πAS is favored upon πRR. While for larger α1 and larger β the situation

is reversed. For intermediate values no specific policy dominates the other. This

shows that the choice of the scheduling and waiting policy for this problem is highly

dependent on the system dynamics, especially the servers’ recovery rates.

A key observation is that when α1 = 0.1, the Asymmetric Scheduling policy out-

performs the Round Robin policy for most of the plotted range, particularly when

the total error is low (i.e., e1 + e2 . 0.7). This outcome is due to the fact that a low

α1 implies that server 1 has a slow recovery rate, and thus requires longer idle peri-
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Figure 2.3: Two processes sum AoI vs. sum time stamp error for different process 1
recovery rate α1 values.

ods to reduce its time-stamp error. The Asymmetric Scheduling policy, by assigning

multiple consecutive transmission slots (i.e., m2 transmissions) to process 2 before

switching to process 1, implicitly gives server 1 a longer idle window to recover. This

idle time helps reduce server 1’s error without the need for explicit waiting. Addition-

ally, because Asymmetric Scheduling avoids deliberate waiting and reuses the channel

more frequently for the same process, it achieves better timeliness (lower AoI) while

still managing error effectively under low α1. In contrast, the Round Robin policy

uses a threshold-based wait time only once per cycle (before process 1’s turn), and

then strictly alternates between processes. When α1 is low, this limited waiting is in-

sufficient for server 1 to fully recover between transmissions, resulting in higher error

and suboptimal performance in the low-error regime.

However, the scenario changes when α1 increases to 0.5. With this higher recovery

rate, server 1 becomes more robust to continuous transmissions and does not need

extended idle periods to maintain low error. In this case, the advantage of Asymmetric
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Figure 2.4: Optimal AS policy behavior: (m∗1,m∗2) vs. α1.

Scheduling in giving server 1 more idle time becomes less significant. Meanwhile, the

Round Robin policy can now take full advantage of threshold-waiting: by optimally

tuning the threshold wait time before each cycle, it balances both processes’ recovery

needs without sacrificing too much freshness. Since both servers are now capable of

handling more frequent transmissions with minimal error, the structured alternation

and controlled waiting in Round Robin yield a better overall trade-off, particularly in

the higher-error regime. This reversal in performance highlights how the optimality

of a scheduling policy critically depends on the servers’ recovery rates and the desired

timeliness-credibility trade-off.

Finally, the column chart in Fig. 2.4 illustrates the optimal number of trials for πAS,

m∗1 and m∗2, vs. different values of server 1’s recovery rate α1. Here, we set α2 = 0.5,

λ1 = λ2 = 90, µ = 50, and β = 0.5. As α1 increases, server 1 recovers relatively faster

than server 2, and therefore m∗1 increases while m∗2 decreases as seen in the figure.

This trend underscores the importance of tailoring transmission strategies to specific

server recovery rates to optimize timeliness and credibility.



CHAPTER 3: MULTI-CHANNEL STATUS UPDATING SYSTEM WITH TIME

STAMP ERROR

3.1 System Model

In this chapter, we consider a system model consisting of a single process, a single

sensor, and K servers. Each server transmits sampled data to a destination through

its dedicated channel, see Fig. 1.2, where the sensor receives samples from the process

at a Poisson rate λ and forwards each sample to all K servers. Each server then

transmits the update to the destination through its orthogonal channel, ensuring no

interference between channels.

The sensor samples the process at time Si after an interval Xi ∼ exp(λ). Upon

sampling, the sensor immediately transmits the sample to all K servers. Each server

processes the sample, records its receiving timestamp, and forwards it to the des-

tination through its dedicated channel. The channel busy time for the ith sample

transmitted through the k-th channel is denoted by Yk,i, where Yk,i’s are independent

and identically distributed (i.i.d.) across samples and servers. The destination needs

to wait for all samples from all channels before updating its AoI. Hence, the total

channel time for the ith sample is given by

Ỹi , max(Y1,i, Y2,i, . . . , YK,i). (3.1)

Consequently, the ith sample arrives at the destination at time

Di = Si + Ỹi. (3.2)
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Each server may introduce time stamp errors. For instance, the received time

stamp of the ith sample processed by server k is denoted by S ′k,i, which may differ

from other time stamps delivered through other servers, let alone the true time stamp

Si. The destination estimates the time stamp of the ith sample at the destination by

computing the average of the erroneous time stamps from all K servers as follows:

S̃i ,
1

K

K∑
k=1

S ′k,i. (3.3)

We define the ith epoch, Li, as done previously. In terms of the notation of this

chapter, this is given by

Li =Di −Di−1

=Xi + Ỹi. (3.4)

In this chapter, we focus on zero-wait policies. Next, we present our main results.

3.2 Main Results and Problem Formulation

In this section we present our main results of this chapter, which is characterizing

the long-term average AoI and time stamp error for this variant multi-channel setting

considered. We then formulate an optimization problem to choose the optimal number

of servers/channels to characterize the optimal trade-off between AoI and error.

We focus on the case of Yk,i’s being i.i.d.∼ exp(µ).

Lemma 1. The long-term average AoI for the multi-channel system with K servers

is given by

AoI(K) =
1

µ

K∑
k=1

1

k
+

1
2

[
1
λ2

+ 1
µ2

∑K
k=1

1
k2

+
(

1
λ
+ 1

µ

∑K
k=1

1
k

)2]
1
λ
+ 1

µ

∑K
k=1

1
k

. (3.5)

Proof. Observe that epoch lengths are i.i.d. Hence, one can use the result in (2.13)
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to characterize the AoI. Next, we evaluate each term in (2.13) when tailored to our

current setting.

We first compute E(Li) as

E(Li) =E[Xi] + E[Ỹi]

=
1

λ
+

1

µ

K∑
k=1

1

k
, (3.6)

where the second inequality follows by noticing that Ỹi is the first order statistic of

K i.i.d. ∼ exp(µ) random variables, see, e.g., [18].

Next, we compute E [a(Di−1)Li]. Observe that as done in Chapter 2, we have

a(Di−1) = Ỹi−1 + Si−1 − S̃ ′i−1, (3.7)

which is independent from Li. Hence, we have

E [a(Di−1)Li] =E[Ỹi−1]E[Li]

=

(
1

µ

K∑
k=1

1

k

)(
1

λ
+

1

µ

K∑
k=1

1

k

)
. (3.8)

Finally, we compute E(L2
i ) as

E(L2
i ) =E

(
Xi + Ỹi

)2
=Var(Xi + Ỹi) +

(
E(Xi + Ỹi)

)2
=

1

λ2
+

1

µ2

K∑
k=1

1

k2
+

(
1

λ
+

1

µ

K∑
k=1

1

k

)2

, (3.9)

where the last equality follows again from the first order statistic properties of expo-

nential random variables [18].

Substituting the above three quantities into the AoI formula in (2.13) gives the
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result in the lemma.

Lemma 2. The long-term average time stamp error for the multi-channel system

with K servers is given by

e(K) =
1

K

K∑
k=1

K−1∑
l=0

(−1)l
(
K − 1

l

)
µ

αk + (l + 1)µ
. (3.10)

Proof. Since the epoch lengths are i.i.d., we have

e(K) = E
[
(Si − S̃i)2

]
= E

[
E
[
(Si − S̃i)2 | Si, Di

]]
= E

[
E
[
(E[S̃i | Si, Di]− S̃i)2 | Si, Di

]]
= E

[
Var(S̃i | Si, Di)

]
= E

[
Var

(
1

K

K∑
k=1

S ′k,i | Si, Di

)]

= E

[
1

K2

K∑
k=1

Var(S ′k,i | Si, Di)

]

=
1

K2
E

[
K∑
k=1

hk(Si −Xi − Si−1)

]

=
1

K2

K∑
k=1

E
[
e−αkỸi−1

]
=

1

K2

K∑
k=1

∫ ∞
0

e−αkyyKµe−µy(1− e−µy)K−1dy. (3.11)

Expanding (1− e−µy)K−1 using the binomial theorem, we get

(1− e−µy)K−1 =
K−1∑
`=0

(
K − 1

`

)
(−e−µy)`

=
K−1∑
`=0

(−1)`
(
K − 1

`

)
e−`µy. (3.12)
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Substituting this expansion into the integral we have

e(K) =
1

K

K∑
k=1

K−1∑
`=0

(−1)`
(
K − 1

`

)
µ

αk + (`+ 1)µ

∫ ∞
0

(αk + (`+ 1)µ)e−(αk+(`+1)µ)ydy,

(3.13)

which gives the result in the lemma upon evaluating the integral and simplifying.

The expressions derived above, AoI(K) and e(K), can be shown to be behaving

oppositely with K. Specifically, and as we show in the next section, adding more

servers/channels increases AoI(K) and decreases e(K). Therefore, there exists an

optimal value of K that minimizes the weighted sum of both expressions. This can

be formulated as the following optimization problem:

min
K

βAoI(K) + (1− β)e(K), (3.14)

for some β ∈ [0, 1].

3.3 Numerical Results

In this section, we present some experimental results to validate the theoretical

analysis derived in this chapter. First, Fig. 3.1 illustrates the impact of varying the

number of redundant channels or serversK on the system performance in terms of the

average Age of Information (AoI), AoI(K), and the average timestamp error, e(K).

The results are generated using an arrival rate λ = 0.5, fixed service rate µ = 0.5 and

fixed server recovery rate α = 0.1 for all servers. As shown in the figure, increasing

K leads to a monotonically increasing AoI due to higher cumulative service delays

introduced by more parallel servers (higher channel time). Conversely, the time stamp

error decreases significantly with K, attributed to the error-averaging effect at the

destination. The plot highlights a key trade-off: while increasing redundancy improves

time stamp precision, it also degrades information freshness. This underscores the
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Figure 3.1: Impact of K on AoI and timestamp error.

importance of carefully choosing K based on system design priorities and the relative

significance of AoI versus time stamp accuracy.

Fig. 3.2 illustrates the relationship between AoI and time stamp error under varying

server recovery rates (α), for a fixed arrival rate λ = 0.5, fixed service rate µ = 0.5

and three values of server recovery rate α ∈ 0.1, 0.5, 0.9 (fixed across all servers). The

results are obtained after optimizing over k for each value of the trade-off parameter

β ∈ [0, 1]]. That is, we solve problem (3.14).

The results demonstrate an inverse relationship across all values of α: as the times-

tamp error increases, the AoI decreases. Systems with higher server recovery rates

(α) consistently achieve lower AoI, implying that faster recovery enhances informa-

tion freshness. Conversely, lower α values lead to significantly higher AoI, particularly

when error levels are low. The curves show that for small α, AoI drops steeply as

error increases, while for larger α, the decline is more gradual.

These observations underscore the trade-off between AoI and timestamp accuracy

and emphasize the necessity of carefully choosing α and the number of servers/channels
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Figure 3.2: Average AoI vs. timestamp error for α ∈ {0.1, 0.5, 0.9}, with K optimized
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(representing the redundancy level) K based on system constraints and performance

objectives.



CHAPTER 4: CONCLUSIONS AND FUTURE WORK

In this thesis, we have investigated the impact of time stamp errors on the credibility

of Age of Information (AoI) in status updating systems. The core of the study revolves

around the analysis of how sensor-acquired data, processed by servers and transmitted

through a shared channel, can be affected by time stamp errors. These errors, which

arise due to inaccuracies in the timestamping process, are modeled as a function of

the servers’ busy times.

A key observation made in this research is the trade-off between time stamp errors

and AoI. Specifically, we found that allowing servers to have more sleeping time,

thereby providing them with more time for recovery, can reduce the occurrence of

time stamp errors. However, this also results in an increase in AoI, as the system

introduces a delay in the transmission of information. This trade-off is critical in

designing systems that balance the need for accurate information with the desire to

keep the system responsive.

To model this trade-off more rigorously, we formulated an optimization problem

aimed at characterizing the optimal timeliness-credibility balance. The problem in-

volved designing efficient scheduling and server sleep-wake policies that minimize AoI

while controlling the rate of time stamp errors.

In the context of a single process system, we showed that the optimal sleep-wake

policy follows a threshold structure, offering a clear decision rule for when servers

should switch between sleep and wake states to achieve the desired trade-off. For

multi-process systems, two distinct scheduling schemes were explored: round-robin

(symmetric) scheduling and asymmetric scheduling. Our analysis revealed that the

choice of scheduling policy plays a significant role in the system’s performance, with
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round-robin scheduling providing a fairer distribution of server time but potentially

leading to suboptimal performance in certain configurations.

Through extensive simulations and theoretical analysis, we demonstrated that the

recovery rates of servers have a profound effect on the timeliness-credibility trade-off

curves. Higher recovery rates are shown to improve the overall system performance

by reducing time stamp errors, but they also require careful consideration of the sys-

tem’s sampling rates, channel service rate, and relative recovery rates across multiple

servers.

Our results emphasize the importance of selecting appropriate scheduling policies

based on these system parameters. Specifically, the trade-off between minimizing AoI

and maintaining accurate time stamps should guide the choice of policy, ensuring that

the system performs optimally under varying conditions. The insights from this work

contribute to the development of more efficient status updating systems, particularly

in applications where the timeliness and credibility of information are crucial, such

as in real-time monitoring, Internet of Things (IoT) networks, and wireless commu-

nication systems.

Following this, we analyzed the impact of redundancy in a multi-server system on

the AoI and time stamp error. By modeling a system with K servers, each transmit-

ting updates through dedicated channels, our results demonstrated that increasing

the number of servers improves time stamp accuracy by reducing time stamp error

through averaging, but it also increases AoI due to longer channel occupancy. This

trade-off highlights the necessity of optimizing K to balance freshness and accuracy.

Through numerical validation, we established an optimal server count that minimizes

a weighted combination of AoI and time stamp error, providing valuable insights into

designing efficient multi-server status update systems.

The findings of this study provide a comprehensive understanding of the trade-

offs involved in multi-server systems and offer a practical framework for optimizing
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system performance. By carefully selecting the number of serversK and the weighting

parameter β, system designers can achieve the desired balance between data freshness

and accuracy, tailored to the specific needs of their applications.

Future research can examine systems with multiple sensors, processes, and servers

using dedicated channels. Key areas include analyzing AoI and time stamp errors,

synchronizing updates, and optimizing server allocation to improve efficiency. Study-

ing the effects of processing delays, varying sampling rates, and developing adaptive

algorithms for resource allocation can enhance performance. These efforts aim to

create scalable, efficient real-time monitoring systems for applications like industrial

automation and autonomous networks.
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