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ABSTRACT This paper studies the efficiency of training a statistical model among an edge server and
multiple clients via Federated Learning (FL) — a machine learning method that preserves data privacy
in the training process — over wireless networks. Due to unreliable wireless channels and constrained
communication resources, the server can only choose a handful of clients for parameter updates during
each communication round. To address this issue, analytical expressions are derived to characterize the FL
convergence rate, accounting for key features from both communication and algorithmic aspects, including
transmission reliability, scheduling policies, and momentum method. First, the analysis reveals that either
delicately designed user scheduling policies or expanding higher bandwidth to accommodate more clients in
each communication round can expedite model training in networks with reliable connections. However, these
methods become ineffective when the connection is erratic. Second, it has been verified that incorporating
the momentum method into the model training algorithm accelerates the rate of convergence and provides
greater resilience against transmission failures. Last, extensive empirical simulations are provided to verify
these theoretical discoveries and enhancements in performance.

INDEX TERMS  Federated learning, transmission failure, scheduling policy, momentum method, conver-
gence analysis.

. INTRODUCTION

DE facto paradigm shift in machine learning models

is being brought about by the surge in the processing
capacity of terminal devices and the growing concern about
data privacy. Complex computations previously exclusive to
the cloud center are now shifting to the periphery of networks.
The Federated Learning (FL) scheme is the result of the
fusion of edge computing systems and artificial intelligence.
It enables a swarm of terminal devices, i.e., the clients, and a
global computing unit, i.e., the edge server, to collaboratively
train a statistical model using datasets that are stored on the

clients’ devices while maintaining data privacy [2], [3], [4],

(51, (6], [7], [8].

A. RELATED WORKS

FL brings the statistical models directly to the clients for
local computing, in contrast to conventional machine learn-
ing approaches that aggregate all the data to a computing
center for training. Here, only the obtained parameters are
uploaded to the server for improvements to the global model,
and the updated global model is fed back to the clients
for another round of local training [2]. Such interactions
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between the server and clients will repeat for a sufficient
number of rounds, after which the global model converges,
and all the entities that participated in the training process
can benefit from a better machine learning result. In light
of this, FL highlights its trials of offering greater levels of
privacy while significantly lowering communication over-
heads; this is especially pertinent to next-generation mobile
networks [9]. Therefore, since the advent of this algorithm,
it has attracted considerable attention from academia and
industry alike. Nonetheless, the ultimate implementation of
the FL system necessitates addressing novel problems that
fundamentally diverge from the usual approaches developed
for traditional machine learning environments [10], [11],
[12], [13], [14], [15].

Specifically, within the framework of FL, clients typ-
ically possess highly customized datasets, leading to a
non-independent and identically distributed (i.i.d.) distribu-
tion of statistical data across the devices. System hetero-
geneity is also a result of the fact that various customers
inside the network may differ significantly in terms of sys-
tem attributes, such as processing power and/or connection
quality. Heterogeneity is a feature that causes sluggish and
even unstable convergence, and in order to solve this problem,
new training techniques are required. Following this line, it is
demonstrated that adding a proximal term to the global objec-
tive function can significantly improve the stability, as well
as the overall accuracy, of the FL system [16]. Moreover,
by means of variance reduction, a variate control scheme was
proposed to rectify the drift in the local updates of clients so
as to align the global gradient towards the optimal point and
achieve faster convergence of the FL training [17]. Recogniz-
ing that historical parameters also contain useful information,
it is suggested to either directly reuse the outdated gradients
from clients in the global aggregation process [18] or lever-
age them to construct momentum terms [19], [20] so as to
reduce the communication rounds in the process of model
training. Aside from (stochastic) gradient descent, which
is a first-order training method, second-order-like training
schemes such as the Newton method are also introduced to
boost the convergence rate [21]. These works, while bringing
about remarkable gains, have chiefly focused on the algo-
rithmic perspective with little attention to the impacts of the
communication aspects.

As wireless networks are expected to be the main FL
deployment scenario, effective communication is also one of
the main drivers of the system’s implementation. In contrast
to reliable connections offered by wired cables in a data
center, the spectrum is an unstable medium where communi-
cation quality fluctuates over time. Consequently, not every
client can connect to the server with reliability after every
global parameter aggregation. Furthermore, because spectral
resources are typically scarce, the server can only choose a
subset of clients to upload parameters for each communi-
cation round [22]. Joint optimization client scheduling and
resource allocation has been studied as an enhancement of
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hierarchical FL [23]. Additionally, communications across
the spectrum are frequently orders of magnitude slower than
those using a chip. A series of recent research have been
carried out [24], [25], [26], [27], [28], [29] to address the
communication bottleneck in the FL training. In particular,
[24] examined the effects of three traditional client schedul-
ing policies on the convergence property of FL systems and
developed a theoretical framework to account for the commu-
nication conditions—quantified by the transmission success
probability—in the convergence rate. The computational
complexity of the aforementioned scheduling techniques is
significantly higher than that of random scheduling, though,
because they require additional auxiliary information. Addi-
tionally, these techniques need to recalculate a complex
weight utilizing game theory, auction strategy, or another
method whenever a new user joins or an existing user leaves
the FL process. As a result, in situations involving a large
number of mobile users or unstable transmission settings,
a straightforward but efficient solution must be investigated.

Acknowledging that the probability of transmission suc-
cess differs for various clients and that the current scheduling
techniques may result in a biased trained model, [25] pro-
posed a scheduling policy that optimizes convergence rate
by striking a balance between statistical bias and channel
quality. Moreover, it is demonstrated that scheduling policy
and resource allocation may be jointly designed to accelerate
the training process, depending on the staleness [28], [29] or
the importance [26], [27] of the customers’ parameters. While
these studies have alleviated the communication problems in
FL, further research is needed to understand how channel
quality, scheduling policies, and algorithmic improvements
interact. Moreover, many previous works concentrated on
strongly convex loss functions, which is inappropriate for the
context of many popular machine learning models such as
neural networks.

To study the convergence rate with partial client participa-
tion and non-i.i.d. datasets, [30] showed that linear speedup
for convergence of FL is achievable and revealed that a large
number of local training epochs can accelerate the conver-
gence. To eliminate the bias caused by partial participants,
[31] and [32] modified the model aggregation rule in FL
to avoid waiting for straggling clients, where the server
would re-use the memorized latest updates as the surrogate
of the non-participating clients during each communication
round. Reference [33] derived convergence upper bounds
for a wide range of non-stochastic and stochastic participa-
tion patterns, including regularized, ergodic, stationary, and
strongly mixing (e.g., Markov process) and independent pat-
terns. In contrast to the above-mentioned FL. models, where
the server and the clients are tightly coupled, [34] proposed
a new paradigm in FL called Anarchic Federated Learning
(AFL), where flexible client participation is allowed with
cross-device and cross-silo settings. The author also provided
convergence analysis and proved that the highly desirable
linear speedup effect could be attained. The authors in [35]
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leveraged the concept of variance reduction from stochastic
optimization. They proposed a novel bilayer FL algorithm to
achieve a fast convergence rate in the setting where each client
has an arbitrary probability of participating in each iteration.

Another crucial concept in the context of FL is the Age
of Information (Aol), which measures the time elapsed since
the last update from a device was received. Integrating Aol
into FL is essential because it ensures the system utilizes
the most current data, leading to more accurate and relevant
model training. Intuitively, age-based scheduling methods
in FL prioritize updates from devices based on the timeli-
ness of their information, ensuring that the most recent data
is used to update the global model. Age-based scheduling
ensures the global model is continually refreshed with the
latest data, improving the accuracy and relevance of pre-
dictions. By prioritizing updates based on data freshness,
age-based scheduling optimizes the use of communication
and computational resources, reducing unnecessary data
transmissions. This method dynamically adjusts to the vary-
ing data generation rates of different devices, ensuring the
model remains current without overwhelming the network.
Age-based scheduling is highly scalable, making it suitable
for large networks of devices with diverse data generation
patterns. In summary, integrating the Aol into FL ensures
that the global model benefits from the most recent and
relevant data, enhancing overall performance, efficiency, and
scalability.

B. RESEARCH OBJECTIVES AND CONTRIBUTIONS
In this paper, we aim to develop an analytical framework
to study the impacts of different parameters, including both
communication and algorithmic aspects, on the FL conver-
gence rate. Specifically, we consider a network that consists
of one server and multiple clients, connected to the server via
wireless links. The task for the server and clients is to collab-
oratively learn a statistical model from the datasets residing
on the clients’ devices while preserving their data privacy,
which is accomplished by means of FL. The server sends
the objective function along with the model parameters to the
clients, makes them train for a certain amount of time using
their local datasets, and uploads only the resultant parameters,
with which the server can improve the global model and feed
it back to the clients for another round of local training.
During this process, owing to the time-varying nature of
wireless channels, only a subset of the clients can estab-
lish reliable connections to the server upon each global
aggregation round. Moreover, due to the scarcity of spectral
resources, the server can only select a handful of clients in
each communication round to participate in the FL training.
In this respect, we investigate the efficacy of two scheduling
policies, namely Random Scheduling (RS) and Age-Based
Scheduling (ABS), in selecting the clients. To further accel-
erate the model training process, we adopt the momentum
method in conjunction with the global aggregation on the
server side. By invoking the tools from optimization the-
ory, we derive analytical expressions to characterize the FL
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convergence rate in a general setting that accounts for the
effects of channel quality, scheduling policies, and momen-
tum method. The analysis allows us to grasp crisp insights
into the impacts of different network parameters on the
convergence performance of FL and obtain useful design
guidelines. The results are expected to propel our understand-
ing of FL and guide researchers in further research pursuits.

In our previous work [1], we investigated the convergence

rate of partial client participation under the RS scheme in
unreliable transmission networks. In this work, we extend
our analysis to the ABS scheme by deriving the conver-
gence analysis under FL. and FML and conducting extensive
experiments in both i.i.d. and non-i.i.d. datasets. The main
contributions of this paper are summarized below.

+« We develop a theoretical framework for understand-
ing the convergence performance of FL algorithms run
on wireless networks. Particularly, we derive analyti-
cal expressions for the convergence rates of FL under
different settings that encompass key features such as
channel quality, spectral resources, scheduling policies,
and integration with momentum methods, delivering a
more comprehensive analysis. Different from [24], [25],
[26], and [27], we do not assume convexity of the empir-
ical loss function, making the results applicable to more
general machine learning models.

« Based on the analysis, we find that when communication
channels are reliable, the FL convergence rate can be
boosted by i) expanding the communication bandwidth
to engage more clients in each communication round
and ii) adopting a scheduling policy that reduces param-
eter staleness such as the ABS. On the other hand,
when the communication channels are highly unreliable,
the aforementioned approaches are not instrumental to
enhancing the FL training efficiency.

o We also confirm, via analysis and simulation, that inte-
grating momentum with the global aggregation speeds
up the FL convergence rate and enhances its resilience
against communication failures. It also implies that reli-
able communications shall be devised to keep pace with
the growth of edge learning.

o« We examine the convergence performance of the
depicted FL system via extensive simulation experi-
ments based on MNIST and CIFAR-10 datasets with
different machine learning models such as Multi-Layer
Perceptron (MLP) and Convolutional Neural Network
(CNN). We also perform experimental comparisons
between the FL and Federated Momentum Learning
(FML). The simulation results validate the convergence
of FML as well as its effectiveness in accelerating the
convergence rate.

Il. SYSTEM MODEL

Let us consider the FL system depicted in Fig. 1, consisting
of one server and K clients, where K is a large number. Each
client k has a local dataset Dy = {x; € R?,y; € R}, of
size |Dy| = ni. We assume the local datasets are statistically
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FIGURE 1. An illustration of the FL process: (A) clients conduct
local training based on their own dataset, (B) the server
aggregates the received updates to improve the global model,
(C) the new model is sent back to a subset of clients, and the
process is repeated.

independent across the clients. The goal of the server is to
learn a statistical model over the datasets residing on all the
clients without sacrificing their privacy. More precisely, the
server needs to fit a vector w € R?, commonly known as
the model parameter, to minimize the following loss function
without the explicit knowledge of D = UkK= 1 Dk:

min f(w) =
weRd

1 n K
=D twsxiy) = D piiw) (1)
n

i=1 k=1
where n = Zszl ng, £(-) is the loss function defined under
some particular task, pr = ng/n, and fi(w) denotes the local
empirical loss function of client k, given by

1 &
fw) = Z}W Xj, vj)- 2
=

We further define the optimal solution to (1) as
w* = arg minf (w). 3)
w

Since the server cannot access the individual client’s
datasets, the model training needs to be carried out by the
server and the clients in an FL fashion [18]. The training
procedure is detailed in Algorithm 1.

We consider the communications between the server and
the clients to be conducted over a resource-limited spectrum
with time-varying channel gains. Specifically, we consider
the maximum number of available channels for the parameter
transmissions to be N <« K. We assume that every client
is able to establish a reliable connection to the server with
probability p upon each global aggregation,' and that these
connections vary independently across the communication

Twe simplify this probability as a constant to represent a general case
of clients checking in when ready to participate in training. It resembles
the scenario in which each client uploads its local parameters based on the
channel inversion scheme but has a certain probability of encountering a
deep fade and suspending the current transmission. Note that following a
similar vein as [24], [25], and [26], one can adopt the notion of transmission
success probability to account for effects from physical layer factors such as
the fading, path loss, and interference.
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Algorithm 1 Federated Learning Algorithm
1: Parameters: H = number of local steps per computation
round, n = step size for stochastic gradient descent.
2: Initialize: wy € R?
3: for t=0,1,2,...,T —1 do
4:  The server selects a set S; of at most N clients and
broadcasts the global parameter w; to them
for each client k € S; in parallel do
Initialize w% =w;
for s=0toH — 1 do
Sample & s € Di uniformly at random, and
update the local parameter wgk) as follows:

k k k
wh = wh v s @

in which V represents the gradient operation
9: end for

® AW

10: Send the locally aggregated stochastic gradients
zgi —01 ka(wglfx) ; €k.5) to the server
11:  end for

12:  The server collects all the gradient parameters
from the selected clients and assigns gi') =
Zf:_ol Vf,-(wgf)s; & ) for i € S;. Moreover, the server
sets g?) = gglzl for j # S;, and then updates the global
parameter w; 1 as follows:

K
k
Wil =Wi — 1 ZPkgg : &)
k=1

13: end for
14: Output: wr

rounds. We further assume that the server can obtain the infor-
mation about the reliability of the clients’ communication
links at the beginning of each global aggregation, namely,
the server has full knowledge about whether a typical client
is connected to it or not before the global aggregation starts.
The server, therefore, needs to select a subset S; out of the
available clients to participate in the FL training, where |S;| <
N < K. In this work, we consider two types of scheduling
policies:

A. RANDOM SCHEDULING (RS)

Under this policy, the server randomly samples a subset S; out
of the clients with reliable channels. Because the maximum
number of available sub-channels is N, the scheduling of
clients can encounter two different situations: (a) if the num-
ber of clients that have reliable channels is less than N, all of
them will be selected for parameter update; and (b) when the
number of clients with reliable sub-channels is larger than N,
only N out of them will be selected (uniformly at random).

B. AGE-BASED SCHEDULING (ABS)
This approach aims to reduce the staleness in the clients’
parameters during the training process. In order to quantify
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the staleness of each update, we leverage the information
freshness and define a metric termed Age-of-Update (AoU)
[28]. For a generic client k, its AoU evolves as follows:

Aklt + 11 = (Akle] + DA = Si[eD), Skle] € {0, 1} (6)

where Ax[0] = 0, and Si[t] takes the value 1 if client k
is selected by the server for update during communication
round 7 and O otherwise.” By leveraging this metric, the
scheduling policy is given by: (a) if the number of clients
that have reliable channels is less than N, all of them will be
selected for parameter update; and (b) otherwise, select the N
clients with the highest AoU values, namely

S*[t] = arg max  {A{[t], Az[z], ..., Ak[t]} @)
S¢(1,2,...K}

where S = (S1,---,Swy) is a length-N vector and S* =
(ST, -+, Sy) represents the indices of the selected clients.
The appeal of this method is in (a) it does not require addi-
tional information and is as low-complexity as the RS, and
(b) it has a potential to reduce the parameter staleness.

Remark 1: These two policies resemble the random
scheduling and group round-robin in networks with unre-
liable connectivity, and they are unbiased client sampling
approaches.

Remark 2: Different from the settings in [24], where the
selected clients can experience transmission failures, the
selection of clients in this work is performed on those with
reliable connections and hence does not waste communica-
tion resources.

lll. ANALYSIS

This section constitutes the main technical part of this paper,
in which we derive analytical expressions for the convergence
rate of FL over wireless networks.

A. PRELIMINARIES

1) PARAMETER STALENESS

Since only a subset of the clients can be selected to participate
in the FL training during each round of communication, the
parameters of the unselected clients become stale. To for-
mally characterize this effect, we denote a random variable
71 as the staleness associated with the global parameter pos-
sessed by the k-th client. Then, in accordance with (4) and (5),
after the #-th communication round, the update of global
parameters at the server side can be rewritten as follows:

K H-1
Wil =wi =1 > pk O Vi g€ (8
k=1 s=0

where H is the number of local steps per computation round,
&k s denotes an element sampled uniformly at random from
the data set of the k-th client during the s-th local computing
step. Note that the distribution of t; is dependent on the

2The AoU measures the time elapsed since the latest update is received
by the server, and hence larger the AoU indicates there are higher degrees of
staleness associated with the update.
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client selection criteria. In the sequel, we will leverage (8)
to derive the convergence rate of FL under the RS and ABS
policies, respectively, and obtain several insights based on the
analyses.

2) ASSUMPTIONS

To facilitate the analysis, we assume the following conditions.
Assumption 1: The gradient of each function fi : R — R

is Lipschitz continuous with a constant L > 0, namely, for

any w,v € R? the following is satisfied:

IVfiw) = Vi)l < Liw —vll, k € {1,2,...,K}. (9)

Assumption 2: The gradients of f are upper bounded by a
constant C, i.e., for any w € R? the following is satisfied:

V6wl <C, ke{l,2,...,K}. (10)

It is worthwhile to stress that Assumption 2 holds in our
setting because transmitting an arbitrarily large value over the
wireless channel is not practical. Indeed, the excessively large
gradients are usually clipped before being sent out [36].

Following the above assumptions, we have

K
IVfw)=VfWIl = ZkaIka(W) = Vil

k=1
K
<D peLlw—v|=Llw—vl, (11)
k=1
and

K
IVf )l < D" prllVAiow) < C. 12)

k=1

Notably, we do not assume convexity of the objective function
and hence the result is more general and applicable to the
context of, e.g., (deep) neural networks.

B. CONVERGENCE ANALYSIS

We now focus on the FL convergence analysis. We will first
analyze the FL convergence rate under the RS policy. Then,
we explore the performance under the ABS policy.

1) FL UNDER RS POLICY
In a typical global iteration ¢, a generic client needs to satisfy
two conditions to be able to partake in the FL training process:
(i) there is a reliable connection between the client and the
server, and (i) the client is selected by the server. Therefore,
the FL participation state of a typical client is a binary random
variable, where the probability can be derived as follows.

Lemma 1: In a typical communication round, under the
RS policy, the probability, B, that a generic client can par-
ticipate in the FL training is given by (13), as shown at the
bottom of the next page.

Proof: Please refer to Appendix A. ]

Since the client selections are conducted in an i.i.d. manner

across communication rounds, the parameter staleness of a
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typical client follows a geometric distribution, i.e.,
P(zg =1) = B(1 - ',

Using (14), we can derive the convergence rate under the RS
policy, presented in the next theorem.

Theorem 1: Under the RS policy, if the step size is chosen
asn = 1/H ﬁ , then after T rounds of communications,
Algorithm 1 converges as follows:

min_E| |/ 0w0)I’]

1=0,1,2,... (14

0<t<T-—
2
fooo) = f ) + L (Blegl + 3H) 2
= +—. (15
BT BT
Proof: Please refer to Appendix B. 0

From (15), it is clear that the client participation proba-
bility, 8, plays a critical role in the FL convergence rate.
Moreover, using (13), we can bound 8 as follows:

PN/K < B <p. (16)

where the lower bound follows by replacing the terms 17\,’, i€

{N +1,...,K} in (13) by %, together with the fact that
% is a fraction. The above inequality allows us to obtain
better insights into the convergence rate of FL over unreliable
networks. Specifically, let us resort to the following two

extremes:

a) Whenp — 1, wehave § & N/K.In this case, providing
more communication channels monotonically increases
the probability of participation at each client, which,
in turn, bolsters faster convergence of the FL algorithm.

b) Whenp — 0, we have 8 & p. In this case, increasing the
number of communication channels cannot contribute to
boosting up client participation probability and hence is
not instrumental in speeding up the FL convergence.

2) FL UNDER ABS POLICY
Next, we study the convergence rate of FL under the ABS
policy. Similar to the above, we commence with deriving the
distribution of parameter staleness, denoted by 74 in this case.
To do this, we rearrange the clients according to the ascend-
ing order of their AoU in each communication round. Such an
operation results in client 1 having the lowest AoU and client
K with the highest AoU. Then, as the FL training progresses,
the position of a generic client i varies due to the dynamics of
AoU of all the clients in the network. As depicted by Fig. 2,
the probability that the client transits to other positions is
dependent on its particular location. We detail the analysis

Wheni < K — N + 1, there are more than N clients that
have AoU larger than client i. And the transition of client
i’s position can be summarized in Fig. 2 (a). We start with
analyzing the event that client i is selected by the server, after
which its AoU reduces to zero and it moves to position 1. This
happens if (a) the client has a reliable channel to the server
and (b) at most N — 1 clients ahead of it can establish reliable
connections. The corresponding probability is given by

& (k-i :
P,~,1=pZ( " )p’”(l—p)’“m. (17)
m=0

Next, we investigate the event that client 7 stays at its current
position after a round of global iteration. This happens if all
the clients in front of i, as well as client { itself, cannot connect
to the server during the current communication round, which
results in the following probability

P =(1—p~+h (18)

The client may move forward from position i to i+, whereas
1 <1 < N — 1, given it is not connected to the server
while there are [ clients in front who have reliable channels
for communications. As such, the probability can be written
as

K —i .
Pi,i+l=(1_P)( / )p’(l—p)K = 1<I<N-1.
(19)

Finally, we note that client i can also move to position i + N
if more than N clients ahead of it have reliable channels and
hence are selected for parameter updating. This event happens
with the following probability:

& (k—i
P:: — me1 Kfifm_
N = D ( . )p (1-p)
m=N
On the other hand, when i > K—N + 1, as illustrated in
Fig. 2 (), there are less than N clients standing before client
i. In other words, client i is among the N candidates that have
the highest AoU in the network. As such, it will be selected
by the server as long as there is a reliable channel between
them, which yields

(20)

Pi1=p. 21

The client will stay at its current position if, from position i
onward, none of the clients is able to connect to the server
reliably; this gives the following probability

in the sequel. Pi=(1—p~ (22)
K—1 N K—1-N N K—1 N+1 K—2—N N K -1 K—lN
= 1— - 1— . &
P [(N)p( P) T VY A [ R VO L~
K—1 K—1
+ PV =p N 4 1-p*txp (13)
N-—1 0
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(a)

FIGURE 2. An illustration of the position transition of a generic client i under the ABS policy.

Moreover, if client i cannot connect to the server in the present
communication round but meanwhile, / clients in front of it
are able to establish reliable connections, the client will transit
to position i + /. It shall also be stressed that / is in the range
of [1, K — i] because client i cannot go beyond the end of the
line, i.e., position K. Therefore, we have

K —i

Pii=01 —P)( /

)p’(l —pft1<i<K—i
(23)

To this end, we can model the positions of the clients as
the states of a Markov chain, where the transition matrix is
given as P = [P;; ]1<; j<x. This Markov chain is recurrent
and irreducible and hence has a steady-state distribution. Let
x = (my, M2, ..., k) be the steady state probability vector;
then we can solve for the value of each entry via the following
fixed-point equation:

x = nP. 24

As aresult, we can characterize t4 via the following.
Lemma 2: The distribution of parameter staleness under
the ABS policy is given by

K
Pla=D=> m (Pfl)P)i L 1=012. 2
i=1 ’
where Py is a matrix obtained by replacing the first column
of P with all zeros, and (X);; denotes the entry (i,)) of
matrix X.

Proof: At communication round ¢, if the parameter
staleness of a typical clientis 4 = [, it implies that beginning
att — 1 —1 (without loss of generality, we consider [ < ¢), the
client is not selected by the server for / consecutive global
iterations and scheduled at the last communication round.
Equivalently, this can be regarded as the client starting at
state i and reaching state 1 for the first time after [ + 1 steps,
which occurs with the following probability

P ( Client reaches position 1 in [ steps from position i )
_ (p!
= (P0P),,- 2s)

Because the probability of a typical client being in state i is
given by m;, the proof is complete by invoking the law of total
probability. O

Following similar lines in Theorem 1, we can lever-
age (25) to derive the FL convergence rate under ABS policy.
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Nonetheless, the results may be too involved to offer useful
insights. In that respect, we resort to the two extremes of
communication conditions for better intuition. Particularly,
when the communication channels are reliable, i.e.,p ~ 1, the
distribution of staleness t4 can be approximated as follows:

1
Plta=D~ —,

1=0,1,...
G

,G—1. Q27

Armed with this result, we can derive the convergence rate
of FL under ABS policy.

Theorem 2: Under the ABS policy, when p =~ 1, if the
step size is chosen as 1 = 1/H~/T, then after T rounds of
communications, Algorithm 1 converges as follows:

in E|[1v/ )l

0<i=T
Fo) = f ) + 5 (Blmal + 3H) (G — 1)¢2
7 +

=
(28)

Proof: Please refer to Appendix C. (|
Putting together (15) and (28), we can see that for
non-convex objective functions, the FL algorithm converges
to stationary points in the order of O (1/+/T ), while
scheduling policies affect the multiplicative factor. Moreover,
using (27), we have E[ta] = 3(G — 1) = 3(K/N — 1); and
we have E[tg] = % by (14), which indicates that E[tg] =~
K/N > E[t4], for p & 1. Thus, we can conclude that when
the communications are reliable, i.e., p is relatively large,
using the ABS policy in the FL can achieve faster conver-
gence than that achieved by using the RS policy. Intuitively,
the gain is mainly attributed to the fact that ABS accounts
for the fairness in the channel access and leads to smaller
parameter staleness.

On the other hand, when the clients are situated under poor
communication environments in which the wireless connec-
tions are highly unreliable, namely, p < 1, we have g & t4
in distribution. And this results in the following conclusion.

Corollary 1: In networks with unreliable communication
channels, i.e., p < 1, Algorithm 1 attains a similar conver-
gence rate under both RS and ABS policies.

Corollary 1 indicates that in the absence of reliable con-
nections, neither providing more bandwidth nor leveraging
better scheduling policies can enhance the FL convergence
rate.
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Algorithm 2 Federated Momentum Learning Algorithm

1: Parameters: H = number of local steps per computation
round, n = step size for stochastic gradient descent.
2: Initialize: wy € R?
3: for t=0,1,2,...,T —1 do
4:  The server selects a set S; of at most N clients and
broadcasts the global parameter w; to them
for each client k € S; in parallel do
Initialize w% =w;
for s=0toH — 1 do
Sample & s € Di uniformly at random, and
update the local parameter wgk) as follows:

k k k
wh = v s @9)

in which V represents the gradient operation
9: end for

10: Send the locally aggregated stochastic gradients
Z?: _01 Vi (wﬁf? ; €k.5) to the server
11:  end for

12 The server collects all the gradient parameters
from the selected clients and assigns gﬁ’) =
Zf:_ol_ Vfi(wgf)s; & .s) for i € S;. Moreover, the server
sets g?’) = gi’l | for j ¢ §;, and then updates the global
parameter w; 41 as follows:

K
k
ve=via+y D pgl (30)
k=1
Wil = Wr — Ny 3D

where y € [0, 1) is the control parameter
13: end for
14: Output: wr

C. FEDERATED MOMENTUM LEARNING IN UNRELIABLE
NETWORKS

In this subsection, we detail the approach, and the efficacy,
of adopting the momentum algorithm [37] in the training
of (1), aiming to improve the performance. We term this
method the Federated Momentum Learning (FML) and sum-
marize the implementations in Algorithm 2. Particularly,
the momentum term is introduced in the gradient updating
step (30). It can be regarded as a “heavy ball” added in the
update of parameters such that the values stay close to the
current one.

The intuition behind this operation is that the update direc-
tion of SGD, while always along gradient descent, could
cause an oscillating update path. Utilizing the momentum
term can deviate the direction of the parameter update to the
optimal decline and mitigate the possible oscillations caused
by SGD. Since the clients in a wireless network are usually
resource-constrained, algorithms that accelerate the conver-
gence rate can attain higher resource utilization efficiency.
The convergence rate of FML can be derived accordingly.
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Theorem 3: Under the RS policy, if the step size is chosen
asn = 1/H~T, then after T rounds of communications, the
Algorithm 2 converges as follows:

(=l -] |

min E[ V7o)l ] <

0<t<T— BT BT
LC? (E[z 1 2
+ ( [tr] L7 2)_
BYTN H — 2(1—y) (1-y)
(32)
Proof: Please refer to Appendix D. ]

By comparing (15) and (32), we can see that regardless of
connection quality, by carefully choosing the control param-
eter, y, in the FML, faster convergence can be attained.
In that respect, it is confirmed that improving the FL from
an algorithmic perspective is beneficial.

In a similar vein, we can derive the convergence rate of
FML under the ABS policy.

Theorem 4: Under the ABS policy, when p ~ 1, if the
step size is chosen as 1 = 1/H~T, then after T rounds of
communications, Algorithm 2 converges as follows:

. 1 (= »[fwo)—F )]

. min_ E[IV/ eI < v

E[t4]C%?  LC? [E[14] 1 y?
w7 e taoR)

+

(33)

Proof: The proof is similar to that of Theorem 2 and 3

and hence omitted here. ]

As in the case without momentum, we also have the fol-
lowing result for FML.

Corollary 2: In networks with unreliable communication
channels, i.e., p < 1, Algorithm 2 has similar convergence
rate under both RS and ABS policies.

From the above, we can see that faster convergence of
FL can be achieved by introducing the momentum term and
carefully choosing the corresponding parameters.

IV. SIMULATION RESULTS

In this section, we conduct simulations to verify the analyses
that have been developed. Specifically, we examine the effi-
ciency of training FL on two different settings of machine
learning models. One experiment is to train an MLP over
the MNIST dataset. The MLP consists of 2 hidden layers,
each having 64 units, and adopts the ReLU activations. The
dataset contains 10,000 handwritten images of the numbers
0 to 9, where each digit has 1000 images. We take 9,000
data samples from the MNIST dataset for the training and
allocate 1,000 samples for testing. The other experiment is to
train a CNN on the CIFAR-10 dataset. This dataset consists
of 60,000 color images in 10 classes, with 6000 images per
class. The CNN has two convolutional layers with a max
pooling, followed by two fully connected layers, and then
a softmax output layer. We take 50,000 data samples from
the CIFAR-10 dataset for training and assign 10,000 samples
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FIGURE 4. Test accuracy performance comparison with different
probability of establishing a reliable links between the server
and the target user.

for testing. We partition the training dataset into 100 non-
overlapped portions and assign them to K = 100 clients.
In our experiments, we consider both i.i.d. and non-i.i.d.
settings. For the i.i.d. local data partition, the whole dataset
is uniformly distributed among all clients at random. For the
non-i.i.d. data partition, we adopt a sort-and-partition scheme,
where we sort all the data according to the labels and divide
the data into 200 shards. Each client is assigned two shards.
We choose the learning rate as 7 = 0.01 and the momentum
weight as y = 0.9. The wireless channels are considered
reliable when p > 0.8 and unreliable when p < 0.1. All the
experiments are implemented with Pytorch and averaged over
three trials.

As illustrated in Fig. 4, firstly, our proposed ABS schedul-
ing scheme consistently outperforms the random scheduling
strategy regardless of the value of transmission reliability.
Particularly, Fig. 4 (a) shows that the convergence rate under
RS and ABS almost coincide with each other when the com-
munication channels are unreliable, i.e., p = 0.1. In contrast,
there is a marked speedup in the convergence rate of ABS
over RS if the network has good communication channels (for
example, The values of p range from 0.4 to 0.8). Moreover,
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Fig. 4 (b) confirms that when the communication channels
are reliable, a faster convergence rate can be achieved by
providing more communication channels. Secondly, it shows
the superiority of our proposed ABS scheduling when the
dataset is distributed to the clients in a non-i.i.d. manner
with varying value of transmission success probability. These
observations corroborate the conclusions we have drawn in
Section III.

Fig. 3 plots the Cumulative Distribution Function (CDF) of
the parameters’ staleness, t, under different configurations
of the wireless channel and scheduling policy. We can see
that when each client has a relatively high probability of
establishing a reliable channel to the server, ABS attains
a smaller value of parameter staleness than RS, while the
staleness of parameters under the two schemes are similar
when the communication channels become unreliable. This
observation confirms that scheduling policy can influence the
staleness of parameters in the FL training.

Fig. 5 depicts the test accuracy of FL training on the
MNIST dataset as a function of communication rounds under
different scheduling policies as well as the reliability of the
wireless channels. From Fig. 5 (a), we can see that when
the channels are unreliable, i.e., p = 0.1, the convergence
rate of FL remains unchanged regardless of the employed
scheduling policy or number of available communication
channels. This is mainly due to the fact that when channels
are unreliable, only a few clients — the total number of them
may be even less than the number of channels available for
communications — can establish connections to the server
in each communication round. Since only these clients can
be selected for parameter updating, neither scheduling pol-
icy nor communication bandwidth can be instrumental in
enhancing the performance. On the other hand, Fig. 5 (b)
demonstrates that when the communication channels become
reliable, ABS can attain a faster convergence rate than RS
scheme and Power-of-Choice scheme, as it asserts a higher
level of fairness amongst the clients. Additionally, we observe
that the curve of convergence rate under ABS is smoother
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FIGURE 6. Convergence rate of training CNN on the CIFAR-10 dataset under various communication

conditions and scheduling policies.

than that under RS scheme and Power-of-Choice scheme,
as the model parameters of the clients are more aligned
under ABS. Finally, we notice that compared to the unreliable
channel case, running FL in networks that have reliable con-
nectivity guarantees faster convergence of the model training.
Therefore, it is of paramount importance to maintain a reli-
able communication infrastructure for the FL system.

We can observe similar phenomena from the convergence
rate of training a more complicated ML model, i.e., the CNN,
on the CIFAR-10 dataset, as illustrated in Fig. 6. Particularly,

VOLUME 3, 2025

Fig. 6 (a) shows that the convergence rate under RS, ABS
and Power-of-Choice schemes almost coincide with each
other when the communication channels are unreliable,
ie., p = 0.1. In contrast, there is a marked speedup in
the convergence rate of ABS over RS and Power-of-Choice
schemes if the network has good communication channels
(in this case, p = 0.8). Moreover, Fig. 6 (b) confirms
that when the communication channels are reliable, a faster
convergence rate can be achieved by providing more com-
munication channels. Fig. 6 (c) and Fig. 6 (d) show the
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superiority of our proposed ABS scheduling when the dataset
is distributed to the clients in a non-i.i.d. manner with vary-
ing value of transmission success probability and number
of submission channels. These observations corroborate the
conclusions we have drawn in Section III.

We now turn our attention to the convergence performance
of FML. We concentrate on the task of training a CNN on the
CIFAR-10 dataset. The experiments are conducted under the
aforementioned settings, except that Algorithm 2 is adopted
for the FL model training. The numerical results are sum-
marized in Figures 7 and 8, which respectively illustrate the
convergence rates under RS and ABS policies. Particularly,
Fig. 7 compares the FML convergence rate under different
connectivity conditions of the network. We can see from
Fig. 7 (a) that even when the wireless links are highly unre-
liable, i.e., p = 0.1, running FL in tandem with momentum
results in a faster convergence rate for both i.i.d. and non-i.i.d.
local datasets. Additionally, Fig. 7 (b) and Fig. 7 (d) show that
the benefits conferred by momentum are more pronounced
when communications are reliable. By comparing the conver-
gence curve of FML with 10 channels against that under FL
with 30 channels, we find that in order to speed up the model
training, using the momentum method can be as effective
as expanding the communication bandwidth. We can draw
similar conclusions in the context of running FML with ABS
policy for both i.i.d. and non-i.i.d. user training data cases,
as shown in Fig. 8. Notably, this figure demonstrates that
FML with 10 communication channels can bring along faster
convergence rate than FL with 30 channels, which discloses
the importance of algorithm design in the FL training.

V. CONCLUSION

In this paper, we carried out an analytical study toward
understanding the efficiency of training FL. models over a
wireless network. We established the FL convergence rate by
taking into account key system parameters such as the prob-
ability of reliable transmissions, staleness of parameters, and
scheduling method. Our analysis confirmed the importance
of communication quality in the FL. model training process.
Specifically, if the clients can establish reliable connections
to the server in each round of communication, then the model
training can be accelerated by either adopting better schedul-
ing policies or providing more communication bandwidth.
But these methods become ineffectual when the connections
are unreliable. We also demonstrated that the FL can be run in
tandem with momentum, which can improve the convergence
rate by appropriately tuning the momentum weight. These
results advanced the understanding of the FL system and can
be useful for researchers in their further research pursuit.

APPENDIX

A. PROOF OF LEMMA 1

In a typical communication round, we use a binary variable
Ri € {0, 1} to indicate that client £ has a reliable channel to
the server (in this case, Ry = 1) or not (in this case, Ry = 0).
Moreover, we denote N as the number of reliable channels
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except for client k. As such, the probability g that the client
attains successful parameter update can be written as

B=PSkltl=1Rx =1) x P(Rx = 1)
—px (P(Sk[t] —1,N > N|R, = 1)
0
~|—]P>(Sk[t] —1,N <N|R, = 1)) (34)

[0)3

Under the RS policy, when N > N, only N clients will
be uniformly selected out at random. Therefore, upon noting
that N are R; are independent, Q; can be calculated as

01 =PSk[t] = 1IN =N, R, = 1) x P(N = N)
+PSk[f1=1IN=N+1,Re=1)xP(N=N+1)
4+ PGS = 1IN =K, Ry = 1) x P(N = K)

N K -1
:_X( )XpNx(l_p)KlN

N+1 N
N K1 N+1 K—1—(N+1)
_ 1—
+N+2X(N+1)Xp x(1=p)
o Y (BT ok s
o — X X .
K \k-1)7"

In the situation that N < N , all the clients that have reliable
channels will be selected for parameter update. We can thus
compute O, as follows:

0, =PSiltl=1IN=N-1,Re=1)xP(N=N —1)
+ PSi[t]=1IN=N—-2,Ry =1)x P(N =N —2)
+ -+ PSk[t]1=1IN =0,R, = 1) x P(N = 0)

= (K _ l) x pM (1= pyf N

N —1
K —1
+(N_2)XpN—ZX(l_p)K—l—(N—Z)
K —1 K—1
ot (T, ) xa=pfh (36)

The result then follows by substituting (35) and (36) into (34).

B. PROOF OF THEOREM 1

According to (11), f is L-smooth and hence when the global
parameter is updated from w’ to w'*!, the following relation-
ship is satisfied:

L
SO f0) + (Wi =w' V) + S Wi — wil?

K H-1
=f W) =1 D Pk D AWz Exs). VEORL))
k=1 s=0

2

L K H-1
+3|n k3 VA i) 37)
= s=f

From the right-hand side of the above inequality, we can
identify two sources of randomness in a generic round of
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communications: i) the random sampling of data points of
the selected clients during the local computing stage, and
ii) the staleness associated with the parameters of the unse-
lected clients.

We thereby deal with these two aspects separately. First of
all, by taking an expectation on both sides of (37) with respect
to the data points, £, randomly sampled during the ¢-th round
of FL training we have

Ee [f Wit 1]
K H-1
<Fw) =0 ok D B (VAW o5 &), VW)
k=1 5s=0
L K H-1 P
+ 5B [Hn];pk% VAW Es) }
K H-1 L
Lrow—n 2Pk D (VWi ), VW) + S0’ H?C?
k=1 s=0
K H-1 L
=fw)—n Zpkz VW), Vf w0)+ P HC?
k=1 s=0
K H-1
+0 > ok D (VA —g) = VO g0, VW)
k=1 s=0
) K H-1 I
<fOv) =12 piD (Vfewi—z), Vf W)+ 0*H?C?
k=1 s=0
K H-1
0 pe D VA1) = VWi g 0| - IVF )]
k=1 s=0
- WHZPk VI8 ), V) P H2C?
k=1
(38)

where (a) follows from B [Vfi Wy— g2 &)1 = Vi Wi—z.5),
Jensen’s inequality, and using (12); (b) by using the Cauchy-
Schwartz inequality: (x,y) < ||x|| - |ly]l; and (¢) by using (11)
and what follows:

IVfcwi—z) — Ve wi—g 9| - IVf o
= LC”wl—‘L’k — Wi Tk, S”
(k) (k) (k) (k)
= LC(”wt—‘L’k,O t Tk, l” + “wt w1 t T, 2”
(k) (k)
+'”+”wt tes—1 ~ Wi— rks”)

k k
=LCn (VAW DI+ IVAWE, DI
k
+oH IVAME 4 DI
< nHLC?. (39)
Next, we take an expectation on both sides of (38) with

respect totg,k =1,2,...,K.Because the random variables
{Tk}k | areii.d. ~ g, we arrive at the following

[f(WtJrl )]

Eq k=12,..K
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K
<fw) = nH D peBe [(Vfiwi—g). VFw0)]

k=1
+ 371' 772H2 C2
3L
=f W) —nHE[(Vf Wi—zg), VEW))] +7n2H202.
03
(40)

For ease of exposition, let us denote g; = P(tg = [). Then,
using (14), Q3 can be calculated as follows:

t
—nH > qi (Vfw:), Vf wi-1))

=0

03

—nH(1 — YT (VF(wo), VF(w)))

t
—nH Y qi IVf i)l

=0

t
—nH D" q1 (Vfwe) = Vf W), VW, 1)

=0

04
— BTV (wo), V(W) .
Qs

—nH(1

(41)

By interchangeably using the Cauchy-Schwartz and AM-GM
inequalities, we can bound Q4 and Qs as follows:

t t—1
Qu=nHY a1 > (VfWwa)— VfWwar1), Vf W, 1)
1=0 d=t—I
t—1
< HHZQI DNV = VEwarDl - V0
1=0 d=t—I
t—1
<nH Zqz > Liwa —wasill - 1V v
=0 d=t—I
t t—1

=nH Y q Y Ly IVfwa)ll - IVf wi-p)]

1=0 d=t-I
t t—1 2 2
INFwa)II? + 1VF (we—p)l
<n’H ZQIL Z > !
=0 d=t—I
t
=< nzHL qu x 1 x C? (42)
=0
and
Qs = nH(1 — Byt (=Vf(wo), Vf (w))
<nH( = By = Vfwo)ll - IVfw)l
< nH( — g+ IVf wo)lI? ; IV wo)I?
<nH(1—py*ic? 43)
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By substituting (41), (42), and (43) into (38), and taking
expectations to the corresponding random variables, we have

t
E[fwer)] < E[fw)] = nH D" aiE[I1Vf w11
=0
_LnZHZCZ + T]H(l _ ﬂ)t+lc2.
(44)

+ n*HLC*E[ ] +

Following the above inequality, we can rearrange the terms
and telescope through ¢, which yields

T—1 t

_min 1E[||Vf(wt)||2]nH 2 2@

t=0 [=0
[ —

Q6
3
E[f(wo) —fwr)] + n*LC2HT (E[m] + EH)

T—1
+nH Z(l -
t=0
Using (14), we can further bound Qg as follows:
T—1
= z [1-0-
t=0

- A7

ﬂ)t"rlcz. (45)

T—1 1t

=> > BU—p

t=0 =0

1-p
=7 — ——|1—-(
gl

IB)H-I]

=1 - L—a—pr)=pr. (46)

Finally, one can also use the bound th;
the last term in (45) and rewrite it as

: 2
ﬁnTlgSItlél;le][llVf(Wz)ll ]

'(1—p)y*! < 4 on

nHC?

B
(47)

< f(wo) —fW*) + n°LC*HT (E[rR] + %H) +

By further taking n = 1/H~/T we complete the proof.

C. PROOF OF THEOREM 2

Following similar lines from the proof of Theorem 1
(cf. derivation of (40)), we can show that under the ABS
policy, when the global parameter is updated from w’ to w'*1,
the following relationship holds:

Eg qk=1.2, Kk [f("ﬁ—&-l)]
3L
<fW") —nHE,[(Vf(W;—z,), Vf<wt>>]+7n2Hzc2.
07
(48)

Using the distribution of 74 per (27), we can bound Q7 as
follows:

-1 |
Q7=—71H§5(
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VW), Vf(wi—p)

G-1 1
= —nH Y = IVf o)l

=0

Q

— 1
+0H Y = (VF v = V). VF ')
1=
G-1
<-nH
1=0

nHZ (

O

IVf(wt DI

IV oI+ 5 IV )1 )

t—1
[

d=t—
G—-1 1
—nH Y S IVf I + E[eal nHLC?. - (49)
=0

Putting (49) into (48), and taking expectation on both sides
with respect to all the randomness up to communication
round ¢, we have the following

G-1

1
E[f i) < E[f o] =0l > ZE[IVf 00017

=0
2.2 3
+ HLp*C (§H+E[TA]).
(50

By rearranging the terms above and telescoping, we have
the following

T-1 G—-1
nHZ D E[IV wDIP] < Fwo) — F (™)
=0 =0

+HLn>C? (%H +E [‘L’A]) T. (51)

The left hand side of the above inequality can be expressed
as

T-1 1 G—1
nH D = > B[V winl?]
= =0

ﬂ
7

=nH
t=G—1
G-2
+nH
t=0

E[IIVFw—DI?]

QIH
—
I
(=}

i

E[IVFw—DI?]- (52)

QIH
T
o

By jointly considering (51) and (52), we have

HT min E[|V 2
nHT | min | [IIVfwoll?]

< f(wo) — f(w*) +HLn*C? (;H-HE [TA]> T

G—-1 G-1

H
+ e > D E[IVF o]
t=11=G—t
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< f(wo) — f(w*) + HLy*C? (%H + IE3[TA]) T
+ E[t4] x nHC2. (53)

By setting 7 = 1/H~/T, the result follows.

D. PROOF OF THEOREM 3
By substituting (8) into (30) and (31), the procedure of global
parameter updates under momentum can be expressed as
follows:
H-1
Vipt =wi =1 D Pk O VhWig G &), (54)
k=1 s=0
Wil = Vi1 + YW1 — Vo). (55)
We denote by g, = 11 Y pr 10" VWi 51 £D). Then,

(54) can be rewritten as v,41 = w; — g, and the update
procedure (55) can be written as:

Wirl =Wy — &, + y(w; — 8 — Wr-1 +gt—1)- (56)

Let us define an auxiliary term u; as

ur = T—y (wi—wi—1+8_1) (57)
and establish the following relationship based on (56)
2
Uiy = yup — g (58)
=y

Following the update process, one can use the above equa-
tions to express

1
Witl + U1 =wr +up — :g,. (59)
We further denote z; = w; + u; and rewrite (59) as
1
L+l =% — ——&;- (60)
-y

Owing to the smoothness property of f, the following holds:

L
f @) <f @)+ @ =20 V@) + 5 I — |

1 L
= - (g, V - 2
f@) = e V@) + 5l
H-1
=f@)——— Zpk D VAW g5 ED. V@)
k 1 s=0
2L K H-1 2
1D 2 D Vw1 ED)
2 =y) k=1 s=0
08
(61)
We can use Jensen’s inequality to bound Qg as follows:
2 21 2
H-LC
—, 62
0s= 37— (62)
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and write (61) in the following way:

2H2C2L
[ @e1) <f @)+ (1—7/)2

K H-1

- —Zpkz VWi r.5: ). VW)

klsO
K H-1

-— Zpkz Vi Wi—z53 D), VF @) = VF 0).

Vist =0
(63)

Note that (Vfi (W, v, 53 &), Vf (w)—Vf(z;)) can be bounded
using the Cauchy-Schwartz inequality and the smoothness
of f as follows:

(VWi —s3 60, Vfwe) — Vf (@)
< VWi DI - IVf W) = V@)l

SCXLX|wr =2zl =C XL X |lul

@
SCxLx s anygt 11
t—1
= VJ”nglfj”
=
2
y<LC
=< IT Hn kaka(wf 1-j— m,ék)H
k=1 s=1
2 t—1
<3 y/LnHC?
J=0
2 t
1 —
=Y Y S IgHC?, (64)
l—y 1-vy

where (a) follows from solving the recurrence relation in (58).
Therefore, we have

f@ev1)
K H-1
<f@)— —— Zpk D VAW 5 D). V@)
k 1 s=0
2 t 21522
1% 2,00 L=y Ln“H“C
+—(1_V)2 x Ln*H*C? x T, +2(1_ el . (65)

By taking an expectation on both sides of the above
inequality, we have
1—y!
X
-y

K
H
T D P [T, V)]
k=1

Ln*H?>C? (1
n (_+ 2

Ee|f @+1)] < Ee|f @]+ a7

(66)
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which results in the following

nH
Elf @+1D] = Elf @] —E]Em [(Vf Wi—gg), Vf 1) ]

1—y!
X —].
I—y

(67)

Q9
Ln*H*C? (l 5
(1—y)?

Under the RS policy, tx follows the distribution in (14), with
which we can bound Qg as follows using the same set of tricks
used in bounding the term Q3 in (40):

H t
0 = ——[ D arlVFon-nI®
IR

t
+ D @ (Vfwe) = V). Vf wi1)

=0
+ (= BV o), Vf W) |
<-—— ZCHIIVf(Wz DI> + ——n*LC?E[ ]
+nH( — ;9)’+1C2IT (68)

To this end, we can substitute (68) into (67) and obtain the
following

H t
Blf 0] < B @) = 1= 3 B[V 00 ]
=0

Ln?H?*C? (1 2
+ = L=y
21—y

1-y)?
HLn*C? nHC?
+ ——E[w] + (1—p)y*.
11—y I—vy

(69)

We telescope according to the above relationship and arrive
at
T—1

2 ZZqz min_ E[IV/on0)I |

y—Ol—
202

HLn*C nHC2
I, Bl Z(l —p) !

<fwo) —f(w*) +

Ly’H?C? (1 )T ' 70)

(1—y)? 2+1— ~ 1

1=

and the result follows by substituting n = 1/H~/T to the
above.
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