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Online Fixed Fraction Policies in Energy
Harvesting Communication Systems

Ahmed Arafa , Member, IEEE, Abdulrahman Baknina, Student Member, IEEE,
and Sennur Ulukus , Fellow, IEEE

Abstract— We consider power scheduling policies for single-
user energy harvesting communication systems, where the goal
is to characterize online policies that maximize the long term
average utility, for general concave and monotonically increasing
utility functions. The transmitter relies on energy harvested from
nature to send its messages to the receiver, and is equipped with a
finite-sized battery to store its harvested energy. Energy packets
are independent and identically distributed (i.i.d.) over time slots,
and are revealed causally to the transmitter. We first characterize
the optimal solution for the case of Bernoulli arrivals. Then, for
general i.i.d. arrivals, we first show that fixed fraction policies,
in which a fixed fraction of the battery state is consumed in
each time slot, are within a constant multiplicative gap from
the optimal solution for all energy arrivals and battery sizes.
We then derive a set of sufficient conditions on the utility function
to guarantee that fixed fraction policies are within a constant
additive gap as well from the optimal solution. We then apply
these results to a specific scenario where a sensor node collects
samples from a Gaussian source and sends them to a destination
node over a Gaussian channel, and the goal is to minimize the
long term average distortion of the source samples received at
the destination. We study two problem settings for this case: the
first is when sampling is cost-free, and the second is when there
is a sampling cost incurred whenever samples are collected. For
the problem with sampling costs, the transmission policy can be
bursty; the sensor may collect samples and transmit for only a
portion of the time. Finally, we present an alternative analysis
approach that is more tailored to these distortion problems to
show that fixed fraction policies achieve an additive gap that is
independent of the sampling cost.

Index Terms— Energy harvesting, online optimization, general
utility functions, distortion minimization, finite battery, near
optimal policy.

I. INTRODUCTION

OPTIMAL energy management in communication sys-
tems that rely on energy harvested from nature is a
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Fig. 1. Single-user energy harvesting channel with general utility function.

crucial system design aspect to provide a sustainable and
efficient operation over the long run. In this paper, a single-
user communication channel is considered, where the trans-
mitter relies on energy harvested from nature to send its
messages to the receiver. The transmitter has a battery of finite
size to save its incoming energy, and achieves a reward for
every transmitted message that is in the form of some general
concave increasing utility function of the transmission power,
see Fig. 1. The goal is to characterize online power control
policies that maximize the long term average utility subject to
energy causality constraints.

Power scheduling in energy harvesting communications is
mainly categorized in the literature into offline and online
scheduling, depending on whether the amounts/times of the
harvested energy are known prior to communication. Offline
scheduling has been extensively studied in the recent literature.
Earlier works [1]–[4] consider the single-user setting under
different battery size assumptions, with and without fading;
references [5]–[11] extend this to broadcast, multiple access,
and interference settings; and [12]–[15] consider two-hop and
relay channels. Energy cooperation and energy sharing con-
cepts are studied in [16] and [17]. References [18]–[22] study
energy harvesting receivers, where energy harvested at the
receiver is spent mainly for sampling and decoding; [23]–[27]
study the impact of processing costs, i.e., the power spent
for circuitry, on energy harvesting communications; and [28]
studies decoding and processing costs combined in a single
setting for an energy harvesting two-way channel. A source-
channel coding problem with an energy harvesting transmitter
is formulated in [29] to minimize the distortion of source
samples sent to a destination. Impacts of processing and
sampling costs are also studied, and two-dimensional water-
filling interpretations are presented.

Online scheduling has been considered in the literature
mainly through Markov decision processes modeling and
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dynamic programming techniques [3], [4], [30]–[35]. Recently,
however, [36] has introduced an online power control policy
for a single-user energy harvesting channel that maximizes the
long term average throughput under the AWGN capacity utility
function 1

2 log(1 + x). The proposed policy is near optimal in
the sense that it performs within constant multiplicative and
additive gaps from the optimal solution that is independent of
energy arrivals and battery sizes. This constant gap approach
is extended to broadcast channels in [37], multiple access
channels in [38], [39], and systems with processing costs
in [40].

In this paper, we generalize the approaches in [36] to
work for general concave monotonically increasing utility
functions for single-user channels. That is, we consider the
design of online power control policies that maximize the
long term average general utilities. One motivation for this
setting is energy harvesting receivers. Since power consumed
in decoding is modelled as a convex increasing function of the
incoming rate [18], [19], [22], the rate achieved at the receiver
is then a concave increasing function of the decoding power.

We first study the special case of Bernoulli energy arrivals
that fully recharge the battery when harvested, and characterize
the optimal online solution. Then, for the general i.i.d. arrivals,
we show that the policy introduced in [36] performs within
a constant multiplicative gap from the optimal solution for
any general concave increasing utility function, for all energy
arrivals and battery sizes. We then provide sufficient conditions
on the utility function to guarantee that such policy is within
a constant additive gap from the optimal solution. We note
that in [36], the additive gap analysis specifically is highly
dependent on properties of the log function, in particular,
the fact that log(xy) = log(x) + log(y), which are not
possessed in general by other concave utility functions. In this
paper, we perform the additive gap analysis through a dif-
ferent technique than that in [36] by introducing auxiliary
mathematical functions, derived from the utility functions
considered, and based on their behavior we characterize the
additive gap in terms of them. In addition, through our tools,
we present sufficient conditions on utility functions such that
the considered transmission policy is asymptotically optimal
(as opposed to near optimal) as the battery size grows infinitely
large.

We then consider a specific scenario where a sensor node
collects samples from an i.i.d. Gaussian source and sends them
to a destination over a Gaussian channel, and the goal is
to characterize online power control policies that minimize
the long term average distortion of the received samples at
the destination, which is considered in [29] for the offline
setting. We follow the approaches in [36]–[40] to extend the
offline results in [29] to online settings. We formulate two
problems: one with and the other without sampling energy
consumption costs. We show that both problems can be
reformulated as a maximization of a certain concave utility,
and thereby the results derived for general concave utility
functions are applied. In addition, we present an alternative
approach, than that considered for general concave utility
functions, to analyze the additive gap in a way that is tailored
to the distortion minimization problems with and without

sampling costs. Different from the results in [40] for single-
user channels with processing costs, this approach leads to an
additive gap result that is independent of the sampling cost.

We finally note that an independent result on the case with
general utility functions, and concurrent with our conference
versions of this paper [41], [42], has been reported in [43].
The additive gap results in there are derived for functions
that satisfy a specific sub-logarithmic difference property. This
allows for the usage of the properties of the log function in
the same way used in [36] to analyze the additive gap. In this
paper, however, the analysis approach is different. As noted
above, the main technique in analyzing the additive gap is
via the introduction of an auxiliary function derived from the
utility function considered, and then based on its behavior the
additive gap is characterized.

II. GENERAL UTILITY FUNCTIONS

We consider a single-user channel where the transmitter
relies on energy harvested from nature to send its messages to
the receiver. Energy arrives (is harvested) in packets of amount
Et at the beginning of time slot t. Without loss of generality,
a slot duration is normalized to one time unit. Energy packets
follow an i.i.d. distribution with a given mean. Our setting
is online: the amounts of energy are known causally in time,
i.e., after being harvested. Only the mean of the energy arrivals
is known a priori. Energy is saved in a battery of finite size B.

Let u be a differentiable, concave, and monotonically
increasing function representing a general utility (reward)
function, with u(0) = 0 and u(x) > 0 for x > 0, and let
gt denote the transmission power used in time slot t. By allo-
cating power gt in time slot t, the transmitter achieves u (gt)
instantaneous reward. Denoting Et � {E1, E2, . . . , Et}, a fea-
sible online policy g is a sequence of mappings {gt : Et →
R+} satisfying

0 ≤ gt ≤ bt � min{bt−1 − gt−1 + Et, B}, ∀t (1)

with b1 � B without loss of generality (using similar
arguments as in [36, Appendix B]). We denote the above
feasible set in (1) by F , which represents the energy causality
constraints. Given a feasible policy g, we define the n-horizon
average reward as

Un(g) � 1
n

E

[
n∑

t=1

u (gt)

]
(2)

Our goal is to design online power scheduling policies that
maximize the long term average reward subject to (online)
energy causality constraints. That is, to characterize

ρ∗ � sup
g∈F

lim inf
n→∞ Un(g) (3)

We note that problem (3) can be solved by dynamic pro-
gramming techniques since the underlying system evolves as a
Markov decision process. However, the optimal solution using
dynamic programming is usually computationally demanding
with few structural insights. Therefore, in the sequel, we aim
at finding relatively simple online power control policies that
are provably within a constant additive and multiplicative gap
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from the optimal solution for all energy arrivals and battery
sizes.

We assume that Et ≤ B ∀t a.s., since any excess energy
above the battery capacity cannot be saved or used. Let μ =
E[Et], where E[·] is the expectation operator, and define

q � E[Et]
B

(4)

Then, we have 0 ≤ q ≤ 1 since Et ≤ B a.s. We define the
power control policy as follows [36]

g̃t = qbt (5)

That is, in each time slot, the transmitter uses a fixed fraction
of its available energy in the battery. Such policies were first
introduced in [36], and coined fixed fraction policies (FFP).
Clearly such policies are always feasible since q ≤ 1. Let ρ (g̃)
be the long term average utility under the FFP {g̃t}. Next,
we find the optimal solution of problem (3) under the specific
case of Bernoulli energy arrivals. After that, we discuss how
the FFP performs under general i.i.d. energy arrivals.

A. Bernoulli Energy Arrivals

Let {Êt} be a Bernoulli energy arrival process with mean
μ as follows

Êt =

{
B, w.p. p

0, w.p. 1 − p
(6)

Note that under such specific energy arrival setting, whenever
an energy packet arrives, it completely fills the battery, and
resets the system. This constitutes a renewal. Then, by [44,
Th. 3.6.1] (see also [36]), the following holds for any power
control policy g

lim inf
n→∞ Ûn(g) = lim inf

n→∞
1
n

E

[
n∑

t=1

u (gt)

]

=
1

E[L]
E

[
L∑

t=1

u (gt)

]
(7)

where Ûn(g) is the n-horizon average utility under Bernoulli
arrivals, and L is a random variable denoting the inter-
arrival time between energy arrivals, which is geometric with
parameter p, and E[L] = 1/p.

We note that using the FFP defined in (5) in (7) gives a lower
bound on the optimal long term average utility. In this case,
by (6), the fraction q in (4) is now equal to p. Also, the battery
state decays exponentially in between energy arrivals. To see
this, observe that b1 = B, and hence g1 = pB. We then get
that b2 = B − pB = (1 − p)B, and hence g2 = p(1 − p)B.
This leads to b3 = (1 − p)B − p(1 − p)B = (1 − p)2B, and
hence g3 = p(1 − p)2B, and so on. In general, the FFP is

g̃t = p(1 − p)t−1B = (1 − p)t−1μ (8)

for all time slots t, where the second equality follows since
pB = μ.

Using (7), one can simplify the long term average utility
under Bernoulli arrivals as follows (see also [36])

1
E[L]

E

[
L∑

t=1

u (gt)

]
= p

∞∑
l=1

p(1 − p)l−1
l∑

t=1

u(gt)

= p2
∞∑

t=1

u(gt)
∞∑
l=t

(1 − p)l−1

= p2
∞∑

t=1

(1 − p)t−1

p
u(gt) (9)

Whence, problem (3) in this case reduces to1

max
g

∞∑
t=1

p(1 − p)t−1u (gt)

s.t.
∞∑
t=1

gt ≤ B, gt ≥ 0, ∀t (10)

which is a convex optimization problem. We note that if u
is linear, i.e., u(gt) = κgt for some constant κ > 0, then
the solution to the above problem would directly be given
by g∗1 = B, and g∗t = 0 for t ≥ 2, since the coefficients
p(1 − p)t−1 are decreasing. This means that the optimal
solution is greedy for linear utility functions; once the battery
is recharged, it is immediately used. We therefore continue
this section with the more challenging case where u is strictly
concave. The Lagrangian for the problem in this case is,

L = −
∞∑
t=1

p(1 − p)t−1u (gt) + λ

( ∞∑
t=1

gt − B

)
−

∞∑
t=1

ηtgt

(11)

where λ and {ηt} are Lagrange multipliers. Taking derivative
with respect to gt and equating to 0 we get2

u′ (gt) =
λ − ηt

p(1 − p)t−1
(12)

Since u is strictly concave, u′ is monotonically decreasing and
its functional inverse v � (u′)−1 exists, and is also monotoni-
cally decreasing. By complementary slackness, we have ηt = 0
for gt > 0, and the optimal power in this case is given by

gt = v

(
λ

p(1 − p)t−1

)
(13)

and it now remains to find the optimal λ. We note that
by monotonicity of v, {gt} is non-increasing. We also note
that if u′(x) grows unboundedly as x → 0, then gt > 0
∀t. For if gt0 = 0 in some time slot t0, then this would
directly mean, by (13), that u′(0) = λ/p(1 − p)t0−1 < ∞; an
obvious contradiction. Therefore, the optimal power allocation

1It can be argued [45, Th. 6.4] that there exists a stationary policy that
achieves ρ∗; we find this optimal policy using the maximization problem in
(10).

2We note that deriving the KKT conditions for the infinite number of
variables considered in this problem can be handled slightly differently by,
e.g., considering a finite number of variables and taking the limit as this
number goes to infinity, as done in [36, Appendix C]. Such details are omitted
here.
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sequence is an infinite sequence in this case, and we solve the
following equation for the optimal λ

∞∑
t=1

v

(
λ

p(1 − p)t−1

)
= B (14)

which has a unique solution by monotonicity of v.
Now let us assume that u′(0) is finite. Since u′ is decreasing,

it holds that

gt = v

(
λ

p(1 − p)t−1

)
> 0 ⇐⇒ λ < p(1 − p)t−1u′(0)

(15)

Thus, there exists a time slot N , after which the second
inequality in (15) is violated since λ is a constant and
p(1 − p)t−1 is decreasing. In this case the optimal power
allocation sequence is only positive for a finite number of
time slots 1 ≤ t ≤ N . We note that N is the smallest integer
such that

λ ≥ p(1 − p)Nu′(0) (16)

One way to find the optimal N (and λ) is by first assuming
N is equal to some integer {1, 2, 3, . . .}, and solving the
following equation for λ

N∑
t=1

v

(
λ

p(1 − p)t−1

)
= B (17)

which, again, has a unique solution by monotonicity of v.
We then check if (16) is satisfied for that choice of N and λ.
If it is, we stop. If not, we increase the value of N and
repeat. This way, we reach a KKT point,3 which is sufficient
for optimality by convexity of the problem [46]. We note that
if one can solve for λ in terms of N , then we would directly
find the optimal N as the smallest integer satisfying (16).
This, however, depends on the structure of v. For instance,
for u(x) = 1

2 log(1 + x) whose u′(0) is finite, [36] was
able to solve for λ in terms of N , which was termed Ñ .
We generalize their analysis for any concave increasing
function u. This concludes the discussion of the optimal
solution in the case of Bernoulli energy arrivals.

B. General i.i.d. Energy Arrivals

We now consider the case of a general i.i.d. energy arrival
process. We first have the following two results. The proofs
are in Appendices A and B, respectively.

Lemma 1: The optimal solution of problem (3) satisfies

ρ∗ ≤ u(μ) (18)

Theorem 1: The achieved long term average utility under
the FFP in (5) satisfies

1
2
≤ ρ (g̃)

u (μ)
≤ 1 (19)

We note that the results in Lemma 1 and Theorem 1 indicate
that the FFP in (5) achieves a long term average utility that is

3By KKT point, we mean a set of primal and dual variables that satisfy the
KKT conditions [46].

within a constant multiplicative gap from the optimal solution
that is equal to 1

2 . This result is proved in [36] for u(x) =
1
2 log(1 + x). Here, we are generalizing it to work for any
concave increasing function u with u(0) = 0.

Next, we state the additive gap results. We first define the
following auxiliary function that helps in assessing the gap.
Its exact mathematical use will appear later on in the analysis
(cf. Theorem 2). Let

hθ(x) � u(θx) − u(x) (20)

for some 0 ≤ θ ≤ 1, and define the following two classes of
utility functions.

Definition 1 (Utility Classes): A utility function u belongs
to class (A) if hθ(x) does not converge to 0 as x → ∞, and
belongs to class (B) if limx→∞ hθ(x) = 0.

Now let us define the following function for 0 < θ < 1

h(θ) � inf
x

hθ(x) (21)

whenever the infimum exists. Note that the infimum exists
for class (B) utility functions since hθ(x) < 0 for x > 0
by monotonicity of u, and hθ(0) = 0. We discuss different
examples of h(θ) in Section IV. The next lemma states some
of its properties.

Lemma 2: h(θ) is non-positive, concave, and increasing
in θ.

Proof: Since u is increasing and 0 < θ < 1, then hθ(x) =
u(θx) − u(x) < 0 for all x, and hence the infimum is non-
positive. Concavity follows by the concavity of u and the fact
that the infimum of concave functions is also concave [46].
Finally, h is increasing since u is monotonically increasing.
To see this, let θ1 > θ2, and let xi ∈ arg infx hθi(x), i ∈
{1, 2}. Then, we have h (θ1) = lim

x→x1

hθ1(x) > lim
x→x1

hθ2(x) ≥
lim

x→x2

hθ2(x) = h (θ2), where the first inequality follows by

monotonicity of u. �
The next two theorems summarize the additive gap results

for utility functions in classes (A) and (B) in Definition 1.
The proofs are in Appendices C and D, respectively.

Theorem 2: If h(θ) exists, and if

r � (1 − q) lim
t→∞

1 − lim
x→x̄t+1

u
(
(1 − q)t+1x

)
/u(x)

1 − lim
x→x̄t

u ((1 − q)tx) /u(x)
<1 (22)

where x̄t ∈ arg infx h(1−q)t(x); then the achieved long term
average utility under the FFP in (5) satisfies

u (μ) + α ≤ ρ (g̃) ≤ u (μ) (23)

where α �
∑∞

t=0 q(1 − q)th ((1 − q)t) is finite.
Theorem 3: For class (B) utility functions, the achieved

long term average utility under the FFP in (5) satisfies

lim
μ→∞ ρ (g̃) = ρ∗ (24)

We note that the results in Lemma 1 and Theorem 2
indicate that the FFP in (5) achieves a long term average
utility, under some sufficient conditions, that is within a
constant additive gap from the optimal solution that is equal to∣∣∑∞

t=0 q(1 − q)th ((1 − q)t)
∣∣. One can further make this gap
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independent of q by minimizing it over 0 ≤ q ≤ 1. We discuss
examples of the above results in Section IV, where we also
comment on FFP performance under utility functions that do
not satisfy the sufficient conditions in Theorem 2.

III. SPECIFIC SCENARIO: DISTORTION MINIMIZATION

We now focus on a specific scenario of a sensor node
collecting i.i.d. Gaussian source samples, with zero-mean
and variance σ2

s, over a sequence of time slots. Samples
are compressed and sent over an additive white Gaussian
noise channel, with variance σ2

c , to an intended destination.
We consider a strict delay scenario where samples need to be
sent during the same time slot in which they are collected.
With a mean squared error distortion criterion, the average
distortion of the source samples in time slot t, Dt, is given
by [47]

Dt = σ2
s exp (−2rt) (25)

where rt denotes the sampling rate at time slot t.
The sensor uses energy harvested from nature to send

its samples over the channel, with minimal distortion, and
consumes energy in sampling and transmission. Depending on
the physical settings, sampling energy cost can be a significant
system aspect and needs to be taken into consideration [29].
We formulate two different problems for that matter: one
without, and the other with sampling costs as follows.

We first consider the case of no sampling cost, where energy
is consumed only in transmission. By allocating power gt at
time slot t to the Gaussian channel, the sensor achieves an
instantaneous communication rate of [47]

rt =
1
2

log
(
1 + gt/σ2

c

)
(26)

Given a feasible policy g, and using (25) and (26), we define
the n-horizon average distortion as follows

Dn(g) � 1
n

E

[
n∑

t=1

σ2
s

1 + gt/σ2
c

]
(27)

Our goal is to minimize the long term average distortion, sub-
ject to (online) energy causality constraints. That is, to char-
acterize the following

d∗ � inf
g∈F

lim sup
n→∞

Dn(g) (28)

where F is as defined in (1).
Now let us consider the case where sampling the source

incurs an energy cost ε per unit time, that is a constant
independent of the sampling rate. Due to the sampling cost,
collecting all the source samples might not be optimal. Hence,
we allow the sensor to be on during a θt ≤ 1 portion of time
slot t, and turn off for the remainder of the time slot. The
expected distortion achieved in time slot t under this setting
is now given by

Dε
t = (1 − θt)σ2

s + θtσ
2
s exp (−2rt) (29)

and the feasible set Fε is now given by the sequence of
mappings {(θt, gt) : Et → [0, 1]× R+} satisfying

θt(ε + gt) ≤ bt � min{bt−1 − θt−1(ε + gt−1) + Et, B}, ∀t

(30)

with b1 � B; compare the feasible set in (30) with cost
to the feasible set in (1) with no additional cost. We note
that the problem with sampling costs is formulated slightly
different in [29]. In our formulation, the expected distortion
is interpreted by time sharing between not transmitting (and
hence achieving σ2

s) and transmitting with rate rt (and hence
achieving σ2

s exp(−2rt)). Given a feasible policy (θ, g), and
using (26) and (29), we define the n-horizon average distortion
with sampling costs as

Dε
n (θ, g) � 1

n
E

[
n∑

t=1

(1 − θt)σ2
s + θt

σ2
s

1 + gt/σ2
c

]
(31)

whence our goal is to characterize

d∗ε � inf
(θ,g)∈Fε

lim sup
n→∞

Dε
n (θ, g) (32)

In the next subsection (Section III-A), we discuss how
problems (28) and (32) can be analyzed using the results
in Section II, and then, in the following subsection
(Section III-B), we propose a relatively easier approach from
that considered in Section II to analyze their additive gap
results. Namely, this different approach does not include the
computation of the term α in Theorem 2.

A. Connection to General Utility Results

We first note that the distortion function

f(x) � σ2
s

1 + x/σ2
c

(33)

is convex and decreasing in x. Hence, the function ū(x) �
− σ2

s

1+x/σ2
c

+ σ2
s is concave and increasing in x with ū(0) = 0.

One can therefore apply the results of Section II to prob-
lem (28) after changing the minimization to maximization and
the distortion function to the function ū above.

Applying the results of Section II to the case with sampling
costs, however, is not as direct. This is mainly because the
optimization is over two sequences of variables {θt} and {gt}.
Towards that, we observe that the achieved distortion in a given
time slot is a function of the total amount of energy allocated
to that time slot, cast as an optimization problem that finds
the optimal division of the energy allocated between sampling
energy costs and transmission powers. Namely, for an amount
of energy x allocated to a time slot, the achieved distortion
with sampling costs in that time slot is given by

fε(x) � min
θ,ḡ

(1 − θ)σ2
s + θ

σ2
s

1 + ḡ
θσ2

c

s.t. θε + ḡ ≤ x, 0 ≤ θ ≤ 1 (34)

which is basically a minimization of (29) given a total allo-
cated energy of x, after substituting (26), and a change of
variables ḡ � θg. We now have the following properties for
fε.

Lemma 3: The function fε is convex and decreasing.

Proof: fε is decreasing since allocating more energy can
strictly decrease the distortion by increasing ḡ. Now let us
denote the objective function of the optimization problem
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by H (θ, ḡ). This function is jointly convex in (θ, ḡ) since
the second term is the perspective function of the convex
function f(ḡ), and is therefore jointly convex in (θ, ḡ) [46].
Proceeding to show convexity of fε, let (θ1, ḡ1) and (θ2, ḡ2)
be the solutions achieving fε(x1) and fε(x2), respectively,
for some x1, x2 ≥ 0. Now choose λ ∈ [0, 1], and let xλ �
λx1 +(1−λ)x2. It is direct to see that the convex combination
(θλ, ḡλ) � (λθ1 + (1 − λ)θ2, λḡ1 + (1 − λ)ḡ2) is feasible for
xλ. Therefore,

fε (xλ) ≤ H (θλ, ḡλ)

≤ λH (θ1, ḡ1) + (1 − λ)H (θ2, ḡ2)

= λfε (x1) + (1 − λ)fε (x2) (35)

where the second inequality follows by convexity of H . �
In view of Lemma 3, we see that the function ūε(x) �

−fε(x) + σ2
s is concave and increasing in x with ūε(0) = 0.

Hence, the results of Section II can be applied to problem
(32) after changing the minimization to maximization and the
distortion with sampling cost function to the function ūε above.

We note that while the optimization problem characterizing
fε is convex, that can be solved by standard techniques [46],
the function fε is not directly differentiable in its current
form. Therefore, we present an explicit characterization of the
optimal pair (θ∗, ḡ∗), and write fε(x) directly terms of them.
Towards that end, we first make the substitution ḡ = x − θε
into the objective function. The problem now becomes

min
0≤θ≤min{1,x/ε}

θ

1 − ε
σ2

c
+ x

θσ2
c

− θ (36)

where the constraint θ ≤ x/ε ensures non-negativity of ḡ.
One can show that the objective function above is convex in
θ. Hence, we take the derivative, equate to 0, solve for θ, and
then project the solution onto the feasible set to get the optimal
solution of this problem [46]. This gives

θ∗ = min

{
x

ε +
√

εσ2
c

, 1

}
, g∗ = max

{
x − ε,

√
εσ2

c

}
(37)

where g∗ is found by computing ḡ∗/θ∗. Substituting the above
into the objective function, H , gives

fε(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ2
s

⎛
⎜⎜⎝1 − x(

ε +
√

εσ2
c

)(
1 + σ2

c√
εσ2

c

)
⎞
⎟⎟⎠ , x < ε+

√
εσ2

c

σ2
s

1 + x−ε
σ2

c

, x ≥ ε+
√

εσ2
c

(38)

One can check that fε(x) is differentiable at x = ε +
√

εσ2
c ,

and hence differentiable on its domain. We note that if the
battery size is small enough, namely B ≤ ε +

√
εσ2

c , then the
distortion function fε will always be linear in the allocated
energy, and therefore the optimal solution under Bernoulli
arrivals becomes greedy as noted in Section II-A.

We also note that ū′
ε(0) is finite, and therefore the results

in Section II-A show that the optimal solution of (32) under
Bernoulli arrivals is a finite sequence. Let us denote by Nε

the last time slot of transmission in this case. We have the
following structural result of the optimal solution in this case,
whose proof is in Appendix E.

Lemma 4: Under Bernoulli arrivals, the optimal solution
of (32) can only be bursty in the final time slot of transmission,
Nε. That is: θ∗t = 1 for t < Nε; 0 < θNε ≤ 1; and θ∗t = 0
for t > Nε.

We note that similar results regarding the burstiness of the
last time slot have been reported in [40] in case of single-user
channels with processing costs.

It is worth noting that both ū and ūε defined in this
section belong to class (B) utility functions (more on this
in Section IV), and hence the FFP is asymptotically optimal
in the battery size by Theorem 3, and the additive gap for
finite battery sizes is given by the term α in Theorem 2.

B. Alternative Additive Gap Approach

In this section, we provide a different approach than that of
Theorem 2 to analyze the additive gaps of FFP in problems
(28) and (32), under general i.i.d. arrivals. The approach leads
to additive gaps that do not need the computation of the term
α in Theorem 2. Moreover, unlike α, the gap for problem (32)
is independent of the sampling cost ε.

For problem (28), we define the power control policy as
follows [36]

g̃t = qbt (39)

and for problem (32), we define it as

θ̃t(ε + g̃t) = qbt (40)

That is, for either problem, in each time slot, the sensor uses
a fixed fraction of its available energy in the battery. We note
that using (40) in problem (32) decouples the problem into
multiple single-slot problems where the energy consumption
in time slot t is qbt. This allows for finding the optimal division
of the allocated energy qbt among θ̃t and g̃t by (37) as

θ̃t = min

{
qbt

ε +
√

εσ2
c

, 1

}
, g̃t = max

{
qbt − ε,

√
εσ2

c

}
(41)

Observe that in the above assignment, for a single energy
arrival, either the transmission power or the on time decreases
over slots in a fractional manner, i.e., while one decreases the
other one is fixed. This is different from the proposed FFP
in [40] where both the power and the on time can decrease
simultanesouly over time.

Let d (g̃) and dε

(
θ̃, g̃

)
denote the long term average dis-

tortion under {g̃t} in (39) and {(θ̃t, g̃t)} in (41), respectively.
We now characterize the performance of FFP in the case of
general i.i.d. arrivals in the following two theorems. The proofs
are in Appendices F and G, respectively.

Theorem 4: For all i.i.d. energy arrivals with mean μ,
the optimal solution of problem (28) satisfies

d∗ ≥ f(μ) (42)
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and the FFP in (39) satisfies

f(μ) ≤ d (g̃) ≤ f(μ) +
1
2
σ2

s (43)

for all values of μ and σ2
c , where f is as defined in (33).

Theorem 5: For all i.i.d. energy arrivals with mean μ,
the optimal solution of problem (32) satisfies

d∗ε ≥ fε(μ) (44)

and the FFP in (41) satisfies

fε(μ) ≤ dε

(
θ̃, g̃

)
≤ fε(μ) +

1
2
σ2

s (45)

for all values of ε, μ, and σ2
c , where fε is as defined in (34).

Note that the results in the two theorems above directly
imply that the average long term distortion under the FFP
proposed for both problems (32) and (28) lies within a constant
additive gap from the optimal solution. We also see that the
additive gap indicated in Theorem 5 does not depend on the
sampling cost ε, unlike the term α in Theorem 2.

IV. EXAMPLES AND DISCUSSION

In this section we present some examples to illustrate the
results of this work. We first show that the utility function
u(x) = 1

2 log(1 + x) considered in [36] belongs to class (A).
Indeed we have h′

θ(x) = θ−1
2(1+θx)(1+x) , which is negative for

all 0 < θ < 1, and therefore hθ(x) is decreasing in x and does
not converge to 0. We then show that the sufficient conditions
of Theorem 2 are satisfied. We have the function

h(θ) = lim
x→∞

1
2

log
1 + θx

1 + x
=

1
2

log(θ) (46)

exists, and the ratio

r = (1 − q) lim
t→∞

1 − lim
x→∞ log(1 + (1 − q)t+1x)/ log(1 + x)

1 − lim
x→∞ log(1 + (1 − q)tx)/ log(1 + x)

= 1 − q (47)

is less than 1, and hence the gap α is finite. Furthermore, [36]
showed that minimizing α over all q gives a constant additive
gap, independent of q, that is equal to 0.72.

Next, we note that all bounded utility functions belong to
class (B). These are functions u where there exists some
constant M < ∞ such that u(x) ≤ M, ∀x. Examples for these
include: u(x) = 1− e−βx for some β > 0, u(x) = x/(1 +x),
and the negative distortion function ū(x) = − σ2

s

1+x/σ2
c

+ σ2
s.

To see that these functions belong to class (B), observe
that lim

x→∞u(x) = M by monotonicity of u, and hence

lim
x→∞u(θx) − u(x) = 0. We also note that class (B) is
not only inclusive of bounded utility functions. For example,
the unbounded function u(x) =

√
log(1 + x) satisfies

lim
x→∞

√
log(1 + θx) −

√
log(1 + x)

=
log(θ)

lim
x→∞

√
log(1 + θx) +

√
log(1 + x)

= 0 (48)

and therefore belongs to class (B). For such unbounded
functions in class (B), the FFP is not only within a constant

Fig. 2. Performance of the FFP with no sampling costs.

Fig. 3. Performance of the FFP with sampling costs.

additive gap of the optimal solution, but it is asymptotically
optimal as well, as indicated by Theorem 3.

Note that one can find a (strict) lower bound on h(θ) for
some utility functions if it allows a more plausible bound on
α, or if h(θ) itself is not direct to compute. For instance, for
any bounded utility function u, the following holds: h(θ) ≥
(θ − 1)M , where M is the upper bound on u. To see this,
observe that by concavity of u and the fact that u(0) = 0 we
have

inf
x

u(θx) − u(x) ≥ (θ − 1) sup
x

u(x) (49)

This gives

α ≥
∞∑
t=0

q(1 − q)t
(
(1 − q)t − 1

)
M

=
q − 1
2 − q

M

≥ −1
2
M (50)

where the second inequality follows since q−1
2−q is minimized

at q = 0. Another example is u(x) = 1
2 log (1 +

√
x), which
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Fig. 4. FFP (left) vs. optimal policy (right) with sampling costs and one energy arrival with B = 40.

belongs to class (A). We observe that h(θ) in this case is
lower bounded by 1

2 log(θ). Hence, this function admits an
additive gap no larger than 0.72 calculated in [36] for u(x) =
1
2 log(1 + x).

Finally, we note that the conditions of Theorem 2 are only
sufficient for the FFP defined in (5) to be within an additive
gap from optimal. For instance, consider u(x) =

√
x. This

function belongs to class (A) as hθ(x) =
√

θx − √
x does

not converge to 0. In fact, hθ(x) is unbounded below and
h(θ) does not exist. This means that any FFP of the form
g̃t = θbt, for any choice of 0 < θ < 1, is not within a
constant additive gap from the upper bound

√
μ. However,

there exists another FFP (with a different fraction than q
in (4)) that is optimal in the case of Bernoulli arrivals. Since
lim
x→0

u′(x) = ∞, we use (14) to find the optimal λ, where

v(x) = 1/(4x2), and substitute in (13) to get that the optimal
transmission scheme is fractional: gt = p̂ (1 − p̂)(t−1)

B, ∀t,
where the transmitted fraction p̂ � 1−(1−p)2. This shows that
one can pursue near optimality results under an FFP by further
optimizing the fraction of power used in each time slot, and
comparing the performance directly to the optimal solution
instead of an upper bound. While in this work, we compared
the lower bound achieved by the FFP to a universal upper
bound that works for all i.i.d. energy arrivals.

Next, we present some examples regarding the distortion
minimization setting. We set both σ2

s and σ2
c to unity, and

consider a system with Bernoulli energy arrivals with proba-
bility p = 0.5. In Fig. 2, we plot the lower bound on the long
term average distortion for the problem without sampling costs
along with the FFP, against the battery size B. We also plot the
optimal solution in this scenario. We see that the FFP performs
very close to the optimal policy. We note that the empirical
gap between the optimal policy and the FFP is no larger than
0.03, while the empirical gap between the lower bound and
the FFP is no larger than 0.15, which is almost equal to the
term α in Theorem 2, and lower than the theoretical gap of
0.5 in Theorem 4.

In Fig. 3, we plot the same curves for the problem with
sampling costs. We set the sampling cost ε = 1.5. We notice

that the distortion levels are higher in general when compared
to the case without sampling costs, which is mainly due to
having some energy spent in sampling instead of reducing
distortion. The empirical gap in this case is 0.22, which is
almost equal to the term α in Theorem 3, and lower than the
theoretical gap of 0.5 in Theorem 5.

In Fig. 4, we show the FFP (left hand side in blue) versus
the optimal policy (right hand side in red) for B = 40 during
only one renewal period, i.e., for one energy arrival. We plot
the power and the transmit duration (burstiness) during the
first 10 time slots, with the height representing power and
the width representing burstiness. We see that in the FFP on
the left, for time slots 1 through 3, the transmission power
g̃t decreases fractionally while the value of θ̃t is constant at
unity. Starting from time slot 4 onwards, the opposite occurs;
the value of θ̃t decreases fractionally while the transmission
power g̃t is constant at 1.225. As indicated by (41), either the
power or the transmit duration decreases fractionally while the
other is constant over time. On the other hand, in the optimal
policy on the right, we see that the transmission power g∗t is
decreasing all the way to the end. In this example, the last
time slot of transmission is Nε = 6, and the transmission is
bursty only in that time slot, as indicated by Lemma 4, with
θ∗6 = 0.78.

V. CONCLUSION

We considered online power scheduling policies in single-
user energy harvesting channels, where the goal is to maximize
the long term average utility for a general concave increasing
utility function. We showed that fixed fraction policies achieve
a long term average utility that lies within a constant mul-
tiplicative gap from the optimal solution for all i.i.d. energy
arrivals and battery sizes. We then derived sufficient conditions
on the utility function to guarantee that fixed fraction policies
are within a constant additive gap from the optimal solution as
well. We then considered a specific scenario where a source is
aiming at sending Gaussian samples over a Gaussian channel
with minimal long term average distortion. We studied this
problem with and without sampling costs, showed that they
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both can be reformulated in the context of concave utility
maximization, and proposed a different approach to analyze
the additive gaps that is tailored to the distortion minimization
problems. This alternative approach is relatively easier to
compute, and provides an additive gap that is independent of
the sampling cost.

APPENDIX

A. Proof of Lemma 1

Following [36] and [40], we first remove the battery capacity
constraint setting B = ∞. This way, the feasible set F in (1)
becomes

n∑
t=1

gt ≤
n∑

t=1

Et, ∀n (51)

Then, we remove the expectation and consider the offline
setting of problem (3), i.e., when energy arrivals are known
a priori. Since the energy arrivals are i.i.d., the strong law
of large numbers indicates that lim

n→∞
1
n

∑n
t=1 Et = μ a.s.,

i.e., for every δ > 0, there exists n large enough such that
1
n

∑n
t=1 Et ≤ μ+δ a.s., which implies by (51) that the feasible

set, for such (δ, n) pair, is given by

1
n

n∑
t=1

gt ≤ μ + δ a.s. (52)

Now fix such (δ, n) pair. The objective function is given by

1
n

n∑
t=1

u(gt) (53)

Since u is concave, the optimal power allocation minimizing
the objective function is gt = μ + δ, 1 ≤ t ≤ n [46] (see
also [1]). Whence, the optimal offline solution is given by
u(μ + δ). We then have ρ∗ ≤ u(μ + δ). Since this is true
∀δ > 0, we can take δ down to 0 by taking n infinitely large.

B. Proof of Theorem 1

We first derive a lower bound on the long term average
utility for Bernoulli energy arrivals under the FFP as follows

lim inf
n→∞ Ûn(g̃)

(a)
= p

∞∑
i=1

p(1 − p)i−1
i∑

t=1

u (g̃t)

=
∞∑

t=1

p(1 − p)t−1u
(
(1 − p)t−1μ

)
(54)

(b)

≥
∞∑

t=1

p(1 − p)2(t−1)u (μ)

=
1

2 − p
u(μ)

≥ 1
2
u(μ) (55)

where (a) follows by (7), (b) follows by concavity of u [46],
and the last inequality follows since 0 ≤ p ≤ 1. Next,
we use the above result for Bernoulli arrivals to bound the long
term average utility for general i.i.d. arrivals under the FFP

in the following lemma; the proof follows by concavity and
monotonicity of u, along the same lines of [36, Section VII-C],
and is omitted for brevity.

Lemma 5: Let {Êt} be a Bernoulli energy arrival process
as in (6) with parameter q as in (4) and mean qB = μ. Then,
the long term average utility under the FFP for any general
i.i.d. energy arrivals, ρ(g̃), satisfies

ρ(g̃) ≥ lim inf
n→∞ Ûn(g̃) (56)

Using Lemma 1, (55), and Lemma 5, we have

1
2
u(μ) ≤ ρ(g̃) ≤ ρ∗ ≤ u(μ) (57)

C. Proof of Theorem 2

By Lemma 1 and Lemma 5, it is sufficient to study the lower
bound in the case of Bernoulli arrivals. By (54) we have

lim inf
n→∞ Ûn(g̃) =

∞∑
t=1

p(1 − p)t−1u
(
(1 − p)t−1μ

)
(c)

≥
∞∑

t=1

p(1 − p)t−1
(
u (μ) + h

(
(1 − p)t−1

))

= u(μ) +
∞∑
t=0

p(1 − p)th
(
(1 − p)t

)
� u(μ) + α (58)

where (c) follows since h(θ) exists, and is by definition no
larger than hθ(x), ∀x, θ. Now to check whether α is finite,
we apply the ratio test to check the convergence of the series∑∞

t=0(1 − p)th ((1 − p)t). That is, we compute

r � lim
t→∞

∣∣∣∣∣ (1 − p)t+1h
(
(1 − p)t+1

)
(1 − p)th ((1 − p)t)

∣∣∣∣∣
= (1 − p) lim

t→∞

inf
x

1 − u
(
(1 − p)t+1x

)
/u(x)

inf
x

1 − u ((1 − p)tx) /u(x)
(59)

where the second equality follows by definition of h. Next,
we replace infx by lim

x→x̄t

since x̄t ∈ arg inf h(1−p)t(x), and

take the limit inside (after the 1). Finally, if r < 1 then α
is finite; if r > 1 then α = −∞; and if r = 1 then the
test is inconclusive and one has to compute lim

T→∞
∑T

t=0 p

(1 − p)th ((1 − p)t) to get the value of α.

D. Proof of Theorem 3

For utility functions of class (B), we have lim
x→∞u(θx) −

u(x) = 0. Thus, ∀ε > 0 there exists μ̄ large enough such that

u
(
(1 − p)t−1μ

)
> u (μ) − ε, ∀μ ≥ μ̄ (60)

whence, for Bernoulli energy arrivals we have

lim inf
n→∞ Ûn(g̃) =

∞∑
t=1

p(1 − p)t−1u
(
(1 − p)t−1μ

)
≥ u (μ) − ε, ∀μ ≥ μ̄ (61)
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It then follows by Lemma 1 and Lemma 5 that

ρ∗ ≥ ρ (g̃) ≥ u (μ) − ε ≥ ρ∗ − ε, ∀μ ≥ μ̄ (62)

and we can take ε down to 0 by taking μ infinitely large.

E. Proof of Lemma 4

Following the analysis in Section II-A, and applying the
change of variables ḡt � θtgt, problem (32) under Bernoulli
arrivals can be rewritten as

min
θ,g

∞∑
t=1

p(1 − p)t−1

(
(1 − θt)σ2

s + θt
σ2

s

1 + ḡt

θtσ2
c

)

s.t.
∞∑
t=1

ḡt + θtε ≤ B

ḡt ≥ 0, 0 ≤ θt ≤ 1, ∀t (63)

The Lagrangian is

L =
∞∑

t=1

p(1 − p)t−1

(
(1 − θt)σ2

s + θt
σ2

s

1 + ḡt

θtσ2
c

)

+ λ

( ∞∑
t=1

ḡt + θtε − B

)
−

∞∑
t=1

ηtḡt

−
∞∑
t=1

γtθt +
∞∑

t=1

ωt(θt − 1) (64)

where λ, {ηt}, {γt}, and {ωt} are non-negative Lagrange
multipliers. Taking derivative with respect to ḡt and equating
to 0, we get

σ2
sp(1 − p)t−1

σ2
c (1 + ḡt/θtσ2

c)
2 = λ − ηt (65)

which can be rewritten as follows using complementary slack-
ness

ḡt

θt
= σ2

c

(√
σ2

sp(1 − p)t−1

σ2
cλ

− 1

)+

(66)

where (x)+ = max{x, 0}. This shows that the optimal power
gt is monotonically decreasing over time, and verifies that
there exists a time slot after which there is no transmission
and all powers are 0, that we denote Nε. Now let us take the
derivative of the Lagrangian with respect to θt, equate it to 0,
and use (65) to get

ḡt

θt
= σ2

c

√
λε − γt + ωt

σ2
c(λ − ηt)

(67)

We now argue that ḡt = 0 if and only if θt = 0. Clearly θt =
0 implies ḡt = θtgt = 0. To see the other direction, assume
ḡt = 0 for some time slot t. Then, the achieved distortion
in this time slot is given by σ2

s regardless of the value of θt.
Therefore, setting θt = 0 saves ε energy per unit time in this
time slot that can be used in another time slot i to increase its
transmission energy ḡi and achieve lower distortion. Hence,
after time slot Nε, we see that ḡt = 0 according to (66), and
hence θ∗t = 0 for t > Nε.

Next, let us assume that 0 < θ∗j < 1 for some time slot j.
By the previous argument we have ḡj > 0. By complementary
slackness, we also have ωj = γj = 0. Hence, by (67) we
have ḡj/θj = σ2

c

√
ε/σ2

c. Thus, whenever the transmission is
bursty, the transmission power is constant. This constant can
be equal to (66) at only one time slot since transmission power
is decreasing. Moreover, after time slot j, the power can only
decrease by increasing the value of γt in (67), which means by
complementary slackness that θt = 0 for t > j, which further
implies that ḡt = 0 for t > j. Therefore, j = Nε.

Finally, for t < Nε, the power increases, going backwards
in time, only by increasing the value of ωt in (67), which
means by complementary slackness that θ∗t = 1 for t < Nε.

F. Proof of Theorem 4

1) Lower Bounding d∗: First, we derive the lower bound
in (42) by means of the offline solution along the same lines
as in the proof of Lemma 1 in Appendix A. Applying the
same (δ, n) argument using the strong law of large numbers,
the objective function is given by

1
n

n∑
t=1

σ2
s

1 + gt/σ2
c

=
1
n

n∑
t=1

f(gt) (68)

It is direct to see that f is convex. Therefore, the optimal power
allocation minimizing the objective function is gt = μ + δ,
1 ≤ t ≤ n [46] (see also [1]). Whence, the optimal offline
solution is given by f(μ + δ). We then have d∗ ≥ f(μ + δ).
Since this is true ∀δ > 0, we can take δ down to 0 by taking
n infinitely large. Therefore, (42) holds.

2) Upper Bounding d∗: Bernoulli Energy Arrivals: Next,
we derive an upper on d∗. Towards that, we first the study a
special energy harvesting i.i.d. process: the Bernoulli process.
Let {Êt} be a Bernoulli energy arrival process as defined
in (6). Under such specific energy arrival setting, whenever
an energy packet arrives, it completely fills the battery, and
resets the system. This constitutes a renewal. Then, by [44,
Th. 3.6.1], the following holds for any power control policy g

lim sup
n→∞

D̂n(g) = lim sup
n→∞

1
n

E

[
n∑

t=1

σ2
s

1 + gt/σ2
c

]

=
1

E[L]
E

[
L∑

t=1

σ2
s

1 + gt/σ2
c

]
(69)

where D̂n(g) is the n-horizon average distortion under
Bernoulli arrivals, and L is a random variable denoting the
inter-arrival time between energy arrivals, which is geometric
with parameter p, and E[L] = 1/p.

Now, substituting by the FFP (39) gives an upper bound
on d∗. Note that by (6), the fraction q in (4) is now equal to
p. Also note that in between energy arrivals, the battery state
decays exponentially, and the FFP in (39) gives

g̃t = p(1 − p)t−1B = (1 − p)t−1μ (70)

for all time slots t, where the second equality follows since
pB = μ. Therefore, using (69) and (70), we bound the
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distortion under the FFP as follows

lim sup
n→∞

D̂n(g̃)

=
1

E[L]
E

[
L∑

t=1

σ2
s

1 + (1 − p)t−1μ/σ2
c

]

(a)

≤ 1
E[L]

E

[
L∑

t=1

σ2
s

1 + μ/σ2
c

+
(
1 − (1 − p)t−1

)
σ2

s

]

= f(μ) + σ2
s

(
1 − 1

E[L]
E

[
L∑

t=1

(1 − p)t−1

])

= f(μ) + σ2
s

p(1 − p)
1 − (1 − p)2

(b)

≤ f(μ) +
σ2

s

2
(71)

where (a) follows since 1
1+λx ≤ 1

1+x +(1−λ) for 0 ≤ λ ≤ 1

and x ≥ 0; and (b) follows since p(1−p)
1−(1−p)2 has a maximum

value of 1/2 for 0 ≤ p ≤ 1. Next, we use the above result
for Bernoulli arrivals to bound the distortion for general i.i.d.
arrivals under the FFP in the following lemma; the proof
follows by convexity and monotonicity of f , along the same
lines of [36, Section VII-C], and is omitted for brevity.

Lemma 6: Let {Êt} be a Bernoulli energy arrival process
as in (6) with parameter q as in (4) and mean qB = μ.
Then, the long term average distortion under the FFP for any
general i.i.d. energy arrivals, d(g̃), satisfies

d(g̃) ≤ lim sup
n→∞

D̂n(g̃) (72)

Using (42), (71), and Lemma 6, we have

f(μ) ≤ d∗ ≤ d(g̃) ≤ f(μ) +
σ2

s

2
(73)

G. Proof of Theorem 5

1) Lower Bounding d∗ε : First, we derive the lower bound in
(44) by means of the offline solution as done in Appendix F1.
It follows by applying the same (δ, n) argument, and using
convexity of the function H , introduced in Lemma 3, that the
optimal power allocation minimizing the objective function is
θtε + ḡt = μ + δ, 1 ≤ t ≤ n [46] (see also [1]). We denote
this optimal offline solution by fε(μ + δ) as defined in (34).
We then have d∗ε ≥ fε(μ + δ); we take δ down to 0 by taking
n infinitely large. Therefore, (44) holds.

2) Upper Bounding d∗ε : Bernoulli Energy Arrivals: Next,
we derive an upper bound on d∗ε . Following the same steps as
in Appendix F.2, we first consider Bernoulli energy arrivals as
in (6). In this case we have

lim sup
n→∞

D̂ε
n (θ, g) =

1
E[L]

E

[
L∑

t=1

(1 − θt)σ2
s +

θtσ
2
s

1 + gt/σ2
c

]

(74)

where D̂ε
n (θ, g) is the n-horizon average distortion under

Bernoulli arrivals. Next, we upper bound the long term average
distortion in this case by substituting the FFP in (40) setting

θ̃t(ε + g̃t) = p(1 − p)t−1B = (1 − p)t−1μ (75)

for all time slots t. Note that the average minimal distortion
in time slot t is given by fε

(
(1 − p)t−1μ

)
.

Next, following the same steps used in showing (71), by (74)
and (75), we have

lim sup
n→∞

D̂ε
n

(
θ̃, g̃

)
≤ fε(μ) +

σ2
s

2
(76)

where step (a) in (71) follows by Lemma 3. Finally, we use
the above result to bound the distortion for general i.i.d.
arrivals under the FFP. We basically extend the statement of
Lemma 6 to the case with sampling costs since fε is convex
and monotone. We then have

dε

(
θ̃, g̃

)
≤ lim sup

n→∞
D̂ε

n

(
θ̃, g̃

)
(77)

Using (44), (76), and (77), we have

fε(μ) ≤ d∗ε ≤ dε

(
θ̃, g̃

)
≤ fε(μ) +

σ2
s

2
(78)
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