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Abstract— In cyber-physical systems (CPSs) and internet-
of-things applications, various sensor-actuator pairs are deployed
for control purposes which require timely online communication.
The sensors are measuring information about the CPS, e.g.,
process systems, whereas the actuators are using the information
to take control actions. These sensor-actuator pairs usually
communicate via the same wireless medium and thus their trans-
missions need to be scheduled in time. When transmitting the
process data, a short blocklength source-channel coding approach
is employed to reduce data errors. We investigate the influence
of the decision policy consisting of communication parameters
and scheduling design on data freshness and accuracy of process
monitoring systems. An age-of-information (AoI) metric is used
to assess data timeliness, while the mean square error (MSE)
is used to assess the precision of the predicted process values.
We characterize the AoI and MSE with closed-form expressions
for the blocklengths and accuracy levels, for special types of
scheduling strategies, namely, round-robin and maximum-age
scheduling. We optimize the coding strategies by showing an
achievability region of AoI and MSE. Other priority-based
scheduling policies are also investigated. It is shown that the
maximum-age policy provides excellent results in terms of AoI,
while priority-based scheduling performs better in terms of MSE.

Index Terms— Short blocklength, age-of-information (AoI),
process monitoring, scheduling.

I. INTRODUCTION

TRADITIONALLY, communication between devices has
been considered for asymptotically large blocklengths.

However, in delay-sensitive applications conducted in 5G and
beyond, such as in cyber-physical systems, internet-of-things,

Manuscript received April 19, 2021; revised August 17, 2021; accepted
November 17, 2021. Date of publication December 10, 2021; date of
current version July 12, 2022. This work was supported in part by
the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) through Germany’s Excellence Strategy—EXC 2092 CASA under
Grant 390781972 and in part by the U.S. National Science Foundation
under Grant CCF-1908308. An earlier version of this paper was presented
in part at the 2020 IEEE International Conference on Communications (ICC)
[DOI: 10.1109/ICC40277.2020.9149010]. The associate editor coordinating
the review of this article and approving it for publication was X. Chen.
(Corresponding author: Stefan Roth.)

Stefan Roth and Aydin Sezgin are with the Institute of Digital Communi-
cation Systems, Ruhr University Bochum, 44801 Bochum, Germany (e-mail:
stefan.roth-k21@rub.de; aydin.sezgin@rub.de).

Ahmed Arafa is with the Department of Electrical and Computer Engineer-
ing, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
(e-mail: aarafa@uncc.edu).

H. Vincent Poor is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
poor@princeton.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3132462.

Digital Object Identifier 10.1109/TWC.2021.3132462

Fig. 1. Different sensor-actuator pairs are controlling multiple physical
systems and communicating through the same wireless medium.

and networked control, it is crucial to transmit data in short
packets. Thereby, the asymptotic capacity cannot be achieved
due to the impacts of channel and source dispersions [2], [3].
The data throughput under the condition of short blocklengths
has been investigated in [2]. When both source and chan-
nel coding are required in short blocklength scenarios, the
relations between the throughput and distortion effects have
been described in [3]. Our previous work [1] applies short
blocklength source-channel coding results in the context of
remote estimation of single-variate physical systems. In this
work, we generalize these results to multiple and multi-variate
systems that are remotely monitored for control purposes over
a shared wireless medium.

In our scenario, there are multiple process systems, in which
each system state value is measured by a sensor and can
be controlled by an actuator. Hence, multiple sensor-actuator
pairs are communicating via the same wireless medium, see
Fig. 1. A central scheduler is employed to assign time slots
to the sensor-actuator pairs for transmission. Hence, the cen-
tral scheduler can decide about the transmission of sensor
nodes with the corresponding waiting times, transmit time
allocations and channel coding blocklengths. Thus, in general,
the decision policy involves a source scheduling strategy,
a sampling strategy and a coding strategy. However, practical
implementations often rely on only a few scheduling policies,
such as round-robin and maximum-age. Therefore, in addition
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Fig. 2. Schematic description of the different parts of the system of sensor-actuator pair g when considering the transmission of packet l.

to the general formulation we will explicitly focus on these
policies.

To evaluate the decision performance holistically, we jointly
consider the age-of-information (AoI) metric [4] to assess
timeliness of the estimates, and the mean square error (MSE)
to assess the accuracy of the estimates. In more details, AoI
is defined as the time elapsed since the generation time of the
latest data measurement that has been received. Maintaining
low AoI at the actuators is useful to diagnose errors and
detect anomalies within the data quickly, such that immediate
action can be taken. Compared to the MSE, the AoI is
relevant in situations for which the system dynamics are hard
to keep track of. In general, the two metrics are closely
intertwined [5], [6].

With those metrices at hand, we focus on a Gauss-Markov
process structure to describe the process systems. The trans-
mission is done in packets encoded via a short blocklength
source-channel coding framework and the received data are
used to estimate and control the system state values until new
measurements arrive. In general, with an increasing AoI, the
estimate becomes less observant of the process, and the MSE
increases as well. However, the MSE also depends on the
blocklength used to describe each packet: (1) when the block-
length is large, very precise data can be transmitted (small
MSE), but this also comes with longer transmission delays
(large AoI); (2) when the blocklength is small, transmission
delays become short (small AoI), whereas the data transmitted
might be imprecise (large MSE). Therefore, there exists an
inherent tradeoff between AoI and MSE, and blocklengths
must be carefully designed to optimize them. On top of all this,
the wireless medium contention among the different systems
must be taken into consideration while computing the amounts
of delay.

Contributions: We provide closed-form expressions for
time-average AoI and MSE, in terms of the blocklengths
and accuracy levels, for two specific scheduling policies,
namely, round-robin and maximum-age scheduling. In addi-
tion, we present achievability regions describing a trade-off
between AoI and MSE for different scheduling policies, which
provides further insights on the intrinsic relationship between
both parameters when remotely monitoring multiple processes
in real-time. We use these results to numerically investigate
if it is beneficial from a MSE-perspective to assign a higher
priority to a sensor than to others. Our investigations suggest
that excellent results in terms of AoI can be obtained by the

maximum-age policy, whereas assigning different priorities
can be beneficial from an MSE perspective.

Related Works: Several works in the literature consider
coding for AoI improvement with a single user, e.g., [7]–[15],
of which [9] considers a study of short channel blocklengths
in an AoI/delay minimization framework. Other works focus
on estimation frameworks with AoI considerations for one
user, e.g., [5], [6], [16]–[18]. The multiuser case has been
investigated in [19]–[21]. The optimization of the AoI for
robust control has been investigated in [22], whereas the
impact of realistic communication assumptions on control
has been investigated in [23]. The notion of updates with
distortion has been studied in [24]. Our work differs from those
works in the sense that we consider a joint source-channel
short blocklength coding framework together with different
scheduling policies to describe the relationship between AoI
and MSE.

Notation: Matrices (vectors) are denoted in uppercase A
(lowercase a). (·)∗ and (·)H refer to the complex-conjugate
and conjugate-transpose, respectively. Ik denotes the identity
matrix of size k × k; eAt represents the matrix exponential;
and eigi{Q} indicates the i-th eigenvalue of a matrix Q.
‖ · ‖2 denotes the Euclidean norm. E[·] is the expectation

operator. Q(x) =
∫∞

x
1√
2π

exp
(
− y2

2

)
dy is the Q-function,

which has an inverse of Q−1(x), whereas δ(x) refers to the
Dirac-impulse.

II. SYSTEM MODEL

We consider the case of G sensor-actuator pairs commu-
nicating via the same wireless medium. Each sensor-actuator
pair g consists of the following components (see Fig. 2):

• A process system that describes a vector-valued process
to be controlled; the system state xg(t) is controlled to
become equal to a reference value xg,ref(t), while being
impacted by the system disturbance dg(t).

• At the sensor, the system state vector is encoded such
that it can be recovered after being transmitted through
the channel. Here, we use a finite blocklength joint
source-channel coding scheme.

• The transmission over a channel is typically imperfect.
In this paper, we consider a noisy MIMO channel that
leads to a distorted and delayed reception.

• At the receiver, joint source-channel decoding is used to
decode the values received. Due to channel noise, the
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decoded values remain imperfect and the probability of
successful decoding is limited.

• The decoded variables are fed to an estimator to predict
the system state of the following time instances until a
new system state variable is decoded.

• A controller uses the estimated system state vector
to generate an input signal ug(t), such that xg(t)
approaches xg,ref(t).

In the next subsections, we elaborate on these components and
the decision policy that describes the connection between all
G sensor-actuator pairs.

A. The Process System

The process system is based on a Gauss-Markov process,
which contains a state value that is changing over time.
We consider each process system to be a linear system that
can be described by a state-space equation. In case a system is
non-linear, it is often possible to create a linear approximation
nearby an operating point, such that the same methods are
applicable [25]. The model of each system g evolves similarly
to a form in [26]:

ẋg(t) = Zgxg(t) + ug(t) + dg(t), (1a)

xg(0) = xg,0, (1b)

where ug(t) is the input sequence. dg(t) represents the
disturbance, which is assumed to be Gaussian distributed
(dg(t) ∼ N (0, QD

g )). Zg refers to the system matrix, whereas
the state of the system is described by the column vector xg(t)
of dimension kg . The initial state value at time t = 0 is given
by xg,0 and is assumed bounded.

At the receiver, we build an estimator that tracks the state
of the system. The estimated state x̂g(t) follows the same
dynamics as xg(t) (apart from the unknown disturbance dg(t))
and can be used for control purposes. A typical controller
is modeled as a linear system consisting of proportional,
integrative and differential components [27], and designed
such that the system state xg(t) should reach the reference
value xg,ref(t) after a certain time. The objective of the
integrative component is to reach the reference value xg,ref(t)
even in the case of a constant disturbance dg(t) with a
good precision, whereas the objective of the proportional and
differential components is to reach xg,ref(t) faster. For a given
control signal sequence ug(μ) for all times μ, the system state
at time t can be described explicitly by the equation of motion
given by the following solution of (1):

xg(t) = eZgtxg,0 +
∫ t

0

eZg(t−μ) (ug(μ) + dg(μ)) dμ,

t ≥ 0. (2)

Each sensor is regularly transmitting the corresponding system
state value to its corresponding actuator.

B. Transmission Times and Decision Policy
We assume that a central scheduler decides which sensor is

transmitting the next packet after the previous transmission has
finished, when such sensor will be sampled, and how many
codeword symbols are used to encode the packet. Packet l is

sampled at time νl by sensor gl, encoded into a codeword of
length nl, and (if the transmission is successful) delivered at
time Dl. We focus on signal-independent sampling, in which
the sampling times {νl} are independent of the processes being
monitored. For a given channel blocklength nl, we model
the time bl required for transmission of the received packet
l through the channel by the following linear model:

bl = αnl + β, (3)

where α represents the symbol duration and β refers to an
extra channel-induced delay, which also includes a protocol
overhead. If the reception is successful, we have Dl = νl +bl,
and the actuator immediately feeds back an acknowledgement
to the central scheduler. Otherwise, a negative acknowledge-
ment is fed back. We assume the acknowledgements to be
immediately available at the central scheduler, which uses the
feedback to schedule upcoming transmissions.

The central scheduler might also decide to add a waiting
time before sampling the scheduled sensor. Such waiting
time is described by Wl+1, i.e., νl+1 = Dl + Wl+1. This
means that the source scheduling strategy is described by
π � (g1, g2, . . . ), whereas the sampling strategy is given
by f � (ν1, ν2, . . . ), and the coding strategy is given by c �
(n1, n2, . . . ). When combining these, the decision policy is
given as p = (π, f, c). Throughout this paper, we are focusing
on stationary decision policies [28]. A decision policy is
stationary if the distribution does not change over time, which
consists of the AoI and blocklength of the most recently
received packet at each actuator and the AoI, blocklength, and
sensor-actuator pair of an potentially ongoing transmission.

Denote the set of all successfully received packets by Lsuc.
Then, the set of indices of successfully decoded measurements
at actuator g is described by Lg = {l : gl = g} ∩ Lsuc. The
latest received packet at time t therefore has the index

lg(t) = max {l ∈ Lg, Dl ≤ t} .

The time interval, in which a packet lg(t) is used for system
state estimation depends on the delivery time of packet lg(t)
and of the next packet that will be successfully received at the
same receiver g. These are

Dlg(t) = Dlg(t),

Dlg(t) = min
{
Dl′ : l′ ∈ Lg, Dl′ > Dlg(t)

}
.

The values of the variables introduced here mainly depend on
the parameters used within the data transmission scheme.

C. Transmissions With a Short Blocklength Source-Channel
Coding Scheme

At time νl, the sample value xg(νl) is encoded into nl

transmit signals x̄i(νl), 1 ≤ i ≤ nl for transmission, which
takes place through a multiple-input multiple-output (MIMO)
channel. The ith received signal is given by

ȳi(νl) = H̄gx̄i(νl) + w̄i(νl), (4)

where H̄g denotes the OR × OT channel matrix of the

sensor-actuator pair g, and w̄i(νl) represents zero-mean

Gaussian noise with E
[
w̄i(νl)w̄H

i (νl)
]

= IOR . Here,
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a joint source-channel-coding pre-processing scheme is used.
Thereby, each data packet contains encoded information about
the vector xg(νl). This introduces decoding errors and distor-
tion with a non-zero probability. The final decoded version is
referred to by yg,nl

(νl) and is given by

yg,nl
(νl) = xg(νl) + wg,nl

(νl), (5)

in which wg,nl
(νl) represents zero-mean Gaussian noise with

covariance matrix QW
g,nl

= qW
g,nl

Ikg . Based on yg,nl
(νl),

an estimate x̂g(t) of the state at times t ≥ νl is formed, which
we later specify.

Short blocklength coding has been developed for
single-input single-output (SISO) systems with a focus
on channel coding in [2], and on joint source-channel coding
in [3]. This has been later extended in [29] for MIMO
systems. Following this framework, we aim at designing a
system in such a way that the distortion of one transmission
remains below a certain tolerable value d with a pre-specified
probability 1 − εg. Decoding errors are declared by an
additional error detection scheme otherwise, which is built on
top of the short blocklength scheme. In particular, for such
condition to be satisfied, kg real source symbols are encoded
into a channel code of blocklength nl time instants, which
should satisfy [3]

nlC − kgR(d) ≈√nlVC + kgVSQ−1(εg), (6)

where C is the channel capacity and R(d) is the rate-distortion
function [30], VC is the channel dispersion [2], and VS is the
source dispersion [31]. Computing the above for our Gaussian
source setting, we have the capacity given by [30]

C = log2

∣∣∣IOR + H̄gQ̄H̄
H
g

∣∣∣ , (7)

in which Q̄ = E
[
x̄i(νl)x̄H

i (νl)
]

is the covariance matrix
maximizing the capacity under a power constraint. Therefore
the optimal Q̄ has a rank between 1 and min(OR, OT) and can
be obtained using water-filling as described in [32]. Moreover,
we have [29], [31]

VC =

⎛
⎝OR −

OR−1∑
i=0

1

(1 + eigi

{
H̄gQ̄H̄

H
g

}
)2

⎞
⎠ log2

2(e), (8)

VS =
1
2

log2
2(e). (9)

Using (6), an expression of the rate-distortion R(d) can
be obtained, which also describes the amount of information
transmitted per system state dimension within each packet.
This also indicates the number of bits needed to represent the
source symbol with distortion not surpassing d. Such R(d) is
given by [30], [33]

R(d) =
1
kg

kg∑
i=1

max

{
1
2

log2

(
eigi{QY

g,nl
}

d

)
, 0

}
, (10)

where QY
g,nl

= QX
g + QW

g,nl
denotes the covariance matrix

of yg,nl
(νl), and QX

g denotes the covariance matrix of xg(t),
which we will elaborate on later. Once nl and εg are known,

we can use this equation to determine the noise level present
within the data after decoding. For the worst case qW

g,nl
= d,

we can obtain the noise level by, e.g., the Newton algorithm:

dj+1 = dj + γ̄

∑kg

i=1 log2

(
1 + eigi{QX

g }
dj

)
− 2kgR(dj)∑kg

i=1

log2(e)eigi{QX
g }

dj(dj+eigi{QX
g })

. (11)

Thereby, γ̄ is the gradient descent rate. For kg = 1 and kg =
2, (10) can be formulated as linear and quadratic equation,
respectively, and solved analytically. In practice, polar codes
and turbo codes are often used to implement short blocklength
coding [34].

III. PROBLEM FORMULATION

Based on the system described above, we are interested
in optimizing the time-average AoI and MSE at the actua-
tors. In the following subsections, we will elaborate on the
time-average AoI and MSE of each sensor. Then, we will for-
mulate our problem as a multi-objective optimization problem
between AoI and MSE.

A. Age of Information (AoI)

For the system performance, it is important to have fresh
data available at the actuators. The AoI metric is well-suited
to capture this notion. If the latest measurement available at
actuator g at time t has been generated at time νl, then the
instantaneous AoI is at this time is

ag(t) = t − νl, l = lg(t). (12)

Note that this variable does not depend on the data resolution,
such that the optimization of the AoI is not always equiv-
alent to the optimization of the measurement accuracy. The
time-average AoI can be expressed as [28]

Ag = lim sup
l→∞,l∈Lg

E
[∫ Dl

0
ag(t)dt

]
E
[
Dl

] . (13)

Thereby, the limit superior ensures existence. Ag is bounded
if the sensor g is scheduled regularly and the decoding is
successful with probability 1 − εg > 0.

For a packet l received at actuator g, we define the AoI right
after its reception as al, an the AoI right before receiving the
next packet as al. Hence,

al = Dl − νl,

al = Dl − νl,

respectively. An illustration of these variables is shown in
Fig. 3. Note that al depends on the ratio at which packet
losses occur and the required transmission times between
the successful receptions, a parameter which depends on the
scheduling policy used.

We now divide both the numerator and the denominator
by the number of packets evaluated. Under a stationary deci-
sion policy, (13) can be reduced to an evaluation over each
successful transmission [28], i.e., the numerator becomes the
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Fig. 3. Illustration of the AoI-related variables.

expectation of ∫ al

al

ada =
1
2
(
a2

l − a2
l

)
, (14)

and the denominator becomes the expectation of al − al.
Therefore, (13) can be expressed as

Ag =
El∈Lg

[
1
2

(
a2

l − a2
l

)]
El∈Lg [al − al]

. (15)

When using this equation to analyze a decision policy, it has
to be ensured that the numerator and denominator are imple-
mented in a numerically stable way.

Next, we evaluate the time-average MSE.

B. Mean Square Error (MSE)

The MSE indicates the average squared difference between
the system state and the estimate. The instantaneous MSE at
actuator g is given by

mg(t) = E
[
‖xg(t) − x̂g(t)‖2

2

]
. (16)

Next, we use (2) to solve for xg(t) in terms of the latest
sampled value xg(νl), with l = lg(t). This is given by

xg(t) = eZgaxg(νl)

+
∫ a

0

eZg(a−μ) (ug(μ + νl) + dg(μ + νl)) dμ,

a = ag(t), l = lg(t), t ≥ νl. (17)

We now consider the stationary covariance matrix QX
g of the

system state xg(t). For diagonalizable Zg , this is presented
in Lemma 1 below.

Lemma 1: For diagonalizable Zg = UgΛgU
−1
g , the

covariance matrix of xg(t) is given as

QX
g = UgQ̃

X

g UH
g , (18)

in which

(
Q̃

X

g

)
i,j

= −

(
U−1

g QD
g U−H

g

)
i,j

λg,i + λ∗
g,j

(19)

and λg,i = (Λg)i,i.

Proof: For large t, we get a covariance matrix of the
system state xg(t) in (2) as

QX
g =

∫ ∞

0

eZgμQD
g eZH

g μdμ

= Ug

∫ ∞

0

eΛgμU−1
g QD

g U−H
g eΛH

g μdμUH
g . (20)

When defining Q̃
D

g = U−1
g QD

g U−H
g , the element at location

(i, j) of the integral is given as

(
Q̃

X

g

)
i,j

=
∫ ∞

0

e(λg,i+λ∗
g,j)μ

(
Q̃

D

g

)
i,j

dμ = −

(
Q̃

D

g

)
i,j

λg,i + λ∗
g,j

(21)

as long as λg,i < 0 for all i. Hence, the matrix QX
g can be

obtained as (18). �
The input sequence ug(t) equally influences the process

state and the estimate.1 Hence, by (16), the MSE can be
described, for a = ag(t), l = lg(t), t ≥ νl, as

mg(t) = E

[∥∥∥∥eZgaxg(νl) +
∫ a

0

eZg(a−μ)dg(μ + νl)dμ

−F (a)
g,nl

yg,nl
(νl)

∥∥∥∥
2

2

]
, (22)

where F (a)
g,nl

is the MSE-optimal estimator. We will consider
two idealized cases of the MSE (22). In the first case,
we consider distortion-free transmission, i.e., wg,nl

(νl) = 0,
in which case

F (a)
g,nl

yg,nl
(νl) = eZgaxg(νl), (23)

and refer to the MSE as mi
g(t) in this case. Second, we con-

sider the input-disturbance-free case, i.e., dg(t) = 0 for t ≥ νl,
which we refer to as mc

g(t). Whereas the former depends on
the input disturbance dg(t), the latter depends on the channel
noise wg,nl

(νl). As these two variables are uncorrelated, the
instantaneous MSE can be separated as

mg(t) = mi
g(t) + mc

g(t). (24)

Similar to AoI case, the time-average MSE is formulated as

Mg = lim sup
l→∞,l∈Lg

E
[∫Dl

0 mg(t)dt
]

E
[
Dl

] . (25)

This expression can be reduced to the case of minimizing
the expected integrated MSE of each successful transmission,
since the decision policy is stationary. Therefore, the numer-
ator and denominator have to be divided by the number of
packets evaluated. For a = ag(t), l = lg(t), t ≥ νl, the
numerator becomes the expectation of

Lg,nl
(al, al) =

∫ al

al

mg(νl + a)da, (26)

1Note that if the receiver acts as actuator and controls the system state with
an input signal ug(t) this does not impact the MSE if the actuation changing
the system state is also used to update the state estimate due to the linearity
of the system.
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with the denominator given by E [al − al]. Therefore,

Mg =
El∈Lg [Lg,nl

(al, al)]
El∈Lg [al − al]

. (27)

Similar to (24), we can separate Lg,nl
(al, al) = Li

g(al, al) +
Lc

g,nl
(al, al) and Mg = M i

g+M c
g . Next, we will obtain closed

form solutions of (26) for the two parts of the MSE.
1) Distortion-Free Transmission: We will now investigate

the MSE defined in (16) for the case of no transmission errors,
i.e., yg,nl

(νl) = xg(νl). In this case, the optimal estimate is
x̂g(t) = eZgayg,nl

(νl), and therefore the MSE only describes
the impacts of the later input disturbance. The instantaneous
MSE is denoted for this case in lemma 2.

Lemma 2: Without transmission errors, the instantaneous
MSE with AoI a = ag(t) is

mi
g(t) = trace

{
QX

g − eZgaQX
g eZH

g a
}

. (28)
Proof: When considering the distortion-free case in (23),

(22) becomes

mi
g(t) = E

[∣∣∣∣
∣∣∣∣
∫ a

0

eZg(a−μ)dg(μ + νl)dμ

∣∣∣∣
∣∣∣∣
2

2

]
. (29)

As the input disturbance values dg(t) and dg(μ) are uncorre-
lated for each t 	= μ, this can be rephrased as

mi
g(t) = trace

{∫ a

0

eZg(a−μ)QD
g eZH

g (a−μ)dμ

}
. (30)

From (30), we get

mi
g(t) = trace

{
Uge

Λga(t)

∫ a

0

e−ΛgμQ̃
D

g e−Λ∗
gμdμeΛ∗

gaU−1
g

}
,

(31)

in which Q̃
D

g = U−1
g QD

g U−H
g . Element i, j of the integral in

the middle has a solution of∫ a

0

e−(λg,i+λ∗
g,j)μ

(
Q̃

D

g

)
i,j

dμ

= −

(
Q̃

D

g

)
i,j

λg,i + λ∗
g,j

(
e−(λg,i+λ∗

g,j)a − 1
)

. (32)

Hence, the matrix representing this integral becomes∫ a

0

e−ΛgμQ̃
D

g e−Λ∗
gμdμ = e−ΛgaQ̃

X

g e−ΛH
g a − Q̃

X

g . (33)

When inserting this into (31), we get (28). �
From mi

g(t), we can use (26) to determine the MSE
integrated over the AoI interval [al, al) of

Li
g(al, al) = trace

{∫ al

al

QX
g − eZgaQX

g eZH
g ada

}

= trace
{
(al − al)Q

X
g + eZgalSi

ge
ZH

g al

− eZgalSi
ge

ZH
g al

}
, (34)

in which

Si
g = UgS̃

i

gU
H
g and

(
S̃

i

g

)
i,j

=−

(
U−1

g QX
g U−H

g

)
i,j

λg,i + λ∗
g,j

. (35)

Thereby, the integrals are solved very similar to the ones in
the proof of Lemma 2. Next, we consider the case of no input
disturbance.

2) No Input Disturbance: After a successful decoding, the
decoded system state contains noise as described in (5), which
we ignored in the previous analysis. When employing this, the
system state can be estimated using an MSE-optimal estimator
F (a)

g,nl
that depends on the blocklength nl and sampling time

νl of the most-recent available measurement in the form

x̂g(νl + a) = F (a)
g,nl

yg,nl
(νl). (36)

Lemma 3: When no input disturbance ug(t) is present, the
instantaneous MSE at receiver g for the estimator (36) can be
obtained as

mc
g(t) = trace

{(
eZga − F (a)

g,nl

)
QX

g

(
eZH

g a −
(
F (a)

g,nl

)H )}

+ trace
{

F (a)
g,nl

QW
g,nl

(
F (a)

g,nl

)H
}

, (37)

in which a = ag(t) is the current AoI.
Proof: We are assuming the case of having no

system-input ug(t) after a packet has been transmitted. The
MSE in this case describes only the impacts of the channel
noise and distortion

mc
g(t)=E

[∥∥∥eZgaxg(νl) − F (a)
g,nl

(xg(νl) + wg,nl
(νl))

∥∥∥2

2

]
.

(38)

Using the independence of wg,nl
(νl) and x(νl), as well as

(17), (5), and (36), the instantaneous MSE becomes (37). �
Taking derivative of (37) and setting it to 0, the optimal

estimator can be obtained as

F (a)
g,nl

= eZgaQX
g

(
QX

g + QW
g,nl

)−1

. (39)

Similar to (34), the MSE integrated over the AoI interval
[al, al) can be obtained by integrating (37). We get

Lc
g,nl

(al, al)

= trace
{
−eZgalScX

g,nl
eZH

g al + eZgalScX
g,nl

eZH
g al

}
+ trace

{
−eZgalScW

g,nl
eZH

g al + eZgalScW
g,nl

eZH
g al

}
, (40)

where

ScX
g,nl

= UgS̃
cX

g,nl
UH

g (41)

(
S̃

cX

g,nl

)
i,j

= −

(
U−1

g F̄
(0)
g,nl

QX
g

(
F̄

(0)
g,nl

)H

U−H
g

)
i,j

λg,i + λ∗
g,j

,

ScW
g,nl

= UgS̃
cW

g,nl
UH

g (42)

(
S̃

cW

g,nl

)
i,j

=−

(
U−1

g F (0)
g,nl

QW
g,nl

(
F (0)

g,nl

)H

U−H
g

)
i,j

λg,i+λ∗
g,j

,

and F̄
(0)
g,nl

= I−F (0)
g,nl

. When defining Sc
g,nl

= ScX
g,nl

+ScW
g,nl

,
we can write (40) as a function of the joint covariance matrix
instead of the individual matrices.
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3) Channel Noise and Input Disturbance: When combining
both parts of the packet-integrated MSE, i.e., (34) and (40),
we have

Lg,nl
(al, al) = trace

{
(al − al)Q

X
g + eZgalSg,nl

eZH
g al

− eZgalSg,nl
eZH

g al

}
, (43)

in which Sg,nl
= Si

g − Sc
g,nl

. This expression can be
inserted in (27) to obtain the time-average MSE. Going back
to the results of Lemma 2 and Lemma 3, we note that the
instantaneous MSE mainly depends on the product of system
matrix and instantaneous AoI.

Remark 1: Both parts of the instantaneous MSE mg(t)
depend on eZga. This means that the MSE is small when either
the AoI a or the absolute values of the eigenvalues of Zg are
small. Hence, it can be beneficial for the maximum MSE to
schedule the sensors with larger-amplitude Zg more often.

With the expressions of AoI and MSE stated, we are now
able to consider the multi-objective optimization of both.

C. Multi-Objective Optimization

To formulate a joint optimization problem covering all
sensor-actuator pairs, we are normalizing the AoI by the
symbol duration α. The MSE instead is normalized by the
asymptotic MSE, which is reached if there are no successful
transmissions over a long time, such that it is bounded to one,

Âg =
Ag

α
, (44)

M̂g =
Mg

trace
{
QX

g

} . (45)

This normalization also ensures comparability in the case of
system states with very different amplitudes. The normalized
AoI and MSE are now optimized jointly as

minimize
π=(g1,g2,... )
f=(ν1,ν2,... )
c=(n1,n2,... )

(
Â1, . . . , ÂG, M̂1, . . . , M̂G

)
. (46)

The optimal decision policy can be found by traversing
through the set of possible scheduling, sampling, and coding
strategies. For each set of strategies, the AoI and MSE
can be analyzed algorithmically by simulating the transmis-
sion of a high number of packets. Therefore, the different
packet-integrated MSE-values in (43) can be used to obtain
the AoI and MSE in (15) and (27).

However, the computational resources required for find-
ing an optimal decision policy are rather expensive. Hence,
we instead focus in the following on two widely-used schedul-
ing policies, i.e., round-robin and maximum-age. The goal
is to optimize the coding strategy c = (n1, n2, . . . ) such
that the combination of AoI and MSE is minimized, while
the scheduling strategy π = (g1, g2, . . . ) and the sampling
strategy f = (ν1, ν2, . . . ) are fixed. To characterize the Pareto-
boundary, the AoI and MSE have to be optimized jointly as

minimize
c=(n1,n2,... )

(
Â1, . . . , ÂG, M̂1, . . . , M̂G

)
. (47)

In order to obtain an achievability region of such a
multi-objective problem [35], we will traverse through the set
of different coding strategies. Next, we will be investigating
the impact of the scheduling policies the AoI and MSE. Later
on, we will elaborate on how to choose the sampling and
scheduling strategies.

IV. AOI AND MSE FOR SPECIAL POLICIES

We now focus on special policies in order to compute their
Pareto-optimal boundary for problem (47). First, we consider
the coding strategy in which each sensor g uses a constant
blocklength ng to communicate. In this case, the transmission
time of all packets transmitted to actuator g is bg. Hence, one
can show that the optimal sampling strategy f is a zero-wait
policy, in which a new sample is generated and transmitted
right after the gth sensor’s turn comes up according to the
central scheduler [36, Theorem 2].

We now focus on the scheduling strategy π. We analyze
two classes of scheduling stratgies, namely round-robin and
maximum-age, which we detail next.

A. Round-Robin Scheduling

In round-robin scheduling, the sensors are scheduled in
the same order {1, 2, . . . , G} regardless of failures. That is,
once the transmission of sensor g is finished, sensor g + 1 is
scheduled regardless of whether sensor g’s transmission has
been successfully-received at actuator g. This means that the
time required for one round of transmissions is the sum of
the transmission times of all sensor-actuator pairs. Now, let us
define the length of one round as

b̂ =
G∑

g′=0

bg′ . (48)

Therefore, the length of the AoI interval [al, al) for sensor g
contains

al = bg, al = bg + b̂g, ∀l ∈ Lg, (49)

where the term b̂g depends on the number of transmissions of
sensor g in the interval [al, al), and so is given by

b̂g ∼
∞∑

v=0

εv
g(1 − εg)δ

(
b̂g − (v + 1)b̂

)
, (50)

where v denotes the number of failed transmissions. An exam-
ple is shown in Fig. 4. We now have the following lemma
regarding the AoI:

Lemma 4: In case of a round-robin policy, the time-average
AoI at sensor g is

Ag = bg +
1
2

1 + εg

1 − εg
b̂. (51)

Proof: When assuming al = bg and al = bg + b̃′g,g , (15)
becomes

Ag = bg +
Eb̂g

[
1
2

(
b̂g

)2
]

Eb̂g

[
b̂g

] . (52)
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Fig. 4. Example of how the AoI changes over time for three sensor-actuator
pairs with the round-robin policy.

The first and second moments of b̂g are now expressed as
follows:

Eb̂g

[
b̂g

]
=

∞∑
v=0

εv
g′(1 − εg′)(v + 1)b̂ =

1
1 − εg′

b̂. (53)

Eb̂g

[(
b̂g

)2
]

=
∞∑

v=0

εv
g′(1 − εg′)

(
(v + 1)b̂

)2

= (1 − εg′)b̂2 1 + εg′

(1 − εg′)3
=

1 + εg′

(1 − εg′)2
b̂2. (54)

When substituting (53) and (54) into (52), we get (51). �
Next, we have the following lemma regarding the MSE:
Lemma 5: In case of a round-robin policy, the time-average

MSE at sensor g is

Mg =
Eb̂g

[
Lg,ng (al, al)

]
1

1−εg
b̂

, (55)

in which the numerator is

Eb̂g
[Lg(al, al)]

= trace
{(

1
1 − εg

b̂

)
QX

g + eZH
g (bg+b̂)Ψ(g, b̂)

× eZg(bg+b̂)Sg,ng − eZH
g bgeZgbgSg,ng

}
. (56)

Thereby, we have b̂ =
∑G

g=0 bg and

Ψ(g, b̂) = U−H
g Ψ̃(g, b̂)U−1

g , (57)

in which(
Ψ̃(g, b̂)

)
i,j

=
1 − εg

1 − εge
(λ∗

g,i+λg,j)b̂

(
UH

g Ug

)
i,j

. (58)

Proof: After matrix rotation and inserting (50), the expec-
tation of parts of (43) can be written as

Ψ(g, b̂) =
∞∑

v=0

εv
g(1 − εg)eZH

g b̂veZg b̂v, (59)

in which b̂ is the time elapsed between two transmission trials.
When diagonalizing Zg = UgΛgU

−1
g , we can obtain the

Fig. 5. A possible example of how the AoI develops over time for three
sensor-actuator pairs and the maximum-age policy.

elements of Ψ̃(g, b̂) as

(
Ψ̃(g, b̂)

)
i,j

=
∞∑

v=0

εv
g(1 − εg)eλ∗

g,i b̂v
(
UH

g Ug

)
i,j

eλg,j b̂v.

(60)

By applying the geometric series, we get (58). When defining
(57), the expectation of (43) becomes (56). From (27), we get
a closed-form MSE expression of (55). �

B. Maximum-Age Scheduling

In maximum-age scheduling, the sensor with the maxi-
mum AoI gets scheduled. This way, transmitting data from a
scheduled sensor continuous until successful reception, since
the AoI order does not change with failures. Different from
round-robin scheduling, the length of the time interval [al, al)
for sensor g is now given by

al = bg, al = bg +
G∑

g′=1

b̃g′ , ∀l ∈ Lg, (61)

where b̃g′ denotes the time needed for each sensor to finish
its successful transmission, and is distributed as

b̃g′ ∼
∞∑

v=0

εv
g(1 − εg)δ

(
b̃g′ − (v + 1)bg′

)
. (62)

An example is shown in Fig. 5. We now have the following
lemma regarding the AoI:

Lemma 6: In case of a maximum-age policy, the
time-average AoI at sensor g is

Ag = bg +
1
2

G∑
g′=1

1
1 − εg′

bg′ +
1
2

∑G
g′=1

εg′
(1−εg′ )2 b2

g′∑G
g′=1

1
1−εg′ bg′

. (63)

Proof: From (15), we get

Ag = bg +
Eb̃g′

[
1
2

(∑G
g′=1 b̃g′

)2
]

Eb̃g′

[∑G
g′=1 b̃g′

] .
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When utilizing the first-order and second-order moments

Eb̃g′

[
b̃g′
]

=
∞∑

v=0

εv
g′(1 − εg′)(v + 1)bg′

=
1

1 − εg′
bg′ . (64)

Eb̃g′

[(
b̃g′
)2
]

=
∞∑

v=0

εv
g′(1 − εg′) ((v + 1)bg′)2

= (1 − εg′)b2
g′

1 + εg′

(1 − εg′)3
=

1 + εg′

(1 − εg′)2
b2
g′ ,

(65)

we obtain (63). �
Next, we have the following lemma regarding the MSE:
Lemma 7: In case of a maximum-age policy, the

time-average MSE at sensor g is

Mg =
El∈Lg

[
Lg,ng(al, al)

]
∑G

g′=1
1

1−εg′ bg′
. (66)

Here, the expectation in the numerator is

El∈Lg [Lg(al, al)]

= trace

⎧⎨
⎩
⎛
⎝ G∑

g′=1

1
1−εg′

bg′

⎞
⎠QX

g + eZH
g (bg+b̂)Ψge

Zg(bg+b̂)

×Sg,ng −eZH
g bgeZgbgSg,ng

⎫⎬
⎭ , (67)

in which Ψg = U−H
g Ψ̃gU

−1
g and

(
Ψ̃g

)
i,j

=

⎛
⎝ G∏

g′=1

1 − εg′

1 − εg′e(λ∗
g,i+λg,j)bg′

⎞
⎠(UH

g Ug

)
i,j

.

(68)
Proof: Similar to the definition of Ψ(g, p) in the

round-robin policy, we can define here

Ψg =
(∞,...,∞)∑

(v1,...,vG)=(0,...,0)

⎛
⎝ G∏

g′=1

ε
vg′
g′ (1 − εg′)

⎞
⎠

× exp

⎛
⎝ZH

g

G∑
g′=1

bg′vg′

⎞
⎠ exp

⎛
⎝Zg

G∑
g′=1

bg′vg′

⎞
⎠ . (69)

After diagonalizing the matrix Zg, we can apply the geometric
series on each element of Ψ̃g once for each sensor-actuator
pair to obtain (68). With this definition, the expectation of
(43) becomes (67). From (27), we get a closed-form MSE
expression of (66). �

V. GENERALIZATION OF THE RESULTS

A. Weighted MSE

The calculations of the MSE are well-suited, if the different
entries of the system state should be weighted equally. But, the
entries of each vector xg(t) might cover very different oper-
ational meanings and also different units. Therefore, it might
be beneficial to introduce weight matrices Rg of full rank,

which are applied on each system state, i.e., considering the
transformed system states x′

g(t) = Rgxg(t). To use these
variables in (1), also the transformations Z′

g = RgZgR
−1
g ,

u′
g(t) = Rgug(t) and QD

g
′ = RgQ

D
g RH

g have to be applied.
With these transformations, the methods presented above are
also suitable for this case.

B. Multi-Subcarrier

Above, we have formulated the system model for a single
subcarrier. If a system enables support for multiple subcarriers,
the central scheduler might also decide about the subcarrier
used, such that multiple transmissions are active at the same
time. This means that the decision policy has to be extended by
a subcarrier policy. Moreover, the channel matrices H̄g also
have to depend on the subcarrier selected for each transmis-
sion. The generalized results in (46) also hold in this case,
whereas the analytical results obtained for the round-robin
and maximum-age policies have to be adapted. Therefore,
one option is to first allocate the sensor-actuator pairs to
the different subcarriers, before then applying round-robin or
maximum-age scheduling to each subcarrier.

We now summarize our approach to characterize Pareto
optimal boundaries for problem (47), which also describes
an achievability region between AoI and MSE. For either
round-robin or maximum-age scheduling, combined with
zero-wait sampling, we have expressions for the time-average
AoI and MSE. These expressions, however, depend on the
coding strategy being used. Each point on the Pareto boundary,
therefore, will correspond to a specific choice of blocklengths.
We provide more detailed examples on this in the next section.

VI. NUMERICAL RESULTS

In this section, we present detailed numerical examples to
further illustrate the results of this paper. We focus on the
case of two sensor-actuator pairs, i.e., G = 2.

We will contrast the round-robin and maximum-age
scheduling policies with another scheduling policy that we
term asynchronous-(T1, T2). In such policy, sensor g gets Tg

consecutive trials to transmit. When either the number of trials
is reached or one transmission is successful, the other sensor g′

gets to transmit for a maximum of Tg′ number of consecutive
trials, and so on. This way, round-robin scheduling equiva-
lent to asynchronous-(1, 1) scheduling, while maximum-age
scheduling is equivalent to asynchronous-(∞,∞) schedul-
ing. This way, asynchronous-(T1, T2) generalizes round-robin
and maximum-age scheduling, and will be shown useful
in instance where the processes monitored have variant
parameters.

We now describe the system parameters. We first assume
that the first process system is characterized by

Z1 =

⎛
⎝−0.08 0.03 −0.05
−0.01 −0.07 0.05
0.2 0.35 −0.55

⎞
⎠ ,

QD
1 =

⎛
⎝4 1 3

1 0.25 0.75
3 0.75 2.25

⎞
⎠ ,
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Fig. 6. Achievability region of time-average AoI and MSE for a system
with smaller eigenvalues in dependency of the coding strategy for different
scheduling policies. The Pareto-optimal parts (a) on the left are drawn slightly
thicker. (b) shows the case of giving full priority to one sensor.

whereas the second process system is characterized by

Z2 =
(−0.04 0

0 −0.03

)
, QD

2 =
(

0.7 0.2
0.2 0.6

)
.

The channels between the sensors and actuators are specified
by

H̄1 =
(

0.9 0
0 0.95

)
, H̄2 =

(
1 0
0 0.8

)
,

with α = 1 and β = 3. We assume that the coding is done
in a way that decoding is unsuccessful at a fraction of ε1 =
ε2 = 0.1.

In Fig. 6, we plot the average (over the number of sensors)
MSE versus the average AoI using the different scheduling
policies mentioned above. Differently, in Fig. 7, we plot the
maximum MSE versus the maximum AoI. In both figures, each
point on the curves is achieved by a certain blocklength pair
(n1, n2). All points are then connected to form the whole
boundary/region. The points on the left hand side of the
boundaries represent Pareto-optimal points, indicated by the
letter a in the figure. In general, the boundaries show that
there exists an intrinsic relationship between AoI and MSE.
Basically, precise information requires more transmission time
whereas fast transmission incurs higher distortion. One can
make either the AoI or the MSE sufficiently small, but not
both simultaneously. The boundaries also show that neither
small or large values of the AoI are MSE-optimal. Instead,
there exists an optimal coding strategy beyond which the MSE
is not enhanced since larger delays are incurred, and before
which the MSE is also not enhanced since larger distortions
are incurred. Finally, we note that the boundaries represent
achievability regions between MSE and AoI, in which each

Fig. 7. Achievability region of maximum AoI and MSE for a system
with smaller eigenvalues in dependency of the coding strategy for different
scheduling policies. On the left (a), the Pareto-optimal parts are shown slightly
thicker.

point above the boundary lines is achievable using a specific
coding strategy.

In the figures, we also plot the performance achieved by
a general asynchronous-(T1, T2) policy by traversing through
all possible (T1, T2) pairs; this gives the colored background
region in the figures. If one sets T1 = 0, this means we never
schedule sensor 1. In this case, the average and maximum AoI
grow infinitely large. The MSE of sensor 1 is bounded by its
process variance (normalized to 1), and so the average MSE
will always stay below 1 (as shown in the right hand side of
Fig. 6 indicated by the letter b), yet the maximum MSE grows
to 1 (as shown in the right hand side Fig. 7).

In both figures, the maximum-age policy is providing
the lowest (average and maximum) AoI values. However,
an asynchronous transmission policy that schedules the sensors
in accordance to the eigenvalues of Zg differently can be
beneficial from an MSE perspective. In our scenario, the
lowest eigenvalue of Z1 is given by −0.5628, which is much
smaller than the lowest eigenvalue of Z2, given by −0.04.
This means that the state of process system 1 is changing much
more dynamically than the state of process system 2, leading
to an asynchronous scheduling scheme performing best.

To additionally evaluate the behavior in case of other
process systems, we now change the system matrices to

Z1 =

⎛
⎝−0.04 0.03 −0.05
−0.01 −0.06 0.05
0.2 0.15 −0.4

⎞
⎠ ,

Z2 =
(−0.02 0

0 −0.03

)
.

This means that the lowest eigenvalues of Z1 and Z2 become
−0.3910 and −0.03, respectively, which is larger than in the
previous example. The according average MSE and average
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Fig. 8. Achievability region of time-average AoI and MSE for a system
with larger eigenvalues in dependency of the coding strategy for different
scheduling policies. The Pareto-optimal parts (a) on the left are drawn slightly
thicker. (b) shows the case of giving full priority to one sensor.

Fig. 9. Achievability region of maximum AoI and MSE for a system
with larger eigenvalues in dependency of the coding strategy for different
scheduling policies. On the left (a), the Pareto-optimal parts are shown slightly
thicker.

AoI are shown in Fig. 8, whereas the maximum MSE and
maximum AoI are shown in Fig. 9. These plots indicate that
there is a very similar general behavior in both pairs of process
systems. However, the amplitudes of the MSE values are very
different. Also, the ratio between the MSE for the case of
giving full priority to one sensor (indicated with the letter b)
and the MSE of the other four policies differs.

To further evaluate which sensor-actuator pair should be
given priority in an asynchronous scheduling policy, the

Fig. 10. Logarithmic fraction of maximum MSE achieved with the two
asynchronous policies with parameters (1,∞) and (∞, 1) in (70) over the
value of the process system matrices Zi. Blue (a) and yellow (b) indicate
that sensors 1 and 2 should be given priority, respectively.

Fig. 11. Logarithmic fraction of average MSE achieved with the two
asynchronous policies with parameters (1,∞) and (∞, 1) in (71) over the
value of the process system matrices Zi. Areas shaded in blue (a, c) and
yellow (b, d) indicate that sensor 1 and 2 should be given priority, respectively.

dependency of the eigenvalues on the MSE is investigated.
Towards that end, we consider a simplified setting with two
process systems, where Zg’s are 1× 1 matrices and QD

g = 1.
The communication parameters are specified by H̄g = 1,
ng = 7, α = 1 and β = 3. Similar to above, the decoding
fails at a fraction of ε1 = ε2 = 0.1. We define the maximum
and average MSE with the asynchronous policies as M̂

(T1,T2)
max

and M̂
(T1,T2)
avg , respectively. In Fig. 10 and Fig. 11, the loga-

rithmic fraction of the maximum and average MSE of the two
policies, i.e.,

10 log10

(
M̂

(1,∞)
max

M̂
(∞,1)
max

)
, (70)

10 log10

(
M̂

(1,∞)
avg

M̂
(∞,1)
avg

)
, (71)
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are plotted versus the values of Z1 and Z2. This means that in
regions where this value has a low-amplitude (indicated with
the letter a), sensor 1 should be scheduled more often, whereas
sensor 2 should be prioritized in areas with a high-amplitude
(indicated with the letter b). These figures show that it is
beneficial to schedule the sensor with the eigenvalue of the
higher amplitude more often (especially for eigenvalues near
zero). On and near the diagonal, both systems are almost
identical. Hence, both asynchronous policies behave equally
well and the maximum-age policy is therefore optimal. In the
case of optimizing the average MSE, there are also exceptions
to prioritizing the higher-amplitude eigenvalues more often
(as indicated with the letters c and d). Transmission of the
state-value of the less-dynamical system can be more benefi-
cial to the average MSE under certain conditions. However,
considering the maximum MSE promotes fairness, and hence
priority is given to the more dynamical system.

VII. CONCLUSION

The quality of the monitoring of process systems has a
significant impact on the control performance. Two metrics
widely used for measuring the monitoring quality are the AoI
and the MSE. In this paper, we have investigated the trade-off
between the maximum and average of these two metrics.
Whereas the AoI mainly depends on the system delays and the
scheduling policy, the MSE also depends on the transmission
noise. As the impact of the transmission noise is especially
relevant when the delays within the system are small, both
objectives show a similar behavior when the blocklengths
are large. However, when the communication parameters are
chosen to have low blocklengths, this leads to small average
AoI values together with high MSE values, i.e., these two
metrics show the opposite behavior. A minimal AoI could be
reached by choosing the shortest possible blocklength, whereas
an intermediate blocklength is MSE-optimal.

We have derived closed-form expressions for the AoI
and MSE for two widely used scheduling policies, i.e.,
the round-robin policy and the maximum-age policy. The
maximum-age policy provides excellent results in terms of
AoI when the probability of a successful transmission of
the sensors is equal. However, numerical results suggest that
asynchronous priority-based scheduling policies that schedule
sensors whose processes are more dynamic more often can
provide a lower maximum MSE.
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