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Abstract— We investigate the age-of-information (AoI) in the
context of random access networks, in which transmitters need to
send a sequence of information packets to the intended receivers
over a shared spectrum. Due to interference, the dynamics at
the link pairs will interact with each other over both space
and time, and the effects of these spatiotemporal interactions
on the AoI are not well understood. In this paper, we straddle
queueing theory and stochastic geometry to establish an ana-
lytical framework, that accounts for the interplay between the
temporal traffic attributes and spatial network topology, for such
a study. Specifically, we derive accurate and tractable expressions
to quantify the network average AoI as well as the outage
probability of peak AoI. Besides, we develop a decentralized
channel access policy that exploits the local observation at
each node to make transmission decisions that minimize the
AoI. Our analysis reveals that when the packet transmissions
are scheduled in a last-come first-serve (LCFS) order, whereas
the newly incoming packets can replace the undelivered ones,
depending on the deployment density, there may or may not
exist a tradeoff on the packet arrival rate that minimizes the
network average AoI. Moreover, the slotted ALOHA protocol is
shown to be instrumental in reducing the AoI when the packet
arrival rates are high, yet it cannot contribute to decreasing the
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AoI in the regime of infrequent packet arrivals. The numerical
results also confirm the efficacy of the proposed scheme, where
the gain is particularly pronounced when the network grows
in size because our method is able to adapt the channel access
probabilities with the change of ambient environment.

Index Terms— Poisson bipolar network, age of information,
channel access probability, queueing theory, stochastic geometry.

I. INTRODUCTION

THE age-of-information (AoI) is a metric that measures
the “freshness” of information packets delivered over a

period of time [2], which has been used for the design of
networking schemes to provide timely status updates for real-
time applications [3]. Compared with the transmitter-centric
metrics, e.g., delay or throughput, AoI is usually adopted at the
receiver side to measure the time elapsed since the generation
of the latest delivered packet, thus being able to gauge the
“freshness” associated with the information packets [3]–[9].
As such, networks designed by minimizing the metric of
AoI enable the acquisition of fresh data and are particularly
relevant in the Internet of Things (IoT) applications where the
timeliness of information is crucial, e.g., monitoring the status
of a system or asserting remote controls based on information
collected from a network of sensors [10]–[13].

Because these platforms generally constitute a random
access network in which multiple source nodes need to
communicate with their destinations via a shared spectrum,
the interference amongst transmitters located in geographical
proximity may be severe and lead to transmission failures
that hinder the timely updates of information. In response,
a number of strategies to schedule the set of simultaneously
active links have been proposed [14]–[24], aiming to minimize
the information age by pertaining the interference to an
acceptable range. Particularly, when a large number of devices
are updatign their time-stamped status to a common receiver
over a multiple access channel, [14] analyzed the AoI under
two classical channel access policies, i.e., the round robin and
slotted ALOHA, and showed that round robin outperforms
slotted ALOHA in terms of AoI. Nevertheless, it is shown
that the slotted ALOHA can be modified to minimize AoI by
either introducing an age threshold [15] or operating it in an
irregular repetition manner [16]. If the devices are scheduled
under a carrier sense multiple access (CSMA)-type channel
access, [17] provides closed-form expressions for obtaining
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insights to the average AoI and average peak AoI, as well as a
mean-field game framework that optimizes the channel access
to minimize the AoI, which is robust even under noisy chan-
nels [18]. On the other hand, in random access networks where
each source is paired with a dedicated receiver and transmis-
sions over the same channel collide, [19] demonstrated that the
link scheduling problem for AoI minimization is NP-hard and
proposed a steepest age descent algorithm to solve the problem
in a suboptimal but fast manner. It is further shown that the
optimal scheduling policy and the optimal sampling strategy
can be independently devised [20], [21], followed by a variety
of scheduling schemes, ranging from randomized [24] or index
based [21], [23], [24], to using the structural Markov decision
process [22]. Furthermore, several threshold-based channel
access schemes have also been developed to optimize the AoI
from a network perspective [25], [26]. However, these results
are devised based on collision models or conflict graphs, which
do not precisely capture the key attributes of a wireless system.
Indeed, transmissions over the spectrum are entangled in a
slew of physical factors, particularly the fading, path loss,
and co-channel interference. As such, it is suggested to adopt
the signal-to-interference-plus-noise ratio (SINR) model rather
than the conflict graph for a better characterization of the
source-destination communication processes so as to obtain
genuine understanding of the insights [19], [27]. Recognizing
this, a recent line of research has been carried out [28]–[33],
that conflates queueing theory with stochastic geometry – a
disruptive tool for assessing the performance of wireless links
in large-scale networks – to account for the spatial, temporal,
and physical level attributes in the analysis of AoI. Such
spatiotemporal analyses are generally challenging because the
evolution of queues associated with the transmitters are cou-
pled with each other over space and time via the interference
they caused. In response, [28] adopts the favorable/dominant
system argument to decouple the spatial-temporal correlations
and derive lower and upper bounds for the distribution of
average AoI in the context of a Poisson network. Addition-
ally, via a careful (re)construction of the dominant system,
tighter upper bounds for the spatial distribution of mean peak
AoI is derived for a large system under both preemptive
and non-preemptive queueing disciplines [29]. Furthermore,
based on the dominant system, a distributed algorithm that
configures the channel access probabilities at each individual
transmitter based on the local observation of the network
topology is proposed to minimize the peak AoI [31]. To obtain
more accurate expressions for AoI rather than the bounds, [30]
resort to the meta distribution and evaluate the performance
of peak AoI in uplink IoT networks under time-triggered
and event-triggered traffic profiles. And [32] improves the
analysis of AoI by characterizing the spatial dependency
amongst the transmitters by modeling the locations of inter-
fering nodes as an inhomogeneous Poissoin point process
(PPP). Moreover, [33] considers a generate at will model of
the transmitters and provides a joint spatio-temporal analysis
of AoI and throughput for cellular-based IoT networks with
heterogeneous traffic. Nonetheless, [30]–[32] schedule the
transmissions of information packets in a first-come first-serve
(FCFS) discipline where the failed packets are perpetually

retransmitted till successfully received, which is not appealed
for minimizing the AoI. Although [32] also investigated the
last come first serve with preemption (LCFS-PR) discipline,
the transmitters still maintain an infinite-size queue to store
the incoming packets and resend the undelivered packets
during the available time slots, which introduced unnecessary
interference. As pointed out by [25], under the metric of AoI,
it is implicitly assumed that the information content of the
packets form a Markov process. Therefore, an AoI-optimal
transmission protocol shall have the transmitters discard the
older undelivered packets upon the arrival of fresher packets
so as to reduce interference and enhance the probability of
successful transmissions. Under such a protocol, the only
relevant spatiotemporal analysis of AoI is provided in [29],
but the performance metric considered in that work is the peak
AoI while the more commonly used metric of average AoI has
not been explored. Besides, whether a locally adaptive scheme
can be devised to further minimize the AoI is also not clear.

A. Approach and Summary of Results

In this paper, we aim at developing a theoretical template
for a thorough understanding of the AoI over a random
access network. On that purpose, we model the positions of
transmitter-receiver pairs as a Poisson bipolar network. Each
transmitter generates a sequence of status updates, encapsu-
lated in the information packets, according to independent
Bernoulli processes. The newly incoming packets at each
transmitter are stored in a unit-size buffer and replace the
older undelivered ones, if any. In each time slot, transmitters
with non-empty buffers employ a slotted ALOHA protocol
to access the shared spectrum and send out packets. The
transmissions are successful only if the received SINR exceeds
a decoding threshold, upon which the packet can be removed
from the transmitter buffer. Otherwise, the packet stays in
the buffer and will be retransmitted in the next available
time slot (unless replaced by a newly generated packet).
Because of interference, there are coupling effects amongst the
node positions and their buffer states. For tractable analyses,
we adopt the mean-field approximation to decouple such
spatial-temporal correlations, and jointly use tools from sto-
chastic geometry, to capture the macroscopic interference
behavior, and queueing theory, to characterize the evolution of
queues at the microscopic level, to derive accurate expressions
for both the peak and average AoI. Leaning on the theoretical
framework, we leverage similar techniques as [31] to devise
a locally adaptive slotted ALOHA protocol to minimize the
AoI. The analytical results enable us to explore the effects
of different network parameters on the AoI performance and
hence can serve as useful guidelines for further system designs.
Our main contributions are summarized below.

• We establish a mathematical framework for the analysis
of AoI in random access networks. Our model is general
and encompasses several key features of a wireless sys-
tem, including the channel gain, path loss, deployment
density, interference, and spatially queueing interactions.

• We derive accurate expressions for the average AoI as
well as the outage probability of peak AoI. By resorting to
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TABLE I

NOTATION SUMMARY

different special cases, we can obtain simple expressions
from the analysis that facilitate an intuitive understanding
of the AoI in random access networks.

• Building upon the theoretical framework, we develop a
locally adaptive slotted ALOHA protocol, which exploits
the local observation at each node to configure a link-wise
channel access probability that minimizes the AoI across
the network. The proposed scheme is fully decentralized
and has a low implementation complexity.

• Numerical results reveal that: i) when the wireless links
are densely deployed, there exists an optimal update
frequency that minimizes the network average AoI or
the outage probability of peak AoI, while in a sparsely
deployed network, the AoI monotonically decreases with
the packet arrival rate, ii) the slotted ALOHA protocol
is only effective when the packet arrival rates are high
(and/or the topology is dense) and it cannot contribute to
reducing the AoI in regimes of infrequent packet arrivals,
and iii) the proposed channel access policy is able to
maintain the network average AoI at a low level for a
wide range of deployment density because it can adjust
the frequency of radio channel access with the change of
ambient environment.

The remainder of the paper is organized as follows.
We introduce the system model in Section II. In Section III,
we detail the analysis of the average and peak AoI, and
provide a series of discussions for insights. We show the
simulation and numerical results in Section IV, which confirm
the accuracy of our analysis and provide insights about the AoI
performance of a large-scale wireless network. We conclude
the paper in Section V.

II. SYSTEM MODEL

In this section, we introduce the setup of the network model,
as well as the concepts of average and peak AoI. The main
notations used throughout the paper are summarized in Table I.

A. Spatial Configuration and Physical Layer Parameters

Let us consider a wireless network, as depicted in Fig. 1,
that consists of a set of transmitter-receiver pairs, all located in
the Euclidean plane. The transmitters are scattered according
to a homogeneous Poisson point process (PPP) Φ̃ of spatial
density λ, where a generic node i located at Xi ∈ Φ̃ has
one dedicated receiver at yi, which is at distance r from Xi

and oriented in a uniformly random direction.1 According to
the displacement theorem [34], the location set Φ̄ = {yi}∞i=0

also forms a homogeneous PPP with spatial density λ. If a
transmitter needs to communicate with its receiver, it employs
a constant power2 Ptx and sends out packets over a shared
spectrum, which is affected by small-scale fading that follows
Rayleigh distribution with a unitary mean and large-scale path-
loss that follows power law attenuation. All channel gains are
independent and identically distributed (i.i.d.) across space and
time. Besides, the transmission is also subject to Gaussian
thermal noise with a total variance σ2.

B. Temporal Configuration and Transmission Protocol

We assume the network is synchronized3 and the time is
segmented into equal-duration intervals, which are referred
to as time slots. We further assume the transmission of each
packet occupies exactly one time slot. At the beginning of
each time slot, every transmitter has an arrival of information
packet with probability ξ ∈ (0, 1]. The newly incoming packet
at each transmitter will be stored in a unit-size buffer and
replace the undelivered older one if there is any. In that respect,
the schedule of packet transmissions constitutes a last-come
first-serve with replacement (LCFS-R) protocol.

In each time slot, transmitters with non-empty buffers adopt
the slotted ALOHA protocol with probability p ∈ (0, 1) to
access the radio channel and send out packets. A transmission
is considered successful if the SINR received at the destination
exceeds a decoding threshold, upon which the receiver sends
an ACK feedback message so that the packet can be removed
from the buffer. Otherwise, the receiver sends a NACK feed-
back message and the packet is retransmitted in the next
available time slot.4 In this network, the delivery of packets
incurs a delay of one time slot, namely, packets are transmitted
at the beginning of time slots and, if the transmission is
successful, they are delivered by the end of the same time
slot.

Because the time scale of fading and packet transmission
is much smaller than that of the spatial dynamics, we assume
the network topology is static, i.e., an arbitrary but fixed point

1Such a setting is commonly known as the Poisson bipolar model [34],
which is a large-scale analog to the classical model of Random Networks [35]
and has been widely used for the modeling of networks without a centralized
controller, e.g., the D2D, IoT, and wireless ad-hoc networks. Note that the
analysis developed in this paper can be extended to investigate the AoI in
cellular networks.

2We unify the transmit power for tractability, while the framework developed
in this paper can be used to study the effects of power control in similar spirits
to [36], [37].

3Synchronization over networks can be achieved by either centralized [38]
or distributed mechanisms [39].

4We assume the ACK/NACK transmission is instantaneous and error-free,
as commonly done in the literature [40].
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Fig. 1. The employed wireless network at microscopic and macroscopic scales, where the squares and circles denote the transmitters and receivers, respectively:
the typical link is the black solid line, the other active links are denoted by the red solid lines, and the inactive links are the dashed lines in blue.

pattern is realized at the beginning and remains unchanged
over the time domain.

C. Age of Information

The performance metric of this work is the AoI, which
captures the timeliness of information delivered at the
receiver side. A formal definition of this metric is stated in
below.

Definition 1: Consider a typical transmitter-receiver pair.
Let {G(ti)}i≥1 be the sequence of generation times of infor-
mation packets that were delivered and {ti}i≥1 be the cor-
responding times at which these packets are received at the
destination. Amongst the packets received till time t, denote
the index of the latest generated one by nt = arg maxi{G(ti)
|ti ≤ t}. The age of information at the receiver is defined as
Δ(t) = t−G(tnt).

If the average time for packet delivery is the same, then
according to Definition 1, the presence of a new packet at the
transmitter will make the older one irrelevant in reducing the
AoI. As such, maintaining a unit-size buffer at each transmitter
and replacing undelivered packets with newly incoming ones is
consistent with the minimum AoI packet management strategy.

Without loss of generality, we denote the link pair located
at (X0, y0), where y0 is the origin, as typical. Note that
although the considered wireless network contains infinitely
many dipoles, thanks to the stationary property of PPP, the AoI
of each wireless link is statistically equivalent. Under the
employed system model, the AoI of the typical link goes up
by one in each time slot if no new packet is updated at the
receiver side, and, when the update is received, reduces to
the time elapsed since the generation of the delivered packet.
An example of the dynamics of AoI is illustrated in Figure 2.
Formally, the evolution of Δ0(t) can be written as follows:

Δ0(t + 1) =

�
Δ0(t) + 1, if no update received,

t−G0(t) + 1, otherwise

where G0(t) is the generation time of the packet delivered
over the typical link by the end of time slot t.

In this work, we leverage two quantities, namely the aver-
age and peak AoI, as our metric to evaluate the freshness
of information over a random access network. Specifically,

the average AoI at a given link j is defined as

Δ̄j = lim sup
T→∞

1
T

T�
t=1

Δj(t), (1)

and the peak AoI is

Δ̂j = lim sup
N→∞

�N
n=1 Δj(Tj(n))

N
, (2)

where Tj(n) is the time slot at which the n-th packet
from transmitter j is successfully delivered to the
receiver. By extending these concepts to the context of
a network, we define the network average and peak AoI
respectively as follows:

Δ̄ = lim sup
R→∞

�
Xj∈Φ̃∩B(0,R) Δ̄j�

Xj∈Φ̃ �{Xj∈B(0, R)}
(a)
= E

0
�
lim sup
T→∞

1
T

T�
t=1

Δ0(t)
�

(3)

and

Δ̂ = lim sup
R→∞

�
Xj∈Φ̃∩B(0,R) Δ̂j�

Xj∈Φ̃ �{Xj∈B(0, R)}

= E
0
�
lim sup
N→∞

1
N

N�
n=1

Δ0(T0(n))
�
, (4)

where B(0, R) denotes a disk centered at the origin with
radius R, �{·} is the indicator function, and (a) follows from
the Campbell’s theorem [34]. The notation E

0[·] indicates the
expectation is taken with respect to the Palm distribution P

0

of the stationary point process where under P
0 almost surely

there is a node located at the origin [34].

III. ANALYSIS

This section constitutes the main technical part of our paper,
in which we derive analytical expressions to characterize the
statistics of AoI. Specifically, we analyze the distribution of
packet depletion rate, or equivalently the conditional transmis-
sion success probability, at each communication link. Based
on that, we calculate the value of average AoI, as well as
the outage probability of peak AoI, of the considered wireless
network. For better readability, most proofs and mathematical
derivations have been relegated to the Appendix.
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Fig. 2. AoI evolution example at a typical link under the LCFS-R discipline.
The time instances G0(ti) and ti respectively denote the moments when the
i-th packet is generated and delivered, and the age is reset to ti − G0(ti).
Here, ti = T0(i) with T0(i) defined in (2).

A. Preliminaries

1) SINR at a Typical Receiver: Due to the stationary
property of PPPs, we can apply Slivnyak’s theorem [34] and
concentrate on a typical receiver located at the origin, with its
tagged transmitter situated at X0. Note that when averaging
over the point process, this representative link has the same
statistic as those obtained by averaging over other links in
the network. As such, if the transmitter sends out a packet
during time slot t, the SINR received at the destination can be
written as

SINR0,t =
PtxH00r

−α�
j �=0 PtxHj0ζj,tνj,t�Xj�−α + σ2

(5)

where α denotes the path loss exponent, Hji ∼ exp(1) is the
channel fading from transmitter j to receiver i, ζj,t ∈ {0, 1}
is an indicator showing whether the buffer of node j is empty
(ζj,t = 0) or not (ζj,t = 1), and νj,t ∈ {0, 1} represents the
state of channel access at node j, where it is set to 1 upon
assuming transmission approval and 0 otherwise.

2) Conditional Transmission Success Probability: Since the
information packets are generated according to independent
Bernoulli processes, seen from the temporal perspective,
the interval of packet arrivals at any given link follows a geo-
metric distribution. However, due to interference, the packet
transmission process of the same wireless link has a rate –
often characterized by the transmission success probability –
that is dependent on the network topology as well as the
buffer states of the other nodes. To that end, the distribution of
packet departures intervals is generally unknown. By noticing
that each transmitter maintains a unit-size buffer where older
undelivered packets are replaced by the fresher ones, we can
model the dynamics of packet updates via a Geo/G/1/2 queue
with replacement, as illustrated in Fig. 1. Because the network
is considered to be static, we condition on the node positions
Φ � Φ̃ ∪ Φ̄ and define the conditional transmission success
probability of the typical link at time slot t as follows [41]

μΦ
0,t = P

�
SINR0,t > θ|Φ� (6)

where θ is the decoding threshold.

Due to the broadcast nature of wireless medium, trans-
missions over the link pairs are correlated such that the
status of any given queue is dependent on the status of the
other queues and their packet depletion rates. This phenom-
enon is commonly known as the spatially interacting queues
[27], [42], which results in {μΦ

j,t}j∈N,t≥0 being correlated
over space and time. Assessing the performance of large
scale wireless networks by taking into account the effect of
space-time queueing interactions is a notoriously hard problem
where no comprehensive theory is available at this stage.
Fortunately, when the nodes are massively deployed in space,
the temporal correlations amongst their buffer states become
insignificant [43]. In that respect, we adopt the following
approximation for tractability.

Assumption 1: Each node experiences independent inter-
ferers over time, and hence their queues evolve independently
from each other.

This assumption is usually referred to as the mean-field
approximation [44], which allows one to represent a varying
environment by its time-average state. Consequently, the evo-
lution of each queue can be isolated from the current state
of the network, while the effect of the spatial interactions is
captured through the time-average. Notably, when the number
of transmitter-receiver pairs approaches infinity the mean-field
approximation has been shown to be exact asymptotically [45]
and hence can be applicable to the spatiotemporal analysis of
large-scale networks [37].

3) Conditional Age of Information: Following Assump-
tion 1, when we condition on the network topology Φ,
the transmissions of packets over a typical link are i.i.d.
over time with a success probability μΦ

0 = limt→∞ μΦ
0,t.

As such, the interval of packet departures at any given
link can also be approximated by a geometric distribution.
In consequence, we can treat the dynamics at the typical
sender as a Geo/Geo/1/2 queue where the arrival and departure
rates are given by ξ and pμΦ

0 , respectively. In consequence,
a conditional form of the AoI can be derived by leveraging
tools from queueing theory. Although this result has been
derived in the existing literature, we state it in the following
lemma for the sake of completeness.

Lemma 1: Conditioned on the point process Φ, the aver-
age and peak AoI at the typical link are given respectively as
follows:

E
0
	
Δ̄0|Φ



=

1
ξ
+

1
pμΦ

0

− 1, (7)

E
0
	
Δ̂0|Φ



=

1
ξ
+

1
pμΦ

0

+
1

1− (1−ξ)(1−pμΦ
0 )
− 2. (8)

Proof: See Appendix A. �
In view of Lemma 1, we note that the core of analyzing the

AoI lies at the characterization of the transmission success
probability. In the following, we detail the procedure of
deriving this quantity.

B. Transmission Success Probability

Using Assumption 1, the packet departure processes at the
wireless links can be assumed to be independent from each
other, which indicates each node activates independently in the
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steady state. Then, using a similar approach as [41], we can
compute the conditional transmission success probability as
follows.

Lemma 2: Conditioned on the network topology Φ,
the probability of successful transmission over the typical link
is given as:

μΦ
0 = e−

θrα

ρ

�
j �=0

�
1− paΦ

j

1 + �Xj�α/θrα


(9)

where ι = Ptx/σ2 is the signal-to-noise ratio (SNR) and
aΦ

j = limT→∞
�T

t=0 ζj,t/T the buffer non-empty probability
of node j in the steady state.

Proof: See Appendix B. �
We can now explicitly identify the randomness in the depar-

ture rate, which mainly arises from i) the random locations of
the other transmitters, and ii) their buffer states. A conditional
expression for the state of having a non-empty buffer at each
transmitter can be obtained as follows.

Lemma 3: Conditioned on the network topology Φ,
the buffer non-empty probability of a generic node j is given
as:

aΦ
j =

ξ

ξ + (1− ξ) p μΦ
j

, (10)

where μΦ
j denotes the conditional transmission success prob-

ability of link j.
Proof: See Appendix C. �

With these results in hand, we can now put the pieces
together and derive the distribution of the conditional trans-
mission success probability using a similar method as [41].

Theorem 1: The cumulative distribution function (CDF)
of the conditional transmission success probability is given by
the fixed-point equation (11), shown at the bottom of the page,
in which j =

√−1 and Im{·} denotes the imaginary part of
a complex quantity.

Proof: See Appendix D. �
Owing to the space-time coupling amongst the queues,

the transmission success probability CDF (11) is given
in the form of a fixed-point functional equation. It is
noteworthy that the right hand side of (11) constitutes
a contraction as a functional of F (·). As such, solution
of (11) can be obtained via successive approximations [41],
e.g., the Picard’s method, which converges exponentially
fast. Nevertheless, in each round of iteration, calculating the
right hand side of (11) requires full knowledge of all the
moments of μΦ

0 , which may be computationally troublesome.
For that reason, we opt for an approximation to accelerate the
calculation.

Corollary 1: The probability density function (PDF)
of F (u) in Theorem 1 can be tightly approximated

by the following:

f(u) = lim
n→∞ fn(u)

= lim
n→∞

u
κn(βn+1)−1

1−κn (1 − u)βn−1

B(κnβn/(1− κn), βn)
(12)

where B(·, ·) denotes the Beta function [46], κn and βn are
respectively given as:

κn = c(1)
n , (13)

βn =
(1 − κn)

	
κn − c

(2)
n



c
(1)
n − κ2

n

(14)

where c
(m)
n takes the following form:

c(m)
n =exp

�
−mθrα

ι
−λπr2θδ

m�
k=1

�
m

k

�
η(k)

n

�
, (15)

in which η
(k)
n is given by

η
(k)
n−1 =

� ∞

0

(−1)k+1dv

(1 + v
α
2 )k

� 1

0

(pξ)kfn(t) dt

[ ξ + (1− ξ)pt ]k
. (16)

Particularly, when n = 1, we have η
(k)
0 given by the

following

η
(k)
0 = (−1)k+1

�
δ − 1
k − 1

�
2π2θδξkpk

α sin(πδ)
. (17)

Proof: See Appendix E. �
Following the above result, in each iteration, it only updates

the approximation of the first and second moments of the
random variable μΦ

0 . Therefore, the procedure per Corollary 1
can be carried out very efficiently.5

C. Average and Peak AoI

We are now ready to present the main results of this paper,
i.e., the analytical expressions for the AoI.

1) Average AoI: We first present the average AoI of the
network.

Theorem 2: The network average AoI is given as follows:6

Δ̄ =
1
ξ

+
� 1

0

F (dt)
pt
− 1 (18)

≈ 1
ξ

+
� 1

0

f(t)dt

pt
− 1, (19)

where F (·) and f(·) are given by (11) and (12), respectively.
Proof: By deconditioning (7) according to the CDF

and PDF of μΦ
0 per (11) and (12), respectively, the result

follows. �
5As demonstrated in [47], these types of recursive calculations converge in

a few, e.g., less than 10, iterations.
6Note that the integral may be unbounded under certain settings of network

parameters due to the singularity at the origin, which implies the interference
is excessively strong. Fortunately, such a limit exists for most practical cases.

F (u) =
1
2
−
� ∞

0

Im
�

u−jω exp
�
− jωθrα

ι
− λπr2θδ

∞�
k=1

�
jω

k

�� ∞

0

(−1)k+1dv

(1 + v
α
2 )k

� 1

0

(pξ)kdF (t)
[ ξ + (1− ξ)pt ]k

� dω

πω
(11)
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Notably, the AoI expressions in Theorem 2 account for
several key features of a random access network, including
the packet arrival rate, channel access probability, deployment
density, and interference. We will verify the accuracy of this
analysis in Section IV and obtain a number of design insights
based on numerical results. Before that, let us focus on two
regimes of operation to develop a deeper understanding of the
network average AoI.

Remark 1: When λ → 0, the network is in the noise-
limited regime, i.e., the SINR expression in (5) becomes

SINR0 ≈ PtxH00r
−α

σ2
. (20)

Then, by jointly using (6) and (7), it can be shown that the
network average AoI is given by

Δ̄ =
1
ξ
− 1 +

exp
�

θrα

ρ

�
p

, (21)

which monotonically decreases with the packet arrival rate ξ.
This observation is in line with conclusions drawn from the
conventional point-to-point settings, namely under the LCFS
discipline, increasing the update frequency can always benefit
the AoI performance.

We next investigate the AoI in the interference limited
regime, namely ι 
 1 and λ is relatively large. In lieu
of directly dealing with the original system, let us consider
the transmissions undergo a favorable system, in which the
incoming packets are sent out only once – regardless of the
transmission being successful or not – without retransmissions.
We denote the conditional transmission success probability
achieved at the typical link in such a system as μ̌Φ

0 . Because
every node in the favorable system only activates when a new
packet arrives, the buffer non-empty probability of a generic
node j is ǎΦ

j = ξ, which satisfies ǎΦ
j ≤ aΦ

j according to (10).
Then, following (9) we know that transmissions in a favorable
system suffer less interference than the original one, which
yields μΦ

0 ≤ μ̌Φ
0 and hence the following relationship holds

E
0
	
Δ̄|Φ
 =

1
ξ
− 1 +

1
pμΦ

0

≥ 1
ξ
− 1 +

1
pμ̌Φ

0

. (22)

As such, if we take an expectation on both sides of the
above inequality, it yields

Δ̄ ≥ 1
ξ
− 1 + E

� 1
pμ̌Φ

0

�
(a)

≥ 1
ξ
− 1 +

1
pE[μ̌Φ

0 ]

(b)
=

1
ξ
− 1 +

exp
�
λπr2θδ

�∞
0

dv

1+v
α
2
× p ξ


p

= Z(ξ, p) (23)

where (a) follows from the Jensen’s inequality, and (b) is
by noticing that μ̌Φ

0 can be obtained by assigning aΦ
j =

ξ in (6) and further leveraging the probability generating
functional (PGFL) of PPP to carry out the calculation.

From the expression of Z(ξ, p) in (23), it is clear that
as ξ increases, the inter-arrival interval time of information
packets decreases hyperbolically, while the packet departure
time grows exponentially. In that respect, if the gain of update

freshness at the source node cannot compensate the loss in the
transmission delay, increasing the packet arrival rate may not
benefit the AoI. To formally demonstrate such an observation,
let us take a derivative of Z(ξ, p) with respect to ξ and assign
it to be zero, which results in the following

− 1
ξ2

+
� ∞

0

λπr2θδdv

1 + v
α
2
· exp

�
λπr2θδ

� ∞

0

dv

1+v
α
2
× p ξ


=

∂Z(ξ, p)
∂ξ

= 0. (24)

From the above expression, we can see that ∂Z(ξ,p)
∂ξ

monotonically increases with respect to ξ. Because ξ ∈ (0, 1],
and ∂Z(ξ,p)

∂ξ → −∞ as ξ → 0, it is clear that (24) possesses a

unique solution if ∂Z(ξ,p)
∂ξ |ξ=1 > 0, which is equivalent to the

following condition

λ > λ0 =
W0(p)

pπr2θδ
�∞
0

dv
1+vα/2

, (25)

where W0(·) is the Lambert function. Otherwise, we have
∂Z(ξ,p)

∂ξ < 0 for all ξ ∈ (0, 1], namely Z(ξ, p) always decreases
with ξ. That motivates us to make the following remark.

Remark 2: Given distance r, there exists a threshold of
the deployment density λ0, when λ > λ0, the average AoI does
not monotonically decrease with the packet arrival rate ξ.

Similarly, by assigning ∂Z(ξ,p)
∂p = 0, we have the following:

− 1
p2

exp
�
λπr2θδ

� ∞

0

dv

1 + v
α
2
× p ξ



+
λπr2θδ

�∞
0

ξdv

1+v
α
2

p
exp

�
λπr2θδ

� ∞

0

dv

1 + v
α
2
× p ξ


= 0. (26)

The solution to the above leads us to the following remark.
Remark 3: In a random access network, the optimal p

that minimizes the average AoI is approximately given by

p∗ = min
�

1,
1

ξλ
�∞
0

πr2θδdv
1+vα/2

�
. (27)

Albeit the above insights are drawn from the lower bound
Z(ξ, p) obtained from a favorable system, they can be inter-
preted as a simple proxy to the original system and are
useful for the understanding of effects from deployment and
interplay between spatial and temporal factors of a random
access network on the AoI. As we will see in the section of
numerical results, similar observations to the network average
AoI Δ̄ occur in the original system.

2) Outage Probability of Peak AoI: Next, we look at the
outage probability of peak AoI, defined as the probability
that the peak AoI of any given link exceeds a threshold A.
The reason for adopting such a metric is that it is relevant to
system designs that guarantee the information available at the
destination is fresh at any given time [48], while an average
value of the peak AoI can also be derived on similar lines of
Theorem 2.
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Theorem 3: The outage probability of peak AoI is given
by:

P
�
E

0[Δ̂0|Φ] > A
�

= F

�
−ξ(1 + c) +

�
ξ2c2 + 4ξc + 2ξ2c− 3ξ2

2c(1− ξ)p

�
(28)

where F (·) is given in (11) and c is given by

c = A + 2− 1
ξ
. (29)

Proof: Using the expression for conditional peak AoI
in (8), the event {E0[Δ̃0|Φ] > A} can be expanded as follows

1
pμΦ

0

− 1
1− (1 − ξ)(1−pμΦ

0 )
> A + 2− 1

ξ
= c. (30)

By rearranging the terms, we have the following

c(1− ξ)(pμΦ
0 )2 + ξcpμΦ

0 + ξpμΦ
0 − ξ < 0. (31)

Solving the above inequality yields

0 < μΦ
0 <

−ξ(1 + c) +
�

[ξ(1 + c)]2 + 4ξc(1− ξ)
2c(1− ξ)p

. (32)

The result then follows by deconditioning μΦ
0 in the above

inequality using (11) along with further algebraic manipula-
tions. �

IV. LOCALLY ADAPTIVE SLOTTED ALOHA
FOR AOI MINIMIZATION

It has been shown in [31] that when availed with local
information of the network geometry at each node, a locally
adaptive channel access scheme can be devised to reduce
the network peak AoI under the FCFS discipline. A natural
question then arises as: Can we develop a similar approach to
minimize the AoI in random networks where the transmitters
are equipped with unit-size buffers and sending out packets
under a LCFS-R protocol? We give an affirmative answer to
this question in this section.

A. Stopping Sets and Objective Function

Our objective is to derive a link-wise channel access prob-
ability that minimizes the network average AoI based on the
local information observed from each individual node. Due
to the limited sensing capability, every transmitter can only
obtain knowledge about a finite region around it, which is
denoted by the observation window W . Such an observation
window generally possesses a random shape owing to the
various sensing capability of transmitters. In that respect,
we leverage the concept of stopping sets [34], [49] to describe
the arbitrary shape of the observation window. Specifically,
a stopping set is a random element takes the form in Borel sets
such that for any observation window O, one can determine
whether W = W (Φ̃, Φ̄) ⊂ O is true or not. Depending on the
scenarios under consideration, stopping sets can take different
forms. An example of random stopping sets in a Poisson
bipolar network is given in Fig. 3. Note that the stopping sets
associated with different transmitters, e.g., the nodes located
at X1, X2, and X3, can have various shapes.

Fig. 3. Example of a Poisson network in which every transmitter can observe
the closest and second closest receivers to it. Here, the black squares and dots
are the transmitters and receivers, respectively, and the circles with dashed
lines are stopping sets centered at X1, X2, and X3.

In consequence, the channel access probability constructed
at the typical node takes the following form

γΦ
0 = ηW(Φ̃, Φ̄)

= ηW

�
Φ̃ ∩W, Φ̄ ∩W


, (33)

where η
W

(·) ∈ [0, 1] is a measurable function whose argument
is the network information, i.e., the buffer states as well as
locations of the nodes in (Φ̃∩W , Φ̄∩W ). For a node i located
at Xi, its scheduling policy can be obtained by applying the
shifting operator SXi to (33), which moves the origin of point
process Φ to Xi and results in

γΦ
i = SXiηW

= ηW

�
SXiΦ̃ ∩W, SXiΦ̄ ∩W


. (34)

To this end, the design of our channel access policy can be
cast into the following optimization problem:

min
ηW

E
0
Φ

�
1

γΦ
0 μ

Φ|W
0

�
+

1
ξ
− 1 (35a)

s.t. 0 ≤ γΦ
i = SXiηW ≤ 1, ∀ i (35b)

where μ
Φ|W
0 = E

0
Φ

	
μΦ

0 |W



is the conditional transmission
success probability given observation window W , and (35b)
stipulates the channel access probability devised at each indi-
vidual node to be within a feasible region. It is worthwhile
to note that (a) the local information varies across the nodes
and so as their channel access probabilities, and (b) such a
policy can be carried out without the coordination of a central
controller and hence is decentralized.7

B. Design of the Channel Access Policy

In order to solve (35), we need to first have an expression

for the quantity μ
Φ|W
0 , which is given by the following.

7Note that if W is set to be the whole space, then the scheduling algorithm
becomes centralized, although this is not practical due to the excessive
signaling overhead.
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Lemma 4: Given the observation window W and channel
access probability ηW , the conditional transmission success
probability at a generic link i is given as

μ
Φ|W
i = e−

θrα

ρ

�
j �=0,j∈W

�
1− γΦ

j aΦ
j

1+Dji

�
exp

�
−
�

x∈R2\W

γxE
	
aΦ
x



dx

1+�x�α/θrα


.

(36)

where Dji = �Xj − yi�α/θrα.
Proof: When every transmitter adopts the channel access

policy ηW per (34), given the observation window W and
using Assumption 1, we can use similar approaches in the
derivation of Lemma 2 and arrive at the following

μ
Φ|W
i = e−

θrα

ρ · EXi

Φ

� �
j �=i,j∈W

�
1− γΦ

j aΦ
j

1 +Dji

���W�

×E
Xi

Φ

� �
j /∈W

�
1− γΦ

j aΦ
j

1 +Dji

���W�

(a)
= e−

θrα

ρ ·
�

j �=i,j∈W

�
1− γΦ

j aΦ
j

1 +Dji



×E
Xi

Φ

� �
j /∈W

�
1− γΦ

j aΦ
j

1 +Dji

���W�
(37)

where (a) follows by the tower property of conditional prob-
ability, and the final result can then be derived by using the
PGFL of PPP for further calculation. �

Using the above result, we can now solve (35) as follows.
Theorem 4: For all given stopping sets W = W (Φ̃, Φ̄),

the solution to the optimization problem in (35) is given by
the unique solution of the following fixed point equation:

1
ηW

−
�

j �=0,yj∈W

1
1+D0j−aΦ

j ηW

−
�

R2\W

λE
	
aΦ
0



dz

1+�z�α/θrα
= 0

(38)

if the following condition holds�
j �=0,yj∈W

1
1+D0j−aΦ

j

+
�

R2\W

λE
	
aΦ
0



dz

1+�z�α/θrα
> 1. (39)

Otherwise, ηW = 1.
Proof: See Appendix F. �

It is important to emphasize that η
W

is in essence a function
that takes in local information and produces a channel access
probability, where the above theorem only presents an example
of constructing the channel access policy at the typical link,
namely γΦ

0 = η
W

(SX0Φ̃, SX0Φ̄). In our employed network,
different transmitters can have disparate local observations
and hence will generate different channel access probabilities.
Specifically, for a generic node i, the corresponding policy can
be attained by applying a shifting operator SXi to Theorem 4,
i.e., by moving the origin of the network to Xi, which results
in γΦ

i = η
W

(SXiΦ̃, SXiΦ̄). As such, every node in this
network only needs to identify and record the transmitting
neighbors located inside its observation window, i.e., the
stopping set W , and solve for the channel access probability
via a fixed point equation.

Algorithm 1 Locally Adaptive Slotted ALOHA

1: Parameters: γΦ
i,t: Channel access probability of link i at

time slot t, aΦ
i,t: Buffer non-empty probability of link i at

time slot t
2: Initialize: Set γΦ

j,0 = 1, ∀j ∈ N, transmitters update the
location information with neighbors inside W = W (Φ̃, Φ̄)

3: for time slot t do
4: if t �= 0 (mod Tm) then
5: ∀j ∈ N, make the channel access decision according

to γΦ
j,t, and record the corresponding buffer non-empty

probability aΦ
j,t

6: else
7: For each link i, updates aΦ

i,t to, and also receives aΦ
j,t

from, all the Xj ∈ S, j �= i, recalculate the value of γΦ
i,t

according to Theorem 4
8: t← t + 1

According to Theorem 4, the implementation of the pro-
posed policy requires transmitters to monitor their queue status
and mutually update the information about their buffers’ state.
In particular, each transmitter needs to first identify and record
the transmitting neighbors that are located inside the stopping
set W [49]. Additionally, every transmitter will also need to
collect the updates about the buffer non-empty probabilities
from the neighboring transmitters [50]. However, updating the
local information every time slot can incur a hefty amount
of overhead that degrades the efficiency. To overcome this
problem, we reduce the update frequency of local information
by combining m consecutive time slots into a frame, denoted
as Tm, and the updates of mutual information only take place
at the beginning of each time frame. The entire implementation
process is summarized in Algorithm 1. It shall be also noted
that the solution given in this paper is based on the mean-
field approximation as no comprehensive theory on the exact
characterization of the original tystem is available at this stage.
Moreover, the scheme differs from the previous result [31]
in that it accounts for the buffer non-empty probability in
the policy design. We will show in Section V that such a
subtle change can actually lead to a significant difference in
the performance of the algorithm.

Remark 4: From Theorem 4, we can see that if Dj0

decreases for some j, the channel access probability ηW also
decreases, namely the nodes located in a crowded area of
space automatically reduces their channel access frequencies
to reduce interference, and vice versa.

Remark 5: It can be shown that the channel access prob-
ability given in Theorem 4 also minimizes the average peak
AoI in the employed system. As such, the proposed scheme
is applicable to reduce both the average AoI and average
peak AoI.

Following similar arguments as [49], it can be shown
that the proposed channel access policy is also capable of
maximizing the logarithm of throughput in the considered
network. In this regard, the gain in information freshness
is essentially brought by enhancing the link throughput
during the packet transmission phases. Moreover, if the buffer
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Fig. 4. Simulation versus analysis, where we set p = 1, r = 0.5 m,
λ = 1 × 10−2 m−2, and vary the packet arrival rates as μ = 0.2, 0.5.

non-empty probability aj is assigned to be one for all the
nodes, i.e., aj = 1, ∀j ∈ N, in Theorem 4, the solution reduces
to that proposed in [31]. It can be shown that in networks
where no ACK/NACK message is available from the receivers,
and the transmitters keep sending out each information packet
untill the arrival of a new one, such a policy can be employed
to minimize the AoI.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we show simulation results that confirm
the accuracy of our analytical framework, and based on the
analysis we further investigate the AoI performance under
different settings of network parameters. Particularly, we con-
sider a square region with side length of 1 km, in which link
pairs are scattered according to a Poisson bipolar network
with spatial density λ and once the topology is generated it
remains unchanged. To eliminate the favorable interference
coordinations induced by network edges, we use wrapped-
around boundaries [51] that allow dipoles that leave the region
on one side to reappear on the opposite side, thus mirroring
the missing interferers beyond the scenario boundary. Then,
the dynamics of status update at each link are run over
10,000 time slots. Specifically, at the beginning of each time
slots, channel gains are independently instantiated and packets
are generated at each transmitter with probability ξ, whereas
the newly arriving packets replace the older undelivered one at
each node. The nodes with non-empty buffers then send out
packets to the destination with failure retransmission occur
at the next time slot (unless the packet is replaced by a
newly generated one). And a packet can be dropped from
the transmitter queue if the received SINR at the intended
node exceeds the decoding threshold. The AoI statistics of
the receivers of all the links are recorded to construct the
average AoI. Unless differently specified, we use the following
parameters: α = 3.8, θ = 0 dB, Ptx = 17 dBm, Tm = 200,
and σ2 = −90 dBm.

Fig. 4 compares the simulated CDF of the conditional
transmission success probability to the analyses given in
Theorem 1, as well as the approximations in Corollary 1,

Fig. 5. Simulation versus analysis of the network average AoI, in which
we set p = 1, r = 0.5 m, and vary the deployment densities as λ =
1 × 10−2, 3 × 10−2, 5 × 10−2 m−2.

under different values of packet update frequency ξ. From
this figure, we can see that the analyses match well with
simulations, which confirms the appropriateness of adopting
the mean-field approximation in the analytical derivations.
Besides, the differences between the analysis in (11) and
approximation per (12) are almost indistinguishable, which
verifies the tightness of approximating the meta distribution
via a Beta distribution.

In Fig. 5, we depict the network average AoI as a function
of the packet arrival rate ξ, under different values of the
deployment density λ. From this figure, we first observe a
close match between the simulation and analytical results,
which verifies the accuracy of Theorem 2. Moreover, we note
that the optimal update frequency that minimizes the average
AoI is dependent on the particular value of λ. Specifically,
when λ is small, the link pairs recede into the distance from
each other and the packet transmissions can enjoy low level of
interference because of the path loss. This resembles a noise-
limited scenario and, as pointed out by Remark 1, the average
AoI can be reduced by increasing the update frequency at the
source nodes. On the contrary, when λ becomes large, the net-
work is densely deployed, in which the inter-link distances
shrink and transmitters in geographical proximity can suffer
from interference that results in transmission failures. As such,
with an increase of packet arrival rate, not only more link
pairs are activated but, more crucially, additional failure packet
deliveries and retransmissions are incurred, which prolongs
the active period of the nodes. These together slow down
the packet successful decoding process at each individual link
and deteriorate the information freshness over the network. In
consequence, an optimal arrival rate exists that balances the
tradeoff between the information freshness at the source nodes
and the interference level across the network. This observation
is consistent with Remark 2 and shows an unconventional
behavior of the AoI in random access networks employing
LCFS queueing disciplines.

Fig. 6 plots the average network AoI for fixed λ = 5 ×
10−2 as a function of the channel access probability p, under
various packet arrival rates. We can see that in the situation of
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Fig. 6. The average AoI versus channel access probability, where we set
r = 0.5 m, λ = 5 × 10−2 m−2, and vary the packet update frequencies as
μ = 0.25, 0.50, 0.75.

Fig. 7. Network average AoI versus spatial deployment density, where we
set μ = 0.6, r = 2.5 m, R = 20 m, and λ increases from 1 × 10−2 m−2

to 5 × 10−1 m−2.

Fig. 8. Peak age outage probability versus packet arrival rate, in which we
set p = 1, A = 5, λ = 5 × 10−2 m−2 and vary transceiver distance as
r = 0.5, 0.7, 1.0 m.

infrequent packet arrivals, the average AoI declines steadily
as the channel access probability increases. It is worth noting
that this observation poses a dissent on the conclusions drawn

Fig. 9. Peak age outage probability versus channel access probability, where
we set A = 5, r = 0.7 m, λ = 5 × 10−2 m−2, and vary the packet arrival
rates as μ = 0.5, 0.7, 0.9.

from conflict graph models [25], where the slotted ALOHA
protocol is asserted to be optimal for minimizing average AoI
in the light traffic condition. The reason for such a difference
is that under the SINR model, for small update frequency,
the aggregated interference at each node is low and hence
there is no necessity to reduce the channel use, which will,
in turn, downgrade the packet successful decoding rate and
deteriorate the AoI. Note that if the wireless links are deployed
in an ultra-dense manner, the SINR model converges to collion
model and conclusions drawn here will be similar to those
obtained in [25]. On the other hand, when the packet arrival
rate is high, we can see that there exists an optimal channel
access probability which minimizes the average AoI. This is
because the defection of interference on the service rate is
more devastating in this scenario, and exerting controls on the
channel access are of importance to bolster the transmissions.
As such, the slotted ALOHA protocol is beneficial to striking a
balance between information freshness at the transmitters and
the overall interference level. Note that similar conclusions can
be drawn from Remark 3, showing the compliance between
observations and analysis. Moreover, the figure also indicates
that in order to achieve a small average AoI across the network,
one should tune the update arrival frequency to a high level
and adopt slotted ALOHA to control the channel access.

In Fig. 7 we compare the proposed channel access policy
per Theorem 4 to the slotted ALOHA protocol as well as
the one proposed in [31], which we termed as Dominant
System-based Locally Adaptive ALOHA (DS-LA ALOHA).
Specifically, we set the local observation window at each
node as a deterministic disk which centered at the transmitter
with a radius R, i.e., W = B(0, R), and vary the slotted
ALOHA channel access probability p as 1, 0.6, and the
optimal p∗ which is tuned according to the variants of network
parameters. From this figure, we first notice that without
controls on the channel access, namely p = 1, the network
average AoI soars sharply when the spatial deployment is
densified. This mainly attributes to the fact that as deployment
density increases, the mutual link distances shrank, and that
ramps up the interference level which inflicts failures on
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Fig. 10. Network average AoI versus peak age outage probability: r = 2.5 m, p increases from 0.4 to 1, and μ varies as μ = 0.6, 0.7, 0.8. In Fig. (a),
the deployment density is λ = 2 × 10−2 m−2. In Fig. (b), the deployment density is λ = 5 × 10−2 m−2.

the transmissions. In contrast, with the adoption of slotted
ALOHA, the network immediately attains a large reduction
to the average AoI which demonstrates the efficacy of such a
protocol in large-scale wireless networks. And more prounced
gains in AoI can be observed when the parameter p is
optimally set. Additionally, when each of the nodes adopt
the scheme proposed in Theorem 4, we observe a remarkable
gain in the network average AoI. This is because the channel
access probability is link-wisely configured based on the
local observations, which marshals the spectral resource more
adequately and averts transmitters in geographical vicinity to
transmit simultaneously. As a result, transmissions under the
proposed scheme are able to achieve a high success rate and
hence the AoI can be kept at a low level in wide regimes
of deployment density. Nonetheless, we can also see that
while the DS-LA ALOHA is also able to reduce the AoI,
it does not even outperform the slotted ALOHA when the
latter is operating on an optimally tuned parameter. This is
because the transmitters only maintain unit-size buffers which
are less likely to be saturated, while the locally adaptive
ALOHA policy constructed under the dominant system tends
to overestimate the interference and reduces the frequency of
channel access at each node. And that leads to unnecessarily
prolonged waiting time which worsens the AoI. To this end,
it is worthwhile to emphasize that the temporal parameters
in the locally adaptive slotted ALOHA shall be adequately
selected to ensure it can be functioning at full power.

We now turn our attention to investigate the effects of
different network parameters on the outage probability of peak
AoI.

Fig. 8 shows the outage probability of peak AoI for a vary-
ing value of the packet arrival rate, under different distances
between the transmitter-receiver pairs. We immediately notice
the existence of an optimal update frequency that minimizes
the outage probability, owing to a tradeoff between freshness
of information from the source and the total interference level.
Note that compared to the network average AoI, in order
to minimize the outage probability of peak AoI, the optimal

frequency shall be set to a relatively small value. Additionally,
with a slight increase of r, the outage probability of peak AoI
sheers up rapidly, showing the peak AoI is more sensitive to
the variant of network parameters.

In Fig. 9, we put the spotlight on the outage probability of
peak AoI under different channel access probabilities. We can
see that similar to the average AoI, the outage probability
of peak AoI keeps declining with respect to p in the regime
of low packet arrival rate, while it can be minimized by
an optimal value of p when the packets arrive rates are
high. Nonetheless, different from the minimization of network
average AoI, to obtain a small outage probability of peak AoI,
it is more desirable to reduce the packet arrival rate rather than
setting it at a high level and then employ slotted ALOHA.
It is noteworthy that this observation also marks a sharp
distinction to that under the FCFS discipline, which claims
the slotted ALOHA protocol cannot contribute to reducing the
peak AoI [31].

Finally, Fig. 10 compares the network average AoI to the
outage probability of peak AoI for a varying value of channel
access probability, p, under different deployment densities.
From this result, we can see that the average AoI and the
outage probability of peak AoI constitute Pareto-like frontiers,
which convey two messages: (a) if the wireless links are
sparsely deployed (i.e., Fig. 10 (a)), there exists an optimal
p that minimizes both the average and peak AoI, while (b) in
densely deployed networks (i.e., Fig. 10 (b)), one cannot find
a channel access probability that simultaneously minimize the
average AoI and the outage probability of peak AoI.

VI. CONCLUSION

In this work, we established a theoretical framework for the
understanding of AoI performance in random access networks.
We used a general model that accounts for the channel gain
and interference, dynamics of status updating, and spatially
queueing interactions. Our result confirmed that the network
topology has a direct and sweeping influence on the AoI.
Specifically, even when the transmitters employ a LCFS-R
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strategy for packet management, if the topology is densely
deployed then there exists an optimal rate of packet arrival
that minimizes the average AoI. In addition, slotted ALOHA
is instrumental to further reduce the AoI, given the packet
arrival rates are high. However, when the network deployment
density is low, the average AoI decreases monotonically with
the packet arrival rate, and slotted ALOHA cannot contribute
to reducing the AoI in this scenario. We also found that while
similar phenomena also occur in the outage probability of peak
AoI, this quantity is more sensitive to the variants of network
parameters. Using the analytical framework, we further devel-
oped a channel access policy that configures the probability of
channel access at each transmitter based on its observed local
information, and hence can be implemented in a decentral-
ized manner and has low complexity. The proposed scheme
can effectively reduce the network average AoI, especially
when the network grows in size, as it is able to adaptively
adjust according to the spatiotemporal change of the ambient
environment.

The analysis developed in this paper manages to straddle
queueing theory with stochastic geometry, and allows one
to investigate the impacts spatial and temporal factors on
the AoI performance. In consequence, this work opens up
many exciting directions for future investigation, including but
not limited to exploring the impact of different buffer sizes,
retransmission schemes, or channel access approaches on the
AoI of a large-scale wireless network. Investigating up to what
extent power control can improve AoI is also regarded as a
concrete direction for future work.

APPENDIX

A. Proof of Lemma 1

Let us consider a Geo/Geo/1 queueing system under the
LCFS with preemption (LCFS-PR) discipline [52], where the
arrival and departure rates are set as ξ and pμΦ

0 , respectively.
The AoI in this system evolves as follows:

Δ̃0(t+1)

=

�
Δ̃0(t) + 1, if transmission fails,

min{t−G0(t), Δ̃0(t)} + 1, otherwise
(40)

where G0(t) is the generation time of the packet delivered
over the typical link at time t. From (40), it can be seen that
the AoI under the LCFS-PR protocol in a Geo/Geo/1 queue
drops only when a more recently generated packet is received
at the destination, and that is equivalent to discarding the
older undelivered packets at the source. Therefore, this system
and the employed system in this paper possess the same AoI
evolution statistics.

We denote by M and N the inter-arrival time and the total
sojourn time in the queue, respectively, which are random
variables. As such, under the LCFS-PR discipline, the average
AoI is given as [52]:

E
0
	
Δ̄|Φ
 =

1
2
· E

	
M2



E[M ]

+
E
	
min(N, M)



P
�
N ≤M

� − 1
2
. (41)

On the one hand, as M ∼ Geo(ξ) and N ∼ Geo(pμΦ
0 ),

we have the following

E[M ] =
1
ξ
, E[M2] =

2− ξ

ξ2
, (42)

P(N ≤M) = 1− E
	
(1−pμΦ

0 )M



=
μΦ

0

1− (1−pμΦ
0 )(1 − ξ)

. (43)

On the other hand, since M and N are independent random
variables, through simple calculations we have min(M, N) ∼
Geo(1− (1− pμΦ

0 )(1− ξ)). Thus the following holds

E
	
min(M, N)



=

1
1− (1−pμΦ

0 )(1 − ξ)
. (44)

The result in (7) then follows from substituting (42), (43),
and (44) into (41).

Next, in a Geo/Geo/1 queue, the conditional peak AoI under
LCFS-PR is given as [52]:

E
0
	
Δ̂|Φ
 =

E [M ]
P
�
N≤M

� +
E
	
N�{N≤M}

P
�
N≤M

� − 1. (45)

The numerator of the second term on the R.H.S. above can
be calculated as

E
	
N�{N ≤M}

= E

�
E
	
N�{N ≤M}��M
�

= E

� M�
m=1

m(1−pμΦ
0 )m−1pμΦ

0

�

= E

� 1− (1−pμΦ
0 )M

μΦ
0

− (1− pμΦ
0 )M(1−pμΦ

0 )M−1
�

=
pμΦ

0	
1− (1−pμΦ

0 )(1 − ξ)

2 . (46)

The expression in (8) then follows by substituting (42), (43),
and (46) into (45).

B. Proof of Lemma 2

By conditioning on the spatial realization Φ of the node
locations, the transmission success probability can be derived
as:

P
�
SINR0 > θ |Φ�
= P

� PtxH00r
−α�

j �=0 PtxHj0ζjνj�Xj�−α + σ2
> θ

��Φ
= P

�
H00 >

�
j �=0

νjζjHj0

�Xj�α/θrα
+

θrα

ι

��Φ

= e−
θrα

ρ · E
��

j �=0

exp
�
− νjζjHj0

�Xj�α/θrα

��Φ�
(a)
= e−

θrα

ρ ·
�
j �=0

�
1− P

�
ζj =1, νj = 1|Φ�

+
P
�
ζj =1, νj = 1|Φ�
1 + θrα/�Xj�α

�
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(b)
= e−

θrα

ρ ·
�
j �=0

�
1− P

�
ζj =1|Φ�× P

�
νj = 1|Φ�

+
P
�
ζj =1|Φ�× P

�
νj = 1|Φ�

1 + θrα/�Xj�α
�

(47)

where (a) follows from Assumption 1, under which the active
state of each node can be regarded as independent, and notice
that Hj0 ∼ exp(1). The result can then be obtained via further
simplifying the product factors.

C. Proof of Lemma 3

The evolution of the buffer state at a generic node j can
be modeled as a two-state Markov chain (empty/non-empty)
with transition matrix given as follows:

P=
�

1− ξ ξ
pμΦ

j (1− ξ) 1− pμΦ
j + pμΦ

j ξ

�
.

Let v = (v0, v1) denote the steady-state probability vector
of the number of this Markov chain. Then, we have

vT = vTP, (48)

v0 + v1 = 1. (49)

Solving the above system of equations yields the following:

v0 =
pμΦ

j (1− ξ)
ξ + pμΦ

j (1− ξ)
, (50)

v1 =
ξ

ξ + pμΦ
j (1− ξ)

. (51)

As such, the active state probability aΦ
j can be obtained

from (51) (the probability of having a non-empty buffer).

D. Proof of Theorem 1

For ease of exposition, let us denote Y Φ
0 = ln P

(SINR0 > θ|Φ). By leveraging Lemma 2 and Lemma 3,
we can calculate the moment generating function of Y Φ

0 as
follows

MY Φ
0

(s)

= E
	
(μΦ

0 )s



= e−
sθrα

ρ E

��
j �=0

�
1− aΦ

j

1+�Xj�α/θrα

�s
�

= e−
sθrα

ρ E

��
j �=0

�
1− 1

1+�Xj�α/θrα
· pξ

ξ+(1−ξ)pμΦ
j

�s
�

(a)
= e−

sθrα

ρ e
−λ

�
R2 E

�
1−
�
1− 1

1+�x�α/θrα · pξ
ξ+(1−ξ)pμx

�s
�

dx

(b)
= exp

�
− sθrα

ι
− λ

�
x∈R2

s�
k=1

�
s

k

�
(−1)k+1dx

(1+�x�α/θrα)k

× E

�� pξ

ξ + (1 − ξ)pμx

�k
�

� �� �
Q1

�
, (52)

where (a) follows by using the probability generating func-
tional (PGFL) of PPP and (b) expands the expression via the

binomial theorem. Note that under Assumption 1, the condi-
tional transmission success probability μx can be considered
as i.i.d. across the transmitters. A complete expression of (52)
requires us to compute the term Q1, which however needs the
CDF, F (·), of μΦ

0 . At this stage, let us assume the function
F (·) is available. We can then expand the expectation term
Q1 and further reduce (52) as we do below:

MY Φ
0

(s) = exp
�
− sθrα

ι
−
�

x∈R2

s�
k=1

�
s

k

�
(−1)k+1λdx

(1+�x�α/θrα)k

×
� 1

0

� pξ

ξ + (1− ξ)pt

k

F (dt)
�

= exp
�
− sθrα

ι
− λπr2θδ

s�
k=1

�
s

k

�
(−1)k+1

�∞
0

dv

(1+v
α
2 )k

×
� 1

0

(pξ)kF (dt)	
ξ + (1− ξ)pt


k
�

. (53)

Finally, by using the Gil-Pelaze theorem [53], we can derive
the CDF of μΦ

0 as:

F (u) = P(μΦ
0 < u) = P(Y Φ

0 < ln u)

=
1
2
− 1

π

� ∞

0

Im
 
u−jωMY Φ

0
(jω)

!dω

ω
. (54)

The statement readily follows by substituting (53) into the
above equation.

E. Proof of Corollary 1

According to [41], the fixed-point equation (11) can be
solved by recursively evaluating the following

Fn+1(u)

=
1
2
−
� ∞

0

Im
�

u−jω exp
�
− jωθrα

ι
− λπr2θδ

×
∞�

k=1

�
jω

k

�� ∞

0

(−1)k+1dv

(1 + v
α
2 )k

� 1

0

(pξ)kFn(dt)
[ ξ+(1− ξ)pt ]k

� dω

πω
.

(55)

Since the function Fn(u) in each iteration step is supported
on [0, 1], we are motivated to approximate the distribution via
a Beta distribution. First, by assigning s as integers as per (52),
we can derive the moments of μΦ

0 in (15). Next, by respectively
matching the mean and variance of μΦ

0 to those of a Beta
distribution B(an, bn), it yields

an

an + bn
= c(1)

n , (56)

anbn

(an + bn)2(an + bn + 1)
= c(2)

n −
	
c(1)
n


2
(57)

and the result follows from solving the above system
equations.

F. Proof of Theorem 4

Following Assumption 1, the point process Φ can be
regarded as stationary under the employed network model.
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We can thus substitute (36) into the first term of (35a) and use
the mass transportation theorem [34] to obtain the following:

E
0
Φ

�
ξ

γΦ
0 μ

Φ|W
0

�
=E

0
Φ

⎡
⎢⎢⎣

exp
�

θrα

ρ +
�
x∈R2\W

λη
W

E

	
aΦ
x



dx

1+	x	α/θrα

�
η

W

%
j �=0

�
1− η

W
aΦ

j

1+D0j


⎤
⎥⎥⎦.

(58)

It shall be noted that while the buffer states of the transmit-
ters are in fact coupled in both space and time, we leverage
Assumption 1 to decouple them so as to arrive at a tractable
expression as per (58). Consequently, optimizing (35) is now
equivalent to minimize the right hand side of above equation,
as a function of ηW , under the constraint in (35b). In general,
such a functional optimization should be solved via the cal-
culus of variants. Since the operator ηS is well-defined in the
stationary point process Φ, we can treat it as a variable [49]
and assign the derivative of (35a) with respect to η

W
to be

zero, which yields the following:

1
η

W

−
�

j �=0,yj∈W

1
1+D0j−ηW aΦ

j

−
�

R2\W

λE[aΦ
0 ]dz

1+zα/θrα
= 0.

(59)

If we write the left hand side (L.H.S.) of the above equation
as a function h(η

W
) of η

W
, i.e.,

h(η
W

) =
1

η
W

−
�

j �=0,yj∈W

1
1 +D0j − ηW aΦ

j

−
�

R2\W

λE[aΦ
0 ]dz

1 + �z�α/θrα
, (60)

it is easy to verify that (a) h(η
W

) monotonically decreases
in ηW over [0, 1], and (b) limη

W
→0 h(ηW ) = +∞. As such,

if h(1) < 0, i.e., the condition (39) holds, then according
to the Intermediate Value Theorem, the equation in (59),
or equivalently, (38), has a unique solution that lies within
the interval (0, 1). Otherwise, if (39) does not hold, we have
the derivative of (58) being negative which indicates that (35a)
monotonically decreases as a function of η

W
. Hence, the min-

imum is achieved at η
W

= 1. Note that in both cases,
the constraint (35b) is satisfied.
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