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Abstract— We consider a two-way communication channel in
which both users rely solely on energy harvested from nature.
Each user incurs a processing cost per unit time as long as it
communicates; that is, each user’s energy consumption includes
energy spent for transmission and energy spent for processing.
We maximize the sum throughput by a given deadline subject
to energy causality constraints. We first show that the optimal
power policy is bursty; the two users communicate only during a
portion of the time that is uniquely determined by their available
energies and processing costs. We show that it is optimal for the
two users to be fully synchronized; they turn on and exchange
data during the same portion of time, and then turn off together.
We first solve the single energy arrival case, and then extend
it to solve the multiple energy arrival throughput maximization
problem. We show that it is optimal for the users to communicate
in a deferred fashion; users postpone their energy consumption to
utilize later time slots first. We present an algorithm that gives the
optimal deferred policy by iteratively applying a modified version
of the single energy arrival result in a backward manner.

I. INTRODUCTION

We consider an energy harvesting communication system
where users harvest energy from nature over the course
of communication to sustain their operation, and energy is
consumed for data transmission and processing costs: each
user incurs a processing cost per unit time for the duration that
it communicates. Our goal is to design an optimal transmis-
sion policy that maximizes the total throughput under energy
causality constraints taking into account processing costs.

Recent literature on energy harvesting communications has
considered a wide variety of system models and determined
the corresponding optimum energy management policies. Ini-
tial references [1]–[4] characterize the optimal transmit poli-
cies for a single-user channel with and without fading, and
for infinite and finite-sized batteries. This line of research has
been extended to multiple access channels [5], [6], broadcast
channels [7]–[9], interference channels [10], cooperative mul-
tiple access channels [11], two-hop channels [12]–[17], two-
way channels [18], diamond channels [19], energy sharing and
energy cooperation concepts [20]–[22], battery imperfections
[23], [24], sensor networks [25]–[27], MIMO systems [28],
temperature constrained sensor operations [29], delay mini-
mization scenarios [30], [31], etc.; see [32], [33] for a review
of offline power scheduling in energy harvesting systems.
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Fig. 1. Two-way channel with an energy harvesting transmitter and receiver.

Power consumption at a transmitter includes power spent
for transmission as well as processing power spent for the
circuitry. Depending on the energy availability and the com-
munication distance, processing costs at the transmitter could
be a significant system factor. References [34]–[38] study
the impact of processing costs on energy harvesting com-
munications. Decoding power at the receiver can also be a
significant system factor [39]–[42]. The differentiating aspect
regarding processing costs and decoding costs in the existing
literature is as follows: the processing cost is modeled as a
constant power spent per unit time whenever the transmitter
is on [43], whereas the decoding cost at a receiver is modeled
as an increasing convex function of the incoming rate to be
decoded [40], [41]. The energy harvesting two-way channel
with decoding costs is considered recently in [44]. In this
paper, we focus on the processing costs.

Reference [43] shows that when processing cost is consid-
ered, the optimal transmission scheme over a Gaussian channel
is bursty; the transmitter-receiver pair may only operate for a
portion of the time, during which the transmitter uses Gaussian
signals. Reference [43] also considers a parallel Gaussian
channel, and shows that the maximum rate is achieved by glue-
pouring, a modified version of the classical water-filling. Glue-
pouring allows channels to be partially filled in time. Refer-
ence [35] considers a single-user energy harvesting system
with processing costs and presents a directional glue-pouring
algorithm to maximize the throughput. This result highlights
an interesting aspect of energy harvesting communications:
while the initial results in [1]–[3] found that, in energy
harvesting systems, the transmitters should aim to maintain
longest possible stretches of constant power subject to energy
causality constraints, which resulted in directional water-filling
[3], when the transmitter incurs a cost for being on per unit



time, the optimal scheme needs to balance long stretches of
constant power with the processing cost to be incurred during
those stretches via directional glue-pouring [35].

In this paper, we consider a two-way channel [45] in which
both users are energy harvesting, see Fig. 1. The communica-
tion is full duplex, and both users incur processing costs. We
characterize the sum rate maximizing optimal transmit policy
for a given deadline, subject to energy causality constraints and
processing costs. We first consider the formulation for a single
energy arrival. In this case, we show that it is optimal for the
two users to be fully synchronized; the two users should be
switched on for the same portion of the time during which they
both exchange data, and then they switch off together. Then,
we generalize this to the case of multiple energy arrivals, and
show that any throughput optimal policy can be transformed
into a deferred policy, in which users postpone their energy
consumption to fill out later slots first. We find the optimal
deferred policy by iteratively applying a modified version of
the single energy arrival result in a backward manner.

II. SINGLE ENERGY ARRIVAL

In this section, we consider the case where users 1 and
2 harvest energy only once in the amounts E1 and E2,
respectively. The physical layer is Gaussian with unit-variance
noise at both users. In a Gaussian two-way channel, the sum
rate equals the sum of two single-user capacities [45]. We note
that due to the processing costs, it might be optimal for the
users to be turned on for only a portion of the time. In this
case, the transmission scheme becomes bursty [43].

In this two-way setting, we incorporate the processing costs
into our problem as follows: each user incurs a processing cost
when it is on for either transmitting or receiving or both. At
this point, it is not clear whether it is optimal for the two users
to be fully synchronized, i.e., switch on/off simultaneously. For
instance, it might be the case that the second user’s energy is
higher, and therefore it uses the channel for a larger portion
of the time θ2 > θ1. In this case, the first user stops sending
after θ1 portion of the time, but stays on for an extra θ2 − θ1

amount of time to receive the rest of the second user’s data.
The same argument could hold for the first user if, e.g., the
first user’s energy is larger. Therefore, each user stays on for a
max{θ1, θ2} amount of time for the general case of θ1 6= θ2.
We formulate the problem as follows

max
θ1,θ2,p1,p2

θ1

2
log(1 + p1) +

θ2

2
log(1 + p2)

s.t. θ1p1 + max{θ1, θ2}ε1 ≤ E1

θ2p2 + max{θ1, θ2}ε2 ≤ E2

0 ≤ θ1, θ2 ≤ 1 (1)

where 1
2 log(1 + p) is the Shannon capacity formula [45], and

ε1 and ε2 are the processing costs per unit time for the first
and the second user, respectively. Throughout this paper log
denotes the natural logarithm.

We have the following two lemmas regarding this problem:
Lemma 1 states that both users need to use up all of their

available energies. Lemma 2 states that both users need to be
fully synchronized, i.e., they need to turn on for exactly the
same duration of time, and turn off together. Whenever a user
is turned on, it both sends and receives data.

Lemma 1 In the optimal solution of (1), both users exhaust
their available energies.

Proof: We show this by contradiction. Assume for instance
that the first user does not use up all of its energy, i.e., the
first constraint holds with strict inequality

θ∗1p
∗
1 + max{θ∗1 , θ∗2}ε1 < E1 (2)

Then, we can always increase p∗1 until equality holds, and
thereby strictly increase the objective function. The same
argument holds for the second user. �

Lemma 2 In the optimal solution of (1), we have θ∗1 = θ∗2 .

Proof: We show this by contradiction. Assume without loss
of generality that it is optimal to have θ1 < θ2. By Lemma 1,
we have the powers given by

p1 =
E1 − θ2ε1

θ1
, p2 =

E2

θ2
− ε2 (3)

Therefore, we rewrite (1) as:

max
θ1,θ2

θ1

2
log

(
1 +

E1 − θ2ε1
θ1

)
+
θ2

2
log

(
1 +

E2

θ2
− ε2

)
s.t. 0 ≤ θ1 ≤ θ2 ≤ θm (4)

where θm , min{1, E1

ε1
, E2

ε2
} ensures the positivity of the

powers. Next, we note that the first term in the objective
function above is monotonically increasing in θ1, and therefore
its value is maximized at the boundary of the feasible set, i.e.,
at θ1 = θ2, which gives a contradiction. �

By Lemma 2, problem (1) now reduces to a problem with
only one time variable θ , θ1 = θ2 as follows:

max
θ,p1,p2

θ

2
log(1 + p1) +

θ

2
log(1 + p2)

s.t. θ(p1 + ε1) ≤ E1

θ(p2 + ε2) ≤ E2

0 ≤ θ ≤ 1 (5)

We will solve (5), and its most general multiple energy
arrival version, in the rest of this paper. We first note that
the problem is non-convex. Applying the change of variables:

p̄1 , θp1, p̄2 , θp2 (6)

we get the following equivalent problem:

max
θ,p̄1,p̄2

θ

2
log
(

1 +
p̄1

θ

)
+
θ

2
log
(

1 +
p̄2

θ

)
s.t. p̄1 + θε1 ≤ E1

p̄2 + θε2 ≤ E2

0 ≤ θ ≤ 1 (7)



which is convex, as the objective function is now concave
because it is the perspective of a concave function [46], and
the constraints are affine in both variables. The Lagrangian is:

L =− θ

2
log
(

1 +
p̄1

θ

)
− θ

2
log
(

1 +
p̄2

θ

)
+ λ1 (p̄1 + θε1 − E1) + λ2 (p̄2 + θε2 − E2)

+ ω (θ − 1) (8)

where λ1, λ2, and ω are the non-negative Lagrange multipliers.
Note that we do not introduce Lagrange multipliers for the
constraints θ, p̄1, p̄2 ≥ 0 as they are always satisfied with strict
inequality at the optimal solution. Differentiating with respect
to p̄1, p̄2 and θ, we obtain the KKT optimality conditions [46]:

p̄1

θ
=

1

λ1
− 1 (9)

p̄2

θ
=

1

λ2
− 1 (10)

λ1(ε1 − 1) + log λ1 + λ2(ε2 − 1) + log λ2 = −2− ω (11)

along with the complementary slackness conditions:

λ1 (p̄1 + θε1 − E1) = 0 (12)
λ2 (p̄2 + θε2 − E2) = 0 (13)

ω (θ − 1) = 0 (14)

The next lemma will help characterize the optimal solution
of the problem.

Lemma 3 The optimal solution of λ1 and λ2 is given by

λ∗1 =
1

(E1/θ∗)− (ε1 − 1)
(15)

λ∗2 =
1

(E2/θ∗)− (ε2 − 1)
(16)

Proof: The proof follows by using (9) and (10) together with
the results of Lemma 1. �

Substituting the result of Lemma 3 in (11), we obtain the
following equation in θ:

f1(θ) · f2(θ) = e−(2+ω) (17)

where the function fj(θ), for j = 1, 2, is defined as

fj(θ) =
e(εj−1)/((Ej/θ)−(εj−1))

(Ej/θ)− (εj − 1)
(18)

One can show that fj(θ) is monotonically increasing in θ.
In particular, if εj < 1, the function is increasing for all values
of θ. On the other hand, if εj ≥ 1, the function is increasing
only if θ ≤ Ej/ (εj − 1), which is already satisfied according
to the jth user power constraint. Therefore, fj(θ) is increasing
over the feasible range of θ, and (17) has a unique solution in
θ, for a given ω, which we denote by θ̄(ω).

We now find the optimal burstiness factor θ∗ as follows.
First, assume that θ∗ < 1. By complementary slackness in
(14), we have ω = 0. Therefore, θ∗ is given by the solution
to (17), θ̄(0), if it exists in the feasible range. However, if

θ̄(0) > 1, we then need to increase the value of ω such that
the right hand side of (17) decreases in order to have a feasible
solution. Since ω is now strictly positive, by (14) we have
θ∗ = 1. Therefore, θ∗ is given by:

θ∗ = min
{
θ̄(0), 1

}
(19)

We note that, the value of θ∗ can be strictly less than
1, which leads to bursty transmission from the two users.
The amount of burstiness depends on the available energies
at both users and their processing costs, the relation among
which is captured by the functions f1 and f2 in (17). The
two users’ energies and processing costs affect each other; one
user having relatively low energy or relatively high processing
cost can decrease the value of θ∗, i.e., increase the amount of
burstiness in the channel. Finally, once the optimal θ∗ is found,
the optimal powers of the users are found by substituting θ∗

in (15) and (16) in Lemma 3 to find λ∗1 and λ∗2, and further
substituting them in (9) and (10).

III. MULTIPLE ENERGY ARRIVALS

We now extend our results to the case of multiple energy
arrivals. At the beginning of slot i, energies arrive in amounts
E1i and E2i at the first and the second user, respectively,
ready to be used in the same time slot or saved in the
batteries for future use. During time slot i, the two users
can be turned on for a θi portion of the time. Our goal is
to maximize the total throughput by a given deadline N . The
users have to be synchronized. If not, then given the optimal
energy distribution, we can synchronize both users in each slot
independently, which gives higher throughput, as discussed in
the single energy arrival scenario. Then, the problem becomes:

max
θ,p1,p2

N∑
i=1

θi
2

log(1 + p1i) +
θi
2

log(1 + p2i)

s.t.
k∑
i=1

θi(p1i + ε1) ≤
k∑
i=1

E1i, ∀k

k∑
i=1

θi(p2i + ε2) ≤
k∑
i=1

E2i, ∀k

0 ≤ θi ≤ 1, ∀i (20)

Similar to the single energy arrival case, we apply the change
of variables p̄1i = θip1i and p̄2i = θip2i, for all i, to get the
following equivalent convex optimization problem:

max
θ,p̄1,p̄2

N∑
i=1

θi
2

log

(
1 +

p̄1i

θi

)
+
θi
2

log

(
1 +

p̄2i

θi

)

s.t.
k∑
i=1

p̄1i + θiε1 ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p̄2i + θiε2 ≤
k∑
i=1

E2i, ∀k

p̄1i ≥ 0, p̄2i ≥ 0, 0 ≤ θi ≤ 1, ∀i (21)



The Lagrangian for this problem is:

L =−

(
N∑
i=1

θi
2

log

(
1 +

p̄1i

θi

)
+
θi
2

log

(
1 +

p̄2i

θi

))

+

N∑
j=1

λ1j

(
j∑
i=1

p̄1i + θiε1 −
j∑
i=1

E1i

)
−

N∑
i=1

η1ip̄1i

+

N∑
j=1

λ2j

(
j∑
i=1

p̄2i + θiε2 −
j∑
i=1

E2i

)
−

N∑
i=1

η2ip̄2i

+

N∑
i=1

ωi (θi − 1)−
N∑
i=1

νiθi (22)

where λ1i, η1i, λ2i, η2i, ωi, νi are the non-negative Lagrange
multipliers. Differentiating with respect to p̄1i and p̄2i, we
obtain the following KKT optimality conditions:

p̄1i

θi
=

(
1∑N

j=i λ1j

− 1

)+

(23)

p̄2i

θi
=

(
1∑N

j=i λ2j

− 1

)+

(24)

along with the complementary slackness conditions:

λ1j

(
j∑
i=1

p̄1i + θiε1 −
j∑
i=1

E1i

)
= 0, ∀j (25)

λ2j

(
j∑
i=1

p̄2i + θiε2 −
j∑
i=1

E2i

)
= 0, ∀j (26)

η1ip̄1i = 0, ∀i (27)
η2ip̄2i = 0, ∀i (28)

ωi (θi − 1) = 0, ∀i (29)
νiθi = 0, ∀i (30)

We now have the following two lemmas that characterize
the optimal power policy.

Lemma 4 In the optimal policy, powers of both users are
non-decreasing over time.

Proof: The proof follows by noting that in (23) and (24), the
terms

∑N
j=i λ1j and

∑N
j=i λ2j are non-increasing over time

by the non-negativity of {λ1i, λ2i}. �

Lemma 5 In the optimal policy, if a user’s energy is saved
from one time slot to the next, then the powers spent by this
user in the two slots have to be equal.

Proof: The proof follows by the complementary slackness
conditions; whenever, say, user 1’s energy is saved in slot
i, λ1i = 0, and thus

∑N
j=i λ1j =

∑N
j=i+1 λ1j , i.e., the

denominator in (23) does not change over time slots on which
energy transfer occurs. �

Next, we note that the optimal solution of problem (21)
is not unique. For instance, assume that one solution of the

problem required some energy to be transferred from the ith
to the (i+ 1)st slot at both users, and that the optimal values
of θi and θi+1 are both less than 1. By Lemma 5, since we
transferred some energy between the two slots, we must have
equal powers in both slots. Now, if we transfer an extra amount
of energy between the two slots, this allows us to do the
following: 1) decrease the value of θi and increase that of
θi+1, and 2) change the values of p̄ji and p̄j(i+1), j = 1, 2,
correspondingly so that we obtain the same values of powers at
the two slots as before. This leaves us with the same value for
the objective function, as what we did is that we changed the
values of the pre-log factors in a feasible manner while keeping
the values inside the logs as they were. We can keep doing
this until either slot i + 1 is completely filled, i.e., θi+1 = 1,
or all of the energy is transferred from slot i, i.e., θi = 0.

We coin this type of policies as deferred policies; no new
time slots are opened until all time slots in the future are
completely filled, i.e., 0 < θi ≤ 1 iff θk = 1, ∀k =
i + 1, . . . , N . Consequently, {θi}Ni=1 will be non-decreasing.
There can only be one unique optimal deferred policy for
problem (21). In the sequel, we determine that policy.

A. Optimal Deferred Policy

Finding the optimal deferred policy relies on the fact that,
by energy causality, energies can only be used after they
have been harvested. To this end, we begin from the last
slot, and make sure that it is completely filled, i.e., it has
no burstiness, before opening up a previous slot. We apply a
modified version of the single energy arrival result iteratively
in a backward manner through two main phases: 1) deferring,
and 2) refinement. These are illustrated as follows.

We first start by the deferring phase. The goal of this
phase is to determine an initial feasible deferred policy. In the
refinement phase, the optimality of such policy is investigated.
We set the energy state of each slot as {Sjk = Ejk}, j = 1, 2,
and start from the last slot and move backwards. In the kth
slot, we start by examining the use of the kth slot energies in
the kth slot only. This is done using the results of the single
energy arrival (17). If the resulting θk < 1, then we transfer
some energy from previous slots forward to the kth slot until
either it is completely filled, i.e., θk = 1, or all previous slots’
energies are exhausted. We test the possibility of the former
condition by moving all energy from a previous slot l < k,
and re-solving for θk. If the result is unity, then the energies
of slot l can for sure fill out slot k. Next, we show how much
energy is actually needed to do so.

We have two conditions to satisfy: 1) θk = 1, and 2) powers
of user j in slots l and k are equal, pjl = pjk , p′j , if user
j transfers energy from slot l to k (according to Lemma 5).
Let us denote the burstiness in slot l by θ′. Hence, if both
users transfer energy, the optimal policy is found by solving
the following problem

max
θ′,p′1,p

′
2

1 + θ′

2
log(1 + p′1) +

1 + θ′

2
log(1 + p′2)

s.t. (1 + θ′)(p′1 + ε1) = S1l + S1k



(1 + θ′)(p′2 + ε2) = S2l + S2k

0 ≤ θ′ ≤ 1 (31)

Following the same analysis as in the single energy arrival
case, we solve the following equation for θ′:

f1 (1 + θ′) · f2 (1 + θ′) = e−2 (32)

On the other hand, if only the first user transfers energy, the
optimal policy is found by replacing the second constraint in
problem (31) by θ′(p2l + ε2) = S2l, where p2k = S2k − ε2 in
this case. This gives the following to solve for θ′:

f1 (1 + θ′) · f2 (θ′) = e−2 (33)

Similarly, if the transfer is done only from the second user we
solve:

f1 (θ′) · f2 (1 + θ′) = e−2 (34)

In all the three cases of energy transfer above, the equations
to solve have an increasing left hand side, and hence a unique
solution. Finally, the optimal policy is the one that gives
the maximum sum throughput among the feasible ones. It is
worth noting that, by the concavity of the objective function,
transferring energy from both users is optimal if feasible,
since it equalizes arguments (powers) of a concave objective
function [1].

If the initially resulting θk = 1 in the kth slot, we do
directional water-filling over the future slots, which gives
the optimal sum rate [3]. Next, we check if energy should
be transferred from a previous slot l from the first, second,
or both users, in exactly the same way as above, i.e., by
solving (32)-(34). If energy transfer (from either or both
users) is feasible and gives a higher objective function, we
do directional water-filling again from slot k over future slots,
followed by repeating the above energy transfer checks once
more. These inner iterations stop if either no energy transfer
occurs, or no directional water-filling occurs. The deferring
phase ends after examining the first slot. During this phase,
we record how much energy is being moved forward to fill up
future slots. Meters are put in between slots for that purpose.
Let m1i and m2i denote the amount of energy transferred
forward from slot i to slot i + 1 for the first and the second
user, respectively. We use the values stored in these meters in
the second, refinement, phase as follows.

In the refinement phase, the goal is to check whether the
currently reached energy distribution is optimal. One reason
it might not be optimal is that during the deferring phase,
some excess amounts of energy can be transferred from, e.g.,
slot k forward unnecessarily without taking into account the
energies available before slot k. We check the optimality of the
deferring phase policy by performing two-slot updates starting
from the last two slots going backwards. During the updates,
energy can be drawn back from future slots if this increases
the objective function as long as it does not violate causality.
This can be done by checking the values stored in the meters in
between the slots. A positive value stored in, e.g., m1i means

Algorithm 1 Optimal deferred policy
Phase 1: Deferring

1: Set S1 = E1, S2 = E2, m1 = m2 = 0, and k = N
2: while k ≥ 1 do
3: Using energies {S1k, S2k}, solve for θk using (17)
4: if θk < 1 then
5: repeat
6: Transfer all energy from slot k − l to slot k
7: Re-solve for θk using (17)
8: if Slot k is completely filled then
9: Find energy needed to fill it using (32)-(34)

10: else l← min{l + 1, k − 1}
11: end if
12: until θk = 1, or all previous energies are exhausted
13: else
14: repeat
15: Directional water-filling over slots {k, . . . , N}
16: Check for energy transfer using (32)-(34)
17: until No water-filling or energy transfer occur
18: end if
19: Update the energy state values S1 and S2

20: Update the meters’ values m1 and m2

21: k ← k − 1
22: end while

Phase 2: Refinement

23: repeat
24: for k = 0 : N − 2 do
25: Update the energy status of slots (N−k−1, N−k):
26: if θN−k−1 = 1 then update by solving (36)
27: else update by solving (38)
28: end if
29: end for
30: until Meters’ values do not change
31: p∗1 = S1, and p∗2 = S2.

that there can be bidirectional energy transfer between slots i
and i + 1 for the first user. We start by updating slots (N −
1, N), followed by (N−2, N−1), and so on. Once we update
slots (1, 2), we have one iteration. Iterations continue until
there is no further change in the meters’ values, or equivalently
the energy state of each slot stays the same. The details on
how to do the updates for some given two slots are as follows.

In case the update involves two completely-filled slots, we
solve the following problem

max
p,D

1

2
log(1 + p11) +

1

2
log(1 + p21)

+
1

2
log(1 + p12) +

1

2
log(1 + p22)

s.t. p11 + ε1 = S11 +D1, p21 + ε2 = S21 +D2

p12 + ε1 = S12 −D1, p22 + ε2 = S22 −D2

0 ≤ D1 ≤ m1, 0 ≤ D2 ≤ m2 (35)

where Dj is the amount of energy to be drawn back, if any,



from the second to the first slot of user j, and mj is the value
of the meter in between its slots. Substituting the powers in
terms of D1 and D2, the problem now decomposes into two,
one for each user as follows

max
Dj

1

2
log(1 + Sj1 − εj +Dj) +

1

2
log(1 + Sj2 − εj −Dj)

s.t. 0 ≤ Dj ≤ min{mj , Sj2 − εj} (36)

which can be solved by a first derivative analysis over the
feasible region. On the other hand, if the two-slot update
includes a bursty, not completely filled, first slot we then solve

max
p,D,θ

θ

2
log(1 + p11) +

θ

2
log(1 + p21)

+
1

2
log(1 + p12) +

1

2
log(1 + p22)

s.t. θ(p11 + ε1) = S11 +D1, θ(p21 + ε2) = S21 +D2

p12 + ε1 = S12 −D1, p22 + ε2 = S22 −D2

0 ≤ D1 ≤ m1, 0 ≤ D2 ≤ m2

0 ≤ θ ≤ 1 (37)

which can be rewritten as

max
D,θ

θ

2
log

(
1− ε1 +

S11 +D1

θ

)
+

1

2
log (1− ε1 + S12 −D1)

+
θ

2
log

(
1− ε2 +

S21 +D2

θ

)
+

1

2
log(1− ε2 + S22 −D2)

s.t. (θεj − Sj1)
+ ≤ Dj ≤ min{mj , Sj2 − εj}, j = 1, 2

0 ≤ θ ≤ 1 (38)

where the lower bound on Dj is to ensure non-negativity
of powers. We solve the above problem by first fixing the
parameter θ and solving for D1 and D2. Note that when θ is
fixed, the problem decomposes into two independent problems
in D1 and D2 that can be solved by a first derivative analysis
over the feasible region. We then find the optimal θ by one
dimensional line search over the interval [0, 1]. This concludes
our discussion on the refinement phase.

We summarize the solution in Algorithm 1. Based on the
above analysis, we now have the following theorem

Theorem 1 Algorithm 1 is feasible and gives the optimal
deferred policy for problem (21).

IV. NUMERICAL EXAMPLES

In this section, we provide some numerical examples to
further illustrate how the proposed algorithm works. We begin
by considering a two-slot system to show the basic idea of the
deferred policy. Energies arrive with amounts E1 = [0.5, 1]
and E2 = [1, 1], at the first and the second user, respectively.
The processing costs at the first and the second user are
ε1 = 0.5 and ε2 = 0.4, respectively. In Fig. 2, we present
one feasible, and two optimal, power policies. The height of
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Deferred
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Non-deferred
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Fig. 2. Numerical example of a deferred policy in a two-slot system.

the water levels in blue represents the actual transmit powers
{p1i, p2i}, while the width represents the burstiness {θi}, for
i = 1, 2. On the top, we solve for each slot independently using
the single arrival result. This gives a non-deferred policy with
θ = [0.47, 0.65], p1 = [0.57, 1.04], p2 = [1.75, 1.14], and
a sum throughput equal to 0.541. Applying Algorithm 1, we
then transfer all the energy from the 1st to the 2nd slot and
re-solve for θ2 using (17). The result is θ2 = 1, which means
that the 1st slot’s energies are capable of totally filling the 2nd
slot. We therefore compute the exact amount needed to do so
by setting θ2 = 1 and solving for θ1 = θ′ using (32), i.e.,
we assume both users transfer energy. This gives θ1 = 0.122,
p∗1 = [0.84, 0.84], p∗2 = [1.39, 1.39]. The resulting powers
and burstiness are feasible, and are therefore optimal, with a
sum throughput equal to 1.656. We show the optimal deferred
policy at the middle of Fig. 2. Finally, at the bottom of Fig. 2,
we show another optimal, yet non-deferred, power policy. This
is simply done by shifting some of the water back, in a feasible
manner, from slot 2 to slot 1. Namely, we increase the value
of θ1 to 0.35 and decrease that of θ2 to 0.772, with the same
transmit powers. This is a feasible non-deferred policy, and
gives the same objective function of 1.656. This shows the
non-uniqueness of the solution of problem (21), unless we
focus on deferred policies.

Next, we use the same ideas above to solve a more invloved
four-slot system, with energy arrivals E1 = [0.7, 2.5, 0.8, 0.6]
and E2 = [0.8, 3, 1.3, 0.4]; processing costs ε1 = 0.5 and ε2 =
0.2. In Fig. 3, the left (resp., right) hand side represents the
first (resp., second) user’s power allocations over the slots. We
illustarte the deferring phase of Algorithm 1 through four main
steps, (a) through (d). In step (a), we start by considering the
last time slot to get p1 = 1.04, p2 = 0.83, and θ = 0.39.
Therefore, in step (b), we transfer some energy from slot 3
to slot 4 to fill it out. This leaves us with p1 = [0.71, 0.71],
p2 = [1.27, 1.27], and θ = [0.16, 1]. As we can see, the powers
are equal in both slots for each user as stated in Lemma 5. In



0.6 0.41.30.82.50.7 0.8 3

User 1 User 2

0.6 0.41.30.82.50.7 0.8 3

(b)

0.6 0.41.30.82.50.7 0.8 3

(c)

0.6 0.41.30.82.50.7 0.8 3

(d)

(a)

Fig. 3. Numerical example of applying Algorithm 1 on a four-slot system.

step (c), we first fill out slot 3 using some energy from slot
2, but still, this leaves a large amount of energy in slot 2 that
is capable of filling it all, and doing directional water-filling
over slots 3 and 4. This leaves us with three completely filled
slots at both users with power allocations p1 = [0.8, 0.8, 0.8],
and p2 = [1.37, 1.37, 1.37]. We then check for possible energy
transfer from slot 1, which is found infeasible, or decreasing
the objective function. Therefore, finally in step (d), we do
the power allocations for slot 1, which leaves us with the
following (initial) deferred policy: p1 = [0.74, 0.8, 0.8, 0.8],
p2 = [1.22, 1.37, 1.37, 1.37], and θ = [0.56, 1, 1, 1]. We then
apply the refinement phase of Algorithm 1, and find that no
further changes are needed and that the initial deferred policy
is optimal. As we see, powers are non-decreasing as stated in
Lemma 4, and {θi} is also non-decreasing; an attribute of the
deferred policy.

Finally, we consider another four-slot system, with energy
arrivals E1 = [0.9, 0.1, 3, 0.8] and E2 = [0.8, 1.5, 2, 2];
processing costs ε1 = 0.3 and ε2 = 0.6. After the deferring
phase of Algorithm 1, we get the following energy distri-
bution for the initial deferred policy: S1 = [0, 1, 1.9, 1.9]
and S2 = [0, 1.54, 2.38, 2.38]. We then apply the two-slot
updates in the refinement phase of the algorithm. We reach
the optimal deferred policy after 5 iterations, which is given
by p∗1 = [0.67, 0.67, 1.6, 1.6], p∗2 = [1.47, 1.47, 1.47, 1.47],
and θ∗ = [0.033, 1, 1, 1].

V. CONCLUSION

We considered an energy harvesting two-way communica-
tion channel in which both users harvest energy from nature,
and incur an amount of energy cost to account for their
circuitry processing costs. We showed that the throughput
maximizing policy is bursty; the two users only communicate
for a portion of the time, depending on their energies and
processing costs. We showed that it is optimal for the two
users to be fully synchronized; they turn on and exchange
data during the same portion of the time, and they turn
off together. We first investigated the single energy arrival
scenario, and then generalized the solution to the case of
multiple energy arrivals. In particular, we showed that it is
optimal to communicate using deferred policies, in which a
new time slot is utilized only if all future time slots are
completely filled. We presented an algorithm that gives such
a deferred policy by iteratively applying a modified version of
the single energy arrival result in a backward manner.
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