
Segmentation

Overview

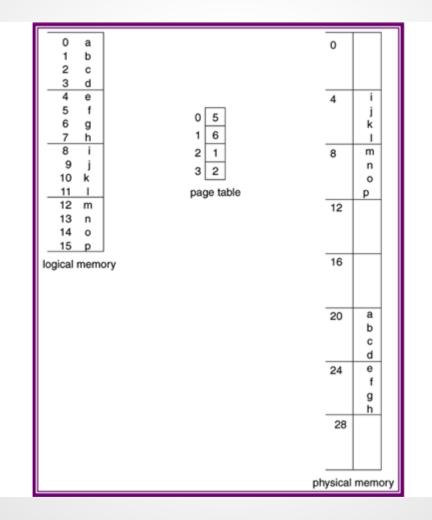
- History
- What is Paging?
- Paging Example
- Pros/Cons of Paging.
- What of Segmentation.
- Addressing Segments.
- Segmentation Example
- Pros/Cons of Segmentation.
- Video #1

Overview cont.

- Segmentation vs. Paging
- Segmentation with Paging
- Multics quick case study
- Implementation: Segmentation w/paging: MULTICS
- Video 2
- Summary
- Class Questions

History

- Virtual memory was developed in approximately 1959 – 1962, at the University of Manchester for the Atlas Computer, completed in 1962.
- In 1961, Burroughs released the B5000, the first commercial computer with virtual memory based on segmentation.


What is Paging?

•During paging, the system divides the memory into pages .

- •A page is a *physical* entity of a *fixed size*.
- •Memory can be divided into large page sizes or small page sizes.

•A whole page must be used even if only holding a very small portion of data.

Paging example

Paging

Small Pages:

- -Large amounts of data cannot be held on a single page.
- -Pages are frequently swapped in and out causing page faults.
- •A page fault is what occurs when a page is too small to hold program
- -Program thrashing
- •Thrashing is when virtual memory is constant state of paging causing many exchanges of data in memory for data on disk.

Large Pages:

- -Require less swapping
- -Memory is quickly depleted
- -Under utilization of physical memory due to fragmentation

Pros/Cons of Paging

Advantages:

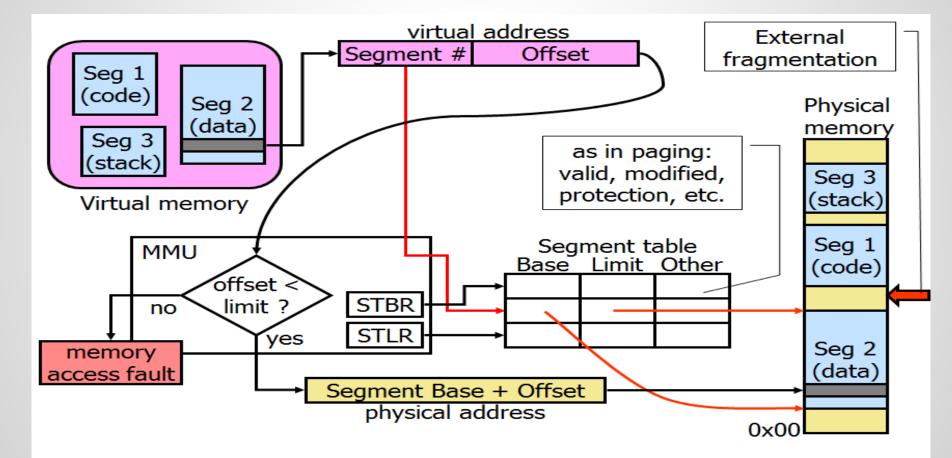
- Efficient memory usage
- Simple partition management due to discontiguous loading and fixed partition size
- No compaction necessary
- Easy to share pages

Pros/Cons of Paging

Disadvantages:

- Job Size <= Memory Size
- Internal fragmentation (half the page size on the average)
- Need special hardware for address translation
- Some main memory space used for PMT's
- Address translation lengthens memory cycle times

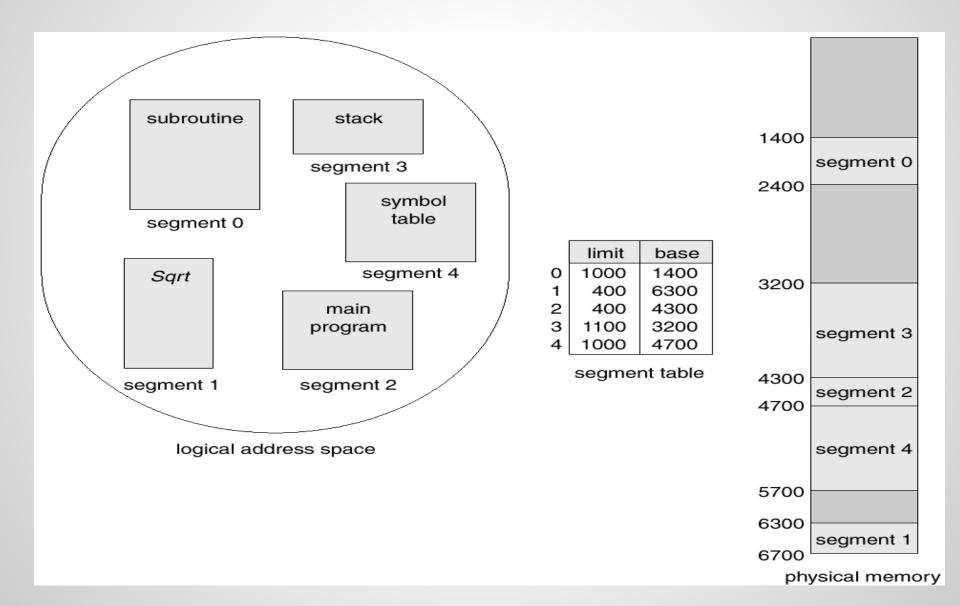
Segmentation


A compromise was needed between large and small page sizes to maximize efficiency and improve performance.

Segmentation

- Memory- management scheme that break the main memory in logical pieces called "Segments".
- Segments are divisions of computer memory of *variable size*.
- A program is a collection of segments. A segment is a logical unit such as:

-main program, procedure, logical variables, global variables, symbols table, arrays...


What is Segmentation?

Addressing Segments

- Let's first assume no paging in the system
- User generates logical addresses
- These addresses consist of a segment number and an offset into the segment
- Use segment number to index into a table
- Table contains the physical address of the start of the segment
 - -often called the base address
- Add the offset to the base and generate the physical address
 - -before doing this, check the offset against the limit
 - -the limit is the size of the segment

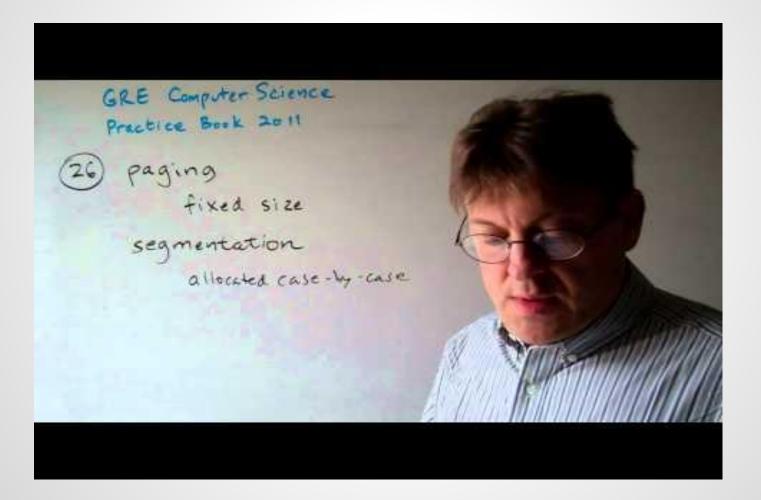
Example of Segmentation

Pros/ Cons of Segmentation

Advantages:

- No internal fragmentation **but** external fragmentation.
- May save memory if segments are very small and should not be combined into one page.
- Segment tables: only one entry per actual segment as opposed to one per page in VM
- Average segment size >> average page size

Pros/ Cons of Segmentation


Disadvantages:

- External fragmentation
- Costly memory management algorithms

- Segmentation: find free memory area big enough (search!).

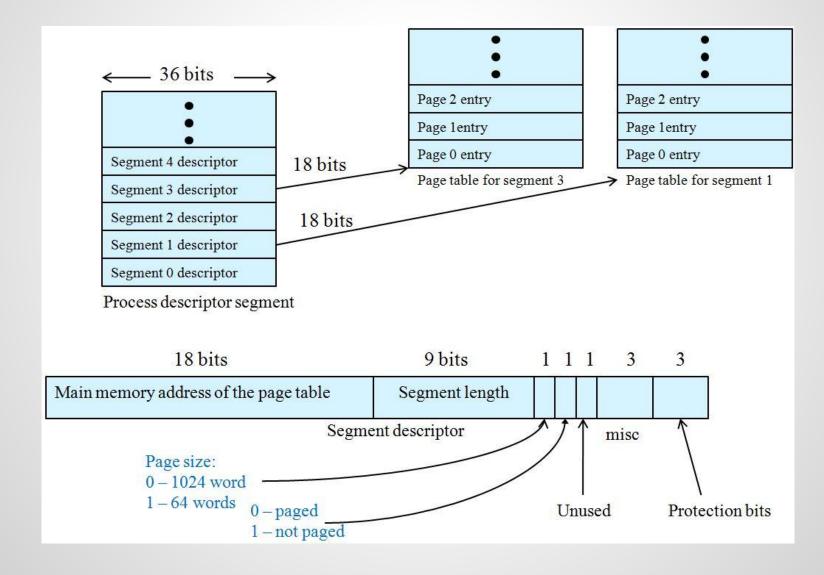
- Paging: keep list of free pages, any page is ok (take first!).

Video #1

Paging vs. Segmentation

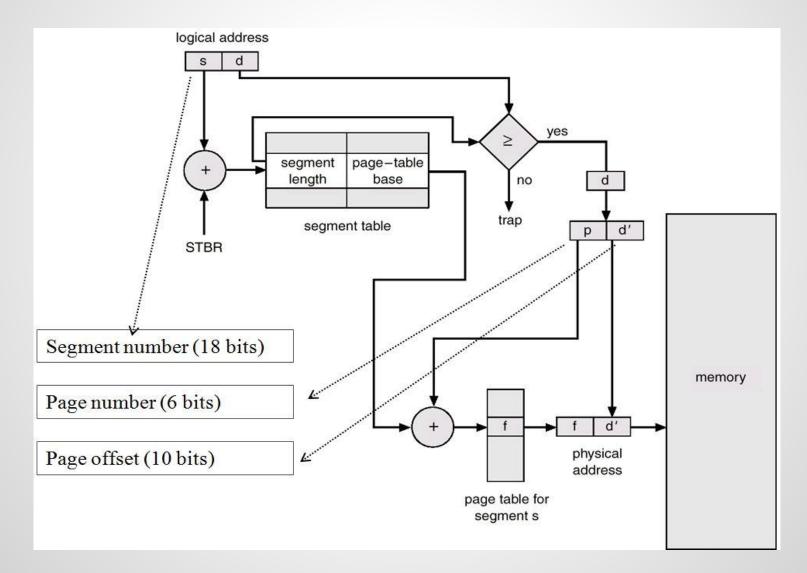
- Need the programmer be aware that this is being used?
- How many linear address spaces are there?
- Can the total address space exceed the size of physical memory?
- Is sharing of procedures between users facilitated?

Segmentation with paging


 Some modern processors allow usage of both, segmentation and paging alone or in a combination (Motorola 8030 and later, Intel 80386, 80486, Pentium) - the OS designers have a choice.

Segmentation with paging: MULTICS cont.

- The MULTICS OS Ran on Honeywell computers
- Segmentation + paging
- Up to 218 segments
- Segment length up to 216 36-bit words
- Each program has a segments table (itself a segment)
- Each segment has a page table


MULTICS data-structures

MULTICS memory reference procedure

- 1. Use segment number to find segment descriptor Descriptor segment is itself paged because it may be large. The descriptor-base-register points to its page table
- 2. Check if segment's page table is in memory
- if not a segment fault occurs
- if there is a protection violation TRAP (fault)
- 3. page table entry examined, a page fault may occur
- if page is in memory the start-of-page address is extracted from page table entry
- 4. offset is added to the page origin to construct main memory address
- 5. perform read/store etc.

MULTICS Address Translation Scheme

MULTICS TLB

Compa field					ls this entry used	
Segment number	Virtual page	Page frame	Protection	Age	1	
4	1	7	Read/write	13	1	
6	0	2	Read only	10	1	
12	3	1	Read/write	2	1	
					0	
2	1	0	Execute only	7	1	
2	2	12	Execute only	9	1	

Simplified version of the MULTICS TLB

Existence of 2 page sizes makes actual TLB more complicated

MULTICS Additional checks during segment link (call)

- Since segments are mapped to files, ACL (access control list) are checked with first access (open)
- Protection rings are called


A very advanced architecture for 1970's !

Implementation Segmentation with paging: MULTICS

Presenting the program

Memory Management	en Page Files Memory	in MB 100 🛉	● Contiguous ○ N	on-Contiguous		ory Manageme te Process	ent Open Page	e Files	Memory in	MB 100 🔹 🤇) Contiguous 🔿 N	Non-Contiguous
ID Type Mem	nory Pages Timer	Fast		Slow	ID	Туре	Memory F	Pages	Timer	Fast	0	Slow
		0%	Memory Usage	100%		1 Process 1 Function 1 Function	28 10 11	0 0 0	14.506 2.889 2.983	0%	Memory Usage	100%
		Code	Data	Stack		 Process Function Function Process Function 	32 17 2 20 2	0 0 0 0	6.274 4.01 2.551 15.279 3.568	Code	Data	Stack
											•	
	14 - Note		_			×						
	ProcessId Page File Memory Us Active Fu Process L	<u>File Edit Format View Help</u> ProcessId: 14 Page File Count: 1 Memory Usage: 28 Active Functions: 1 Process Lifetime: 16.4168671875 Process Color: java.awt.Color[r=125,g=197,b=253										
	4					-						

Video 2

Summary / Conclusion

- What is Paging?
- What is Segmentation?
- Examples of Paging and Segmentation.
- Pros/Cons of Paging and Segmentation.
- Two Videos.
- Segmentation vs. Paging.
- Segmentation with Paging.
- Multics.
- Implementation Segmentation with Paging: MULTICS.

Class ...

